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F-54516, Vandoeuvre-lès-Nancy, France
E-mail: dalil.ichalal@ensem.inpl-nancy.fr

Abstract: This study is dedicated to the design of observers for non-linear systems described by Takagi–Sugeno 
(T–S) multiple models with unmeasurable premise variables. Furthermore, this T–S structure can represent a 
larger class of non-linear systems compared to the T– S systems with measurable premise variables. 
Considering the state of the system as a premise variable allows one to exactly represent the non-linear 
systems described by the general form ẋ ¼ f (x, u). Unfortunately, the developed methods for estimating the 
state of T–S systems with measured premise variable are not directly applicable for the systems that use the 
state as a premise variable. In the present paper, firstly, the design of observers for T– S systems with 
unmeasurable premise variable is proposed and sufficient convergence conditions are established by Lyapunov 
stability analysis. The linear matrix inequality (LMI) formalism is used in order to express the convergence 
conditions of the state estimation error in terms of LMI and to obtain the gains of the observer. Secondly, the 
proposed method is extended in order to attenuate energy-bounded unknown inputs such as disturbances. An 
academic example is proposed to compare some existing methods and the proposed one.
1 Introduction
Recently, the control, the observation and the diagnosis of
non-linear systems received an important consideration. The
incessant demand in terms of reliability and performance of
the estimation and/or control has led to the use of non-
linear models that are able to represent the system in a large
domain of functioning. Therefore the obtained models may
be very complex and the task of designing control laws and
diagnostic algorithms become more difficult to achieve.

In recent years, the Takagi–Sugeno (T–S) structure,
introduced in [1], provides a good way to represent non-
linear systems thanks to its reduced mathematical
complexity and its capabilities to describe a large class of
non-linear systems. Indeed, T–S systems can approximate
general non-linear systems or represent many of them [2]
(Chapters 2 and 14). The T–S multiple model structure is
based on the decomposition of the operating space of the
system in several zones (e.g. neighbourhood of given
operating points) and the behaviour of the system in each
zone is represented by a linear local model. The
contribution of each local model is quantified by the
weighting functions. Thanks to these non-linear weighting
functions, the overall behaviour of the system is represented
by the bending of the local models. Furthermore, T–S
formalism has the advantage that it allows one to use a part
of the rich control system theory that had been developed
for linear systems in the past years.

The paper is organised as follows: notations used in the
paper and the presentation of the T–S multiple model
structure are given in Section 2. Section 3 gives some
background results on the control and observation of T–S
non-linear systems in general, and presents some results on
the problem of state estimation for T–S systems with
unmeasurable premise variables. The main results are
presented in the Sections 4 and 5, in the first one, a
method to design observers is proposed using Lyapunov
theory and, in the second one, the method is extended to



T–S systems with disturbances affecting the state and the
output equations in order to reduce their influence on the
state estimation. Finally, a numerical example is proposed
in order to discuss the performances and limitations of the
proposed observer, and to compare its results with those of
the existing methods.

2 T–S structure and motivations
Let consider a non-linear system described by

ẋ(t) = f (x(t), u(t))
y(t) = Cx(t)

{
(1)

The system (1) can be approximated or represented
(according to the number r of sub-models, chap 2 [2]) by
the T–S structure

ẋ(t) =
∑r

i=1

mi(j(t))(Aix(t) + Biu(t))

y(t) = Cx(t)

⎧⎨
⎩ (2)

where Ai [ Rn×n, Bi [ Rn×nu , C [ Rny×n · x(t) [ Rn is the
state, y(t) [ Rny represents the output of the system and
u(t) [ Rnu is the input. The weighting functions satisfy the
convex sum property expressed in the following equations

0 ≤ mi(j(t)) ≤ 1∑r

i=1

mi(j(t)) = 1

⎧⎨
⎩ (3)

The weighing functions mi are generally non-linear and
depend on the so-called decision variable j(t) that can be
external or internal to the system. When the decision
variable is internal to the system, it can be measurable such
as {u(t), y(t)} or not measurable as the state x(t) of the system.

The structure of the multiple model is simple and is
considered as a universal approximator since it can
represent any non-linear behaviour according to an
adequate number r of the local models. Thus ẋ(t) appears
to be a weighted sum of the contributions of each
submodel (Ai, Bi) state vector ẋ(1)(t), . . . , ẋ(r)(t) (Fig. 1).
The multiple model structure provides a mean to generalise
the tools developed for linear systems to non-linear systems
because of the structure (2) and properties (3).

In order to obtain a T–S system (2) from (1), different
methods exist such as linearisation around some operating
points, and using adequate weighting functions, the system
(1) can be approximated. The most interesting and
important way to obtain a T–S model is the well-known
transformation by non-linear sector [2, 3]. Indeed, this
transformation allows one to obtain an exact T–S
representation of (1). It is proved in [4] that if the output
of the system is chosen as a premise variable j(t) and if this
output is affected by disturbances (which is the case in all
practical situations) the obtained T–S system does not
represent precisely system (1). It is also pointed out that if
the output is non-linear with respect to the state of the
system it is difficult or impossible to obtain a T–S model
by non-linear sector transformation with the output as a
premise variable. That is why taking the state of the system
as premise variable allows one to describe a wider class of
non-linear systems.

In the context of diagnosis of T–S systems, the problem
of fault isolating is difficult with only one model. Indeed,
if the actuator fault isolation problem is considered,
constructing a bank of observers in order to isolate faults
is not possible: if a possibly faulty input is used as a
premise variable, the estimation will not be decoupled
from this input, even if it is considered as an unknown
input. The same problem is encountered when trying to
isolate the sensor faults with a T–S model using the
output as a premise variable. The solution to this
problem, which is largely used in the literature, is to
develop two different T–S models for the same non-
linear system. The first T–S model uses the input of the
system as premise variable in order to isolate sensor faults,
that is, faults affecting the system output. The second one
uses the output of the system as premise variable to isolate
actuator faults, that is, faults affecting the system input.
The proposed solution is to develop only one T–S model
Figure 1 Evolution of the state in a multiple model with a common state vector



that uses the state of the system as premise variable for the
non-linear system. This allows one to solve both the
problems of isolating actuator and sensor faults. Hence,
the problem of designing observers for this class of
systems is very interesting.

Another important domain where the multiple model
structure is used is the cryptanalysis and chaotic systems. In
[5], based on this model by considering that the output of
the system is the premise variable, a new observer design
method is proposed in order to achieve synchronisation, but
it is pointed out that using the unknown state as a premise
variable will improve the synchronisation process security.

As a conclusion, the T–S multiple model with
unmeasurable premise variables is an interesting structure
because

† it can represent exactly the behaviour of the general non-
linear system described by (1);

† a wider class of non-linear systems can be described by this
structure compared to the TS models that use only
measurable premise variables [4];

† only one T–S model is sufficient to construct observer
banks for actuator and sensor fault isolation;

† the synchronisation security is improved in the
cryptanalysis domain [5].

It will be seen in the next section that observer design for
this class of systems is not so widely studied.

3 Background results
Many efforts have been devoted, these last years, to the
problems of stability analysis and stabilisability of T–S
non-linear systems. In [6], stability and controller design
are studied by using the Lyapunov theory, and sufficient
conditions are given in linear matrix inequality (LMI)
formulation. In [7, 8] polyquadratic Lyapunov functions are
used, and relaxed stability conditions are proposed. For
discrete time T–S non-linear systems, a new non-quadratic
Lyapunov function is introduced in [9]. The interest of this
non-quadratic approach is that it significantly reduces the
conservatism. This approach considers the Lyapunov
function variations between m samples (i.e. k and k + m
where m . 1) instead of variations on one sample (i.e. k
and k + 1). When m increases, the stability conditions
become less restrictive. However, in the cited works, the
weighting functions are assumed to be known at each time.
The problem of control design for the class of T–S systems,
where the premise variable is only depending on the
unmeasurable state of the system, is not largely studied in
the literature; nevertheless, we can cite the observer-based
controller designed in [7], by considering that the premise
variable is completely unmeasurable but is estimated by the
observer. In [10], the authors consider the case where the
premise variable is partially measurable. Based on a
quadratic Lyapunov function and LMI formalism, a design
method is proposed. Another approach is proposed in [11],
where H1 output feedback is designed by formulating the
system in an uncertain equivalent form. In this work, the
uncertainties come from the assumption that the premise
variable is the state of the system which is unmeasurable.

Concerning the state estimation and state feedback control
of T–S non-linear systems, we can cite [7]. In [12–14] the
authors proposed the design of an observer and an
unknown input observer via LMI approach, this allows the
state estimation and the diagnosis for non-linear systems
using observer bank-based method to detect and isolate
actuator and sensor faults. Another robust model-based
approach to fault detection with T–S systems is proposed
in [15] by minimising the effects of the disturbances and
maximising the effects of the faults on the residual. In the
context of observer design and diagnosis for T–S non-
linear systems with unmeasurable premise variables, few
works have been published. The only work that may be
encountered in the literature are the fuzzy Thau–
Luenberger observer proposed in [16], which is an
extension of the well-known Thau–Luenberger to T–S
systems; the main result in this paper is the LMI
formulation of conditions given to design the gains of the
observer. The case of uncertain systems has also been
considered and studied using sliding mode observers;
applying the same idea, an unknown input observer is
proposed in [17] for diagnosis. In [4], the H1 filtering
problem was dealt with in order to attenuate the effects of
the disturbances on the state estimation error.

From the above background, we remark that there are only
few works dealing with the observer design for non-linear
systems described by T–S systems with unmeasurable
premise variables. The method proposed in [16] is very
conservative with regard to the considered Lipschitz
constant. Indeed, in [18], the authors pointed out, on the
inverted pendulum system, that even if the simulations are
correct for the maximum admissible Lipschitz constant, this
constant, which is obtained by maximisation, is far from the
real Lipschitz constant of the system. The unknown input
observer proposed in [17] suffers from the same problem
and the proposed unknown input decoupling conditions are
very conservative since the number of local models increases.
The study given in [4] concerns only the H1 filter design
for T–S systems without input (i.e. u(t) = 0).

In this paper, we propose a method to design observers for
T–S non-linear systems with system state as premise
variable. Based on the Laypunov theory, sufficient
conditions are given for the stability of the state estimation
error. The problem of observer design is reduced to the
determination of a matrix gain by solving a set of LMIs
obtained from the stability analysis. An extension of the
method for the systems subject to norm-bounded



exogenous inputs is presented. The gain of the observer is
obtained by solving a feasibility problem under LMI
constraints that ensure both the stability of the state
estimation error and the minimisation of the effect of the
exogenous inputs.

4 Observer design
In this section, the problem of designing observers for non-
linear systems described by (2) with unmeasurable premise
variable (i.e. j(t) = x(t)) is considered. Let us consider the
following matrices A0, Ai, B0 and Bi defined by

A0 = 1

r

∑r

i=1

Ai (4)

B0 = 1

r

∑r

i=1

Bi (5)

and

Ai = Ai − A0 (6)

Bi = Bi − B0 (7)

The matrices A0 and B0 represent the mean of the set of
matrices of the multiple model, which can be considered as
the matrices that characterise a nominal model. The
matrices Ai and Bi describe the variations around the
nominal matrices. Substituting (4)–(7) into (2), the
following equivalent system is obtained

ẋ(t) = A0x(t) + B0u(t) +
∑r

i=1

mi(x)(Aix(t) + Biu(t))

y(t) = Cx(t)

⎧⎨
⎩ (8)

which points out the role of the centres of the polytopes
described by the vertices Ai and Bi .

Based on the structure of the multiple-model (8), the
following proportional observer is proposed

˙̂x(t) = A0x̂(t) + B0u(t) +
∑r

i=1

mi(x̂)(Aix̂(t) + Biu(t))

+ L(y(t) − ŷ(t))
ŷ(t) = Cx̂(t)

⎧⎪⎪⎨
⎪⎪⎩ (9)

Let the state estimation error be defined by

e(t) = x(t) − x̂(t) (10)

Using the equations of the system (8) and the observer (9),
the dynamic of the state estimation error is given by

ė(t) = (A0 − LC)e(t) +
∑r

i=1

(Aidi(t) + BiDi) (11)
where the perturbation terms are detailed below

di(t) = mi(x(t))x(t) − mi(x̂(t))x̂(t) (12)

and

Di(t) = (mi(x(t)) − mi(x̂(t)))u(t) (13)

which unfortunately defined on the states of the system and
its states observer.

Assumption 1: Throughout this paper, the following
conditions hold

† The pair (A0, C) is observable.

† The input u(t) is bounded ‖ui(t)‖ , r, ∀t

† |mi(x)x − mi(x̂)x̂| ≤ ai|x − x̂|

† |(mi(x) − mi(x̂))u| ≤ bi|x − x̂|

where ai and bi are real matrices with all components being
positive definite. The computation of the matrices ai and bi

is given in Appendix.

Theorem 1 (Under Assumption 1): Given the matrices
ai, bi i = 1, . . . , r, the state estimation error between the
multiple model (8) and the observer (9) converges
asymptotically to zero if there exists a positive-definite
and symmetric matrix P [ Rn×n, a matrix K [ Rn×ny and
symmetric positive-definite matrices L1i [ Rn×n and
L2i [ Rnu×n (i = 1, . . . , r) such that the following LMI
holds

AT
0 P − CTK T + PA0 − KC JA JB JaLA JbLB

J
T
A −LA 0 0 0

J
T
B 0 −LB 0 0

LT
AJ

T
a 0 0 −LA 0

L
T
BJ

T
b 0 0 0 −LB

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, 0

(14)

where

JA = PA1 · · · PAr

[ ]
(15)

JB = PB1 · · · PBr

[ ]
(16)

Ja = a1 · · · ar

[ ]
(17)

Jb = b1 · · · br

[ ]
(18)

LA = diag L11 · · · L1r

[ ]( )
(19)

LB = diag L21 · · · L2r

[ ]( )
(20)



The gain of the observer is derived from

L = P−1K (21)

Proof: Consider the quadratic Lyapunov candidate function

V (e(t)) = e(t)TPe(t), P = PT
. 0 (22)

Its derivative with respect to time t is given by

V̇ (e(t)) = ė(t)TPe(t)+ e(t)TPė(t) (23)

Then, using (11) the following is obtained

V̇ (e(t)) = e(t)T((A0 − LC)TP + P(A0 −LC))e(t)

+ 2e(t)TP
∑r

i=1

Aidi(t)+ 2e(t)TP
∑r

i=1

BiDi(t)
(24)

Lemma 1: For any matrices X and Y with appropriate
dimensions, and any positive-definite matrix L, the
following property holds

X TY + Y TX ≤ X T
LX + Y T

L
−1Y , L . 0 (25)

By applying Lemma 1 and Assumption 1, we obtain

di(t)TA
T
i Pe(t)+ e(t)TPAidi(t)

≤ di(t)T
L1idi(t)+ e(t)TPAiL

−1
1i A

T
i Pe(t)

≤ e(t)T
aT

i L1iaie(t)+ e(t)TPAiL
−1
1i A

T
i Pe(t) (26)

Di(t)TB
T
i Pe(t)+ e(t)TPBiDi(t)

≤ Di(t)T
L2iDi(t)+ e(t)TPBiL

−1
2i B

T
i Pe(t)

≤ e(t)T
bT

i L2ibie(t)+ e(t)TPBiL
−1
2i B

T
i Pe(t) (27)

Taking into account (26) and (27), the derivative of the
Lyapunov function (24) can be, then, bounded as follows

V̇ (e(t)) ≤ e(t)T (A0 −LC)TP + P(A0 − LC)
(

+
∑r

i=1

(PAiL
−1
1i A

T
i P + PBiL

−1
2i B

T
i P

+aT
i L1iai +bT

i L2ibi)
)

e(t) (28)

The negativity of the derivative of the Lyapunov function
(28) is guaranteed if

(A0 − LC)TP + P(A0 −LC)+
∑r

i=1

(PAiL
−1
1i A

T
i P

+ PBiL
−1
2i B

T
i P +aT

i L1iai +bT
i L2ibi) , 0 (29)
which can be written, using definitions (15)–(20), as follows

(A0 − LC)TP + P(A0 −LC)+JAL
−1
A J

T
A +JBL

−1
B J

T
B

+JaLAJ
T
a +JbLBJ

T
b , 0

(30)

with the Schur complement and the variable change K ¼ PL,
(30) is equivalent to (14). A

5 L2 attenuating observer
Let us consider the more general situation where T–S
systems are subject to disturbances v(t)

ẋ(t) =
∑r

i=1

mi(x)(Aix(t) + Biu(t) + Eiv(t))

y(t) = Cx(t) + Gv(t)

⎧⎨
⎩ (31)

where Ei [ Rn×nv and G [ Rny×nv are constant matrices
giving the influence of the disturbances, respectively, on the
state and output equations. It is assumed that v(t) is an
energy-bounded disturbance vector, that is, v(t) [ L2.
Note that the situation where the disturbances affecting
the dynamic parts and the static parts of the system are
decoupled may be adressed by using an appropriate
definition of matrices Ei and G.

The objective is to adapt the design of the observer (9) in
order to estimate the state of the system (31) guaranteeing
disturbance attenuation at a certain level.

Transformations made in the previous section by
introducing matrices A0 and B0 are used to obtain the
following equivalent system of the system (31)

ẋ(t)=A0x(t)+B0u(t)+
∑r

i=1

mi(x)(Aix(t)+Biu(t)+Eiv(t))

y(t)=Cx(t)+Gv(t)

⎧⎨
⎩

(32)

The dynamic of the state estimation error e(t)=x(t)− x̂(t)
between the system (32) and the observer (9) is now the
solution of the differential equation

ė(t)= (A0−LC)e(t)+
∑r

i=1

(Aidi(t)+BiDi(t)

+mi(x)(Ei−LG)v(t)) (33)

where the perturbation terms di(t) and Di(t) are defined by
(12) and (13), respectively.

The problem of robust state estimation error is reduced to
the determination of the observer gain L ensuring an
asymptotic convergence of e(t) towards zero if v(t) = 0
(34) and simultanuously ensuring a bounded ratio of the



energy of the disturbance signal and state estimation error
(35) when v(t) = 0, that is

lim
t�1

e(t) = 0 for v(t) = 0 (34)

‖e(t)‖M ≤ g‖v(t)‖N for v(t) = 0 and e(0) = 0

(35)

where

‖e(t)‖M =

������������������∫1

0

e(t)TMe(t) dt

√
,

‖v(t)‖N =

��������������������∫1

0

v(t)TNv(t) dt

√
(36)

M and N are known weighting matrices and g . 0 is the
attenuation level of the disturbances. It is well known [19]
that to satisfy the constraints (34) and (35), it is sufficient
to find a Lyapunov function V such that

V̇ (t) + e(t)TMe(t) − g2v(t)TNv(t) , 0 (37)

To justify this proposition, let us remark that, on the one
hand, if v(t) = 0, (37) implies that V̇ , 0, thus from the
Lyapunov theory, an asymptotic convergence of the state
estimation error e(t) is obtained, then we have (34). On the
other hand, if v(t) = 0, (37) implies

V (t) +
∫t

0

e(t)TMe(t) dt − g2

∫t

0

v(t)TNv(t) dt , 0 (38)

By definition, the Lyapunov function satisfies V (t) . 0,
then

‖e(t)‖2 ≤ g‖v(t)‖2 (39)

which corresponds to (35).

Sufficient conditions to synthesise a robust observer in
order to attenuate the influence of the disturbance v(t) on
the state estimation error are proposed in the following
theorem.
Theorem 2 (Under Assumption 1): Given theattenuation
level g . 0, the matrices M, N, ai and bi i = 1, . . . , r, an
observer (9) for the system (31) satisfying (34) and (35) exist if
there exists a symmetric and positive matrix P [ Rn×n, a
matrix K [ Rn×ny and symmetric definite positive matrices
L1i [ Rn×n and L2i [ Rnu×n, (i = 1, . . . , r) such that the
following LMIs are feasible (see (40))

where

JA = PA1 · · · PAr

[ ]
(41)

JB = PB1 · · · PBr

[ ]
(42)

Ja = a1 · · · ar

[ ]
(43)

Jb = b1 · · · br

[ ]
(44)

LA = diag L11 · · · L1r

[ ]( )
(45)

LB = diag L21 · · · L2r

[ ]( )
(46)

The gain L of the observer is derived from

L = P−1K (47)

Proof: Let us consider the Lyapunov function (22). With
(33), the derivative of the Lyapunov function is calculated
in a similar way as in the proof of Theorem 1, and it is
given by

V̇ (t) = e(t)((A0 − LC)TP + P(A0 − LC) +JAL
−1
A J

T
A

+JBL
−1
B J

T
B +JaLAJ

T
a +JbLBJ

T
b )e(t)

+ 2e(t)TP
∑r

i=1

mi(x)(Ei − LG)v(t)

(48)

The convex property of the sum of the weighting functions
AT
0 P − CTK T + PA0 − KC + M JA JB JaLA JbLB PEi − KG

J
T
A −LA 0 0 0 0

J
T
B 0 −LB 0 0 0

LT
AJ

T
a 0 0 −LA 0 0

LT
BJ

T
b 0 0 0 −LB 0

ET
i P − GTK T 0 0 0 0 −g2N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 0, i = 1, . . . , r (40)



allows one to write

∑r

i=1

mi(x)(e(t)T((A0 − LC)TP + P(A0 − LC)

+JAL
−1
A J

T
A +JBL

−1
B J

T
B +JaLAJ

T
a +JbLBJ

T
b )e(t)

+ 2e(t)TP(Ei − LG)v(t)) , 0

(49)

Substituting (49) into (37), the following matrix inequality is
obtained

∑r

i=1

mi(x)z(t)T C P(Ei − LG)

(Ei − LG)TP −g2N

[ ]
z(t) , 0

(50)

where z(t) = [e(t)T
v(t)T]T and

C = (A0 − LC)TP + P(A0 − LC) +JAL
−1
A J

T
A

+JBL
−1
B J

T
B +JaLAJ

T
a +JbLBJ

T
b + M (51)

With (3), the inequality (50) is fullfilled if (see (52))

The LMIs given in Theorem 2 are obtained from (52) by
using the Schur complement (see [19]) and the change of
variable K = PL. A

Remark 1: Note that an optimally robust observer can be
obtained by considering g as a variable to minimise. Since
(52) is non-linear in g, the change of variable h = g2 can
be used to obtain an LMI in h. The optimally robust
observer is obtained by solving the following problem

min
L,h

h subject to (40) (53)

The optimal attenuation level of the disturbances is
obtained by

g = ��
h

√
(54)

Remark 2: In order to improve the quality of the state
estimation of the system, it is possible to develop a bank of
observers for each state separately. This approach is based
on the choice of the matrices M and N so as to minimise
the disturbance influence on only one state for each
observer. Therefore, for each observer the constraint of L2

norm minimisation is relaxed for all state variables but one.
As a consequence, the attenuation levels will be less or
equal to the one found in (54), and thus the state
estimation is improved.

6 Pole assignment
In this section, consider the observer (9). Using the second
method of Lyapunov, the convergence of the state
estimation error to zero is guaranteed and the eigenvalues
of (A0 − LC) are assigned in a specific region D.

Definition 1: The subset D of the complex left half plane is
called LMI region if there exists a matrix a [ Rn×n and
matrix b [ Rn×n such as

D = {z [ C : fD(z) = a+ bz + bTz , 0} (55)

The matrix A is called D-stable if all its eigenvalues are
located in the domain D of the complex left half plane.
The first idea is to place the eigenvalues in a vertical band
(S1) defined by

S1 = {z/−smin , <e(z) , −smax , 0} (56)

Another more interesting idea, since it limits the imaginary
parts of the eigenvalues, is to place them in a region (S2)
defined by

S2 = {z/|z| , R, <e(z) , −smax , 0} (57)

In order to assign the eigenvalues of (A0 − LC) in the region
S1 to satisfy

<e(l) , −smax

it is sufficient that (A0 − LC) + smaxI is stable, we obtain

(A0 − LC)TP + P(A0 − LC) + 2smaxP , 0 (58)

A similar reasoning on the bound smin gives

−((A0 − LC)TP + P(A0 − LC) + 2sminP) , 0 (59)

Finally, in order to design the observer while assigning the
eigenvalues of (A0 − LC) in the region S1, it is sufficient to
solve the LMIs given in Theorem 1 with the conditions
(58) and (59). The eigenvalues assignment in a circle of
radius R and centre (0.0) is given in [20] by

−RP P(A0 − LC)

(A0 − LC)TP −RP

( )
, 0, P = PT

. 0

(60)
(A0 − LC)TP + P(A0 − LC) +JAL
−1
A J

T
A +JBL

−1
B J

T
B +JaLAJ

T
a +JbLBJ

T
b + M P(Ei − LG)

(Ei − LG)TP −g2N

[ ]
, 0

i = 1, . . . , r

(52)



The design of the observer with eigenvalues assignement in
the region S2 is realised by solving the LMIs in Theorem 1
with the conditions (58) and (60). (For more details see [20].)

7 Simulation example
Consider a one-link manipulator with revolute joints actuated
by a DC motor represented in Fig. 2 [21] whose model is
defined by

u̇m(t) = vm(t)

v̇m(t) = k

Jm

(ul (t) − um(t)) − B

Jm

vm(t) + Kt

Jm

u(t)

u̇l (t) = vl (t)

v̇l (t) = − k

Jl

(ul (t) − um(t)) − mgh

Jl

sin(ul (t))

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(61)

where um(t) stands for the angular position of the motor,
vm(t) is the angular velocity of the motor, ul (t) is the
angular position of the link and vl (t) is the angular velocity
of the link. The input signal is given by u(t) = sin(t), and
the initial condition are x0 = [1 0 3 0]T for the system
and x̂0 = [0.5 0.5 0.5 0.5]T for the observer. The state
representation is

ẋ(t) = Ax(t) + f (x(t)) + Bu(t) + Ev(t),

y(t) = Cx(t) + Gv(t)

where

A =

0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

1.95 0 −1.95 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, B =

0

21.6

0

0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

x =

um

vm

ul

vl

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, f (x) =

0

0

0

−3.33 sin(x3)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, E =

0.5

1

0

0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

C =
1 0 0 0

0 1 0 0

[ ]
, G =

1

1

[ ]

Figure 2 Flexible link joint robot
By using a non-linear sector transformation approach [2], a
multiple model representation of the above system, which
describes exactly the behaviour of the original model, is
given by (2) with

A1 =

0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

19.5 0 −22.83 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

A2 =

0 1 0 0

−48.6 −1.25 48.6 0

0 0 0 1

19.5 0 −18.77 0

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

B1 = B2 = B

m1(z(t)) = z(t) + 0.2172

1.2172

m2(z(t)) = 1 − z(t)

1.2172

⎧⎪⎨
⎪⎩ (62)

where z(t) = sin(x3)/x3. Fig. 3 presents the states of the
original model and those of the multiple model and we
can clearely seen that the multiple model represents exactely
the original model of the system. The values taken by
the weighting functions mi are illustrated in Fig. 4.
The matrices a1, a2, b1 and b2 are computed from the
method given in Appendix and they are defined by

a1 =

1 0 9.7601 0

0 1 5.78 0

0 0 1 0

0 0 3.6176 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, a2 =

1 0 6.1 0

0 1 6 0

0 0 0.8216 0

0 0 3.6 1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

b1 = b2 = 0 0 0.42 0
[ ]

As a first simulation, we propose to compare the proposed
method with the exsiting works. This comparison is based
on the obtained state estimation errors, in the perturbation
free case (v(t) = 0). Secondly, the case in the presence of
perturbation is considered and a comparison between
Theorems 1 and 2 is performed.

7.1 Comparison between the proposed
and the existing approaches

Solving the LMI constraint given in Theorem 1
simultaneously with the LMIs (58) and (60) in order to
ensure the pole clustering in the region S2 defined by



Figure 3 States of the original and multiple model
smax = 9.5 and R = 10, the following matrices are obtained

P =

119.1067 −7.4369 29.0869 −2.5598

−7.4369 43.0543 −175.1685 16.6264

29.0869 −175.1685 730.7144 −72.0210

−2.5598 16.6264 −72.0210 7.5085

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

L =

9.7307 1.0000

−54.3794 27.5117

−1.9395 5.4322

14.3097 7.6348

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

Figure 4 Weighting functions
L11 =

195.75 −170.54 −59.42 −57.15

−170.54 160.15 −24.78 47.25

−59.42 −24.78 854.61 −8.62

−57.15 47.25 −8.62 22.85

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,

L12 =
−128.31 75.00 −27.00 21.83

−65.04 −27.00 847.63 −9.14

−42.76 21.83 −9.14 10.83

⎡
⎢⎣

⎤
⎥⎦

L21 = L22 = 7.05

The simulation results are depicted in Figs. 5 and 6. The
proposed observer is compared with the observers given in
[22, 23].

From this example, it is clear that the proposed approach
gives better results compared to the methods proposed by
Rajamani in [22] and Raghavan [23]. Furthermore, the
method developed in [18], on the observer design for T–S
systems with unmeasurable premise variables, cannot be
used for this example because the proposed LMIs have no
solution due to the value of the considerd Lipschitz constant.

7.2 Comparison between Theorems 1
and 2

The perturbation v(t) is considered in this section in order to
illustrate the attenuation problem given in Theorem 2. The
considered perturbation is a zero mean random signal
bounded by 0.5. The LMIs in Theorems 1 and 2 are



Figure 5 State estimation errors

Figure 6 Actual states and their estimations
solved with pole assignment in the region S2 defined by the
smax = 1 and R = 10. The matrix M is the identity
(M = I4×4) and N = 1. The obtained attenuation level is
g = 2.82. Fig. 7 shows the state estimation errors obtained
with Theorems 1 and 2.
In Fig. 7, the state estimation errors are depicted. One
can see that the results obtained by using Theorem 2 are
better than those obtained using Theorem 1 where the
perturbation is not taken into account. It is also possible
to reduce the ascillatory phenomenon by changing the



Figure 7 Comparison between the results obtained with Theorems 1 and 2
parameters a and R of the region in order to reduce the
imaginary parts of the eigenvalues of the matrix (A0 − LC).

8 Conclusion
The problem of observer design for systems described by
T–S multiple model with unmeasurable premise variables
has been investigated. The convergence of the state
estimation error is established by using the Lyapunov
theory and a quadratic Lyapunov function candidate. The
proposed method is extended to estimate the state of the
system subject to energy-bounded exogenous disturbances.
The convergence conditions are expressed in the LMIs
formulation. For the future works, it will be interesting to
study and reduce the conservatism of the LMIs given in
Theorems 1 and 2 to propose relaxed conditions by using,
for example, a non-quadratic Lyapunov candidate function.
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[20] CHILALI M.: ‘Méthodes LMI pour l’Analyse et la Synthèse
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10 Appendix: Evaluation of the
Lipschitz matrices
The calculation of ai and bi introduced in Assumption 1 of
Section 4 is given by the following steps: Consider a function
f (x) : x [ Rn � Rn defined as follows

f (x) = f1(x)T · · · fn(x)T
[ ]T

, x = xT
1 · · · xT

n

[ ]T

The Taylor formula at order zero with an integral remainder
term of f (x) around x̂ is

fi (x)− fi (x̂)=
∫x1

x̂1

∂fi

∂x1

(t)dt +···+
∫xn

x̂n

∂fi

∂xn

(t)dt, i [ {1, . . . ,n}

(63)

Each function variation can be bounded as follows

| fi (x) − fi (x̂)| ≤
∫x1

x̂1

∂f1
∂x1(t)

∣∣∣∣
∣∣∣∣ dt + · · · +

∫xn

x̂n

∂f1
∂xn

(t)

∣∣∣∣
∣∣∣∣ dt (64)

Let define aij = maxt[[xj x̂j ]
|(∂fi/∂xj(t)| i, j [ {1, . . . , n}. The

interval [xj x̂j] is not known, so aij is calculated for t [ R.
We obtain aij = maxt[R|(∂fi/∂xj)(t)|. Then, (64) can be re-
written as follows

| fi (x) − fi (x̂)| ≤ ai1|x1 − x̂1| + · · · + ain|xn − x̂n|,
i [ {1, . . . , n}

By rewriting the above inequalities in matrix form, we obtain

| f (x) − f (x̂)| ≤ J |x − x̂| (65)

where

J =
a11 · · · a1n

..

. . .
. ..

.

an1 · · · ann

⎡
⎢⎣

⎤
⎥⎦

Then, considering Assumption 1, inequality (65) may be
applied successively for f (x) = mi(x)x and f (x) = mi(x)u in
order to obtain the matrices ai and bi. If the weighting
functions are Lipschitz, the input of the system is bounded,
then the state is also bounded and the parameters aij exist.


