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Abstract

In the Transferable Belief Model, belief functions are usually combined using the un-

normalized Dempster’s rule (also called the TBM conjunctive rule). This rule is used

because of its intuitive appeal and because it has received formal justifications as op-

posed to the many other rules of combination that have been proposed in the literature.

This article confirms the singularity of the TBM conjunctive rule by presenting a new

formal justification based on (1) the canonical decomposition of belief functions, (2)

the least commitment principle and (3) the requirement of having the vacuous belief

function as neutral element of the combination. A similar result is also presented for

the TBM disjunctive rule. Eventually, the existence of infinite families of rules having

similar properties as those two rules is pointed out.

Keywords: Transferable Belief Model, Dempster-Shafer theory, Information fusion,

Evidence theory, Belief functions, Uncertain reasoning, Combination rules.



1 Introduction

The last thirty years have seen the emergence of the Dempster–Shafer theory of belief

functions [4, 33, 35], which has gained increasing interest as a conceptual framework for

modeling partial knowledge and reasoning under uncertainty. Different interpretations

of this theory have been proposed [38]. In particular, the Transferable Belief Model

(TBM) interpretation, which will be adopted in this paper, views belief functions as

representing beliefs held by rational agents. In contrast to other interpretations (based,

e.g., on random sets or imprecise probabilities), the TBM does not assume any under-

lying probability concepts [42, 43]. It has been successfully applied to various problems

such as pattern recognition [5, 7], classifier fusion [28, 24], and military applications

[2, 31, 1]. Most of these applications involve fusing belief functions and rely critically

on combination rules. Although many such rules have been proposed in the literature

(see [32, 41] for recent surveys), it appears that belief functions are usually combined

in the TBM using the unnormalized version of Dempster’s rule [4], referred to as the

TBM conjunctive rule in this paper. An explanation to this fact is that this rule has

received formal justifications for its origin and uniqueness [9, 36, 18, 19, 16]1. It seems

indeed reasonable to favor a principled rule over “ad hoc” ones [41], hence the necessity

for such justifications.

A limitation, which applies to both Dempter’s rule and the TBM conjunctive rule, is

the requirement that the items of evidence combined be distinct, or in other words, that

the information sources be independent. Some authors [22, 14, 3, 8] have attempted to

address this issue. However, those proposals are either restricted to particular classes

of belief functions or do not possess desirable properties such as associativity. Recently,

Denœux [6] proposed a rule, called the cautious rule, for the combination of nondistinct

bodies of evidence. The term cautious is reminiscent of the derivation of the rule, which is

based on the least commitment principle (LCP) [37]. The LCP stipulates that one should

never give more beliefs than justified by the available information, hence it promotes a

cautious attitude. The cautious rule is based on the conjunctive weight function [39],

which is an equivalent representation of a nondogmatic belief function arising from its

canonical decomposition. The TBM conjunctive rule can also be expressed using the

conjunctive weight function, which makes it interesting to study rules based on this

rarely exploited function.
1One should note that, although those justifications use loosely the expression “Dempster’s rule”,

they actually prove the unicity of the unnormalized version of Dempster’s rule. Furthermore, they are

not based on probability concepts, hence they can readily be used to justify the TBM conjunctive rule

as already remarked by Smets [44, 41].
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One of the main differences between the cautious rule and the TBM conjunctive

rule is that the former has no neutral element, whereas the latter admits the vacuous

belief function as neutral element. This last property is quite natural for a conjunctive

operator, as the vacuous belief function encodes ignorance. Hence, rules based on the

conjunctive weight function and that admit the vacuous belief function as neutral ele-

ment are of particular interest. The main result presented in this paper is that, among

those rules, the TBM conjunctive rule is the least committed one. This can be seen

as a new justification of the TBM conjunctive rule for combining nondogmatic belief

functions, as this rule respects a central principle of the TBM. A counterpart to this

result is also obtained for the TBM disjunctive rule [10, 37].

Despite the importance of formal justifications, one should note that some rules of

combination that are not completely well founded theoretically may still be useful for

some problems, such as classifier fusion (see, e.g., [29, 30]). In [9], Dubois and Prade

emphasize this idea by arguing that having only one rule is “not very fortunate in the

scope of AI, where one tries to simulate the human mind rather than force behavior rules

issued from formal arguments” [9]. Indeed, the “descriptive nature of AI” [9] calls for

more flexibility in the choice of combination rules, provided that those other rules satisfy

at least a few basic and reasonable requirements. Interestingly, it is possible to cast the

main result of this paper and the differences between the TBM conjunctive rule and

the cautious rule in a more general context: the cautious rule can be seen as a member

of an infinite family of combination rules based on t-norms [20] on (0,+∞], whereas

the TBM conjunctive rule belongs to an infinite family of combination rules based on

uninorms [47] on (0,+∞] having one as neutral element. Furthermore, both rules have

a special position in their respective family: they are the least committed elements. The

relevance of the introduction of those families of rules in this paper may thus be seen

as twofold. First and foremost, it allows the main result of the paper to be put in a

broader perspective. Second, it also provides an answer to the need for flexibility in

terms of combination rules. Demonstrating the practical usefulness of those families of

rules is nonetheless beyond the scope of this paper. References [29, 30] may be cited as

encouraging preliminary steps in this direction.

The rest of this paper is organized as follows. Necessary notions, such as the conjunc-

tive and disjunctive weight functions, the LCP, and the cautious rule are first recalled

in Section 2. The main result of this paper is presented in Section 3. Section 4 intro-

duces infinite families of combination rules based on generalized t-norms and uninorms.

Section 5 concludes the paper.
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2 Fundamental Concepts

For the reader’s convenience, this paper is self-contained. Section 2.1 summarizes basic

concepts and terminology related to belief functions. The conjunctive and disjunctive

canonical decompositions of belief functions and the resulting conjunctive and disjunc-

tive weight functions are then recalled in Section 2.2. This section reviews only necessary

material, further recent findings on the weight functions may be found in [6]. Section

2.3 focuses on the relative informational content of belief functions. Finally, Section 2.4

summarizes the relevant parts of [6] related to the cautious rule and its dual, the bold

rule.

2.1 The TBM: Basic Definitions and Notations

In this paper, the TBM [42, 43] is accepted as a model to quantify uncertainties based

on belief functions [33]. In this model, the beliefs held by an agent Ag on a finite frame

of discernment Ω = {ω1, ..., ωK} are represented by a basic belief assignment (BBA) m

defined as a mapping from 2Ω to [0, 1] verifying
∑

A⊆Ω m (A) = 1. Subsets A of Ω such

that m(A) > 0 are called focal sets of m. The vacuous BBA, denoted mΩ, is defined by

mΩ(Ω) = 1: it corresponds to complete ignorance. A BBA is said to be dogmatic if Ω

is not a focal set.

A BBA m is said to be normal2 if ∅ is not a focal set, and subnormal otherwise.

A subnormal BBA m can be transformed into a normal BBA m∗ by the normalization

operation defined as follows:

m∗(A) =

{
k ·m(A) if A 6= ∅,
0 otherwise,

(1)

for all A ⊆ Ω, with k = (1−m(∅))−1.

Equivalent representations of a BBA m exist. In particular the belief, implicability,

plausibility and commonality functions are defined, respectively, as:

bel (A) =
∑

∅6=B⊆A

m (B) ,

b (A) = bel(A) + m(∅),

pl (A) =
∑

B∩A6=∅

m (B) ,

2Although the terms “normal” and “Gaussian” are used interchangeably in probability theory, the

notion of normal belief function recalled here should not be confused with that of Gaussian belief function

[23], which is a generalization of a Gaussian probability distribution.
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and

q (A) =
∑
B⊇A

m (B) ,

for all A ⊆ Ω. We note that functions b and bel coincide when m(∅) = 0. However,

these two functions need to be distinguished in the subnormal case: bel has easier

interpretation in terms of degrees of belief, whereas b plays a more technical role. The

BBA m can be recovered from any of these functions. In particular, we have:

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B), (2)

for all A ⊆ Ω and where |A| denotes the cardinality of A.

The negation (or complement) m of a BBA m is defined as the BBA verifying

m(A) = m(A), ∀A ⊆ Ω, where A denotes the complement of A [10]. It can be shown that

the implicability function b associated to m and the commonality function q associated

to m are linked by the following relation:

b(A) = q(A), ∀A ⊆ Ω.

The TBM conjunctive rule is noted ∩©. It is defined as follows. Let m1 and m2 be

two BBAs, and let m1 ∩©2 be the result of their combination by ∩©. We have:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B) m2 (C) , ∀A ⊆ Ω.

Dempster’s rule, noted ⊕, is just the equivalent to the TBM conjunctive rule followed

by normalization using (1). Both rules are commutative, associative and admit a unique

neutral element: the vacuous BBA. The TBM conjunctive rule has a simple expression

in terms of commonality functions. We have:

q1 ∩©2(A) = q1 (A) · q2 (A) , ∀A ⊆ Ω. (3)

Let us now assume that m1 ∩©2 has been obtained by combining two BBAs m1 and

m2, and then we learn that m2 is in fact not supported by evidence and should be

“removed” from m1 ∩©2. This operation is called decombination [39] or removal [34]. It

is well defined if m2 is nondogmatic. Let 6∩© denote this operator. We can write:

m1 ∩©2 6∩©m2 = m1.

Let q1 and q2 be the commonality functions of two BBAs m1 and m2, the decombination

is defined as follows:

q1 6∩©2 (A) =
q1(A)
q2(A)

, ∀A ⊆ Ω.
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Note that q2(A) > 0 for all A as long as m2 is nondogmatic.

A disjunctive rule ∪© also exists [10, 37]. It is defined as:

m1 ∪©2 (A) =
∑

B∪C=A

m1 (B) m2 (C) , ∀A ⊆ Ω.

This rule, called the TBM disjunctive rule in this paper, has a simple expression in

terms of implicability functions, which is the counterpart of (3):

b1 ∪©2(A) = b1 (A) · b2 (A) , ∀A ⊆ Ω.

The TBM disjunctive rule is commutative, associative and admits a unique neutral

element: the BBA which assigns the total mass of belief to the empty set, i.e., m(∅) = 1.

This BBA, which we note m∅, is the negation of the neutral BBA mΩ of the TBM

conjunctive rule and is sometimes called the or-vacuous BBA [40]. As for the TBM

conjunctive rule, an inverse operation may be defined for the TBM disjunctive rule:

b1 6∪©2 (A) =
b1(A)
b2(A)

, ∀A ⊆ Ω.

This operation is well-defined as long as m2 is subnormal (in which case we have b2(A) >

0 for all A). However, it does not necessarily produce a belief function. Its interpretation

is similar to that of 6∩©: it removes, or “decombines”, evidence which has been combined

disjunctively with prior knowledge.

The dual nature of ∩© and ∪© becomes apparent when one notices that these operators

are linked by De Morgan’s laws [10]:

m1 ∪©m2 = m1 ∩©m2

m1 ∩©m2 = m1 ∪©m2

As remarked by Smets [37], the TBM conjunctive rule is based on the assumption

that the belief functions to be combined are induced by reliable sources of information,

whereas the TBM disjunctive rule only assumes that at least one source of informa-

tion is reliable, but we do not know which one (see also [15]). Both rules assume the

sources of information to be independent (i.e., they are assumed to provide distinct, non

overlapping pieces of evidence).

2.2 Canonical Decompositions of Belief Functions

2.2.1 Conjunctive Weight Function

According to Shafer [33], a BBA is said to be simple if it has the following form

m(A) = 1− w0

m(Ω) = w0,
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for some A ⊂ Ω and some w0 ∈ [0, 1]. Let us denote such a BBA as Aw0 . The vacuous

BBA may thus be noted A1 for any A ⊂ Ω. It is clear that

Aw0 ∩©Aw′
0 = Aw0w′

0 .

A BBA may be called separable if it can be obtained as the result of the combination

of simple BBAs using the TBM conjunctive rule. It can then be written:

m = ∩©A⊆ΩAw(A),

with w(A) ∈ [0, 1] for all A ⊂ Ω.

Smets [39] showed that any nondogmatic BBA m may be uniquely expressed as the

decombination of two separable BBAs:

m =
(
∩©A⊂ΩAwC(A)

)
6∩©

(
∩©A⊂ΩAwD(A)

)
(4)

with wC(A) ∈ (0, 1], wD(A) ∈ (0, 1] and max(wC(A), wD(A)) = 1 for all A ⊂ Ω.

Equation (4) is referred to as the conjunctive canonical decomposition of m. Let w

denote the mapping from 2Ω \ Ω to (0,+∞) defined as

w(A) =
wC(A)
wD(A)

, ∀A ⊂ Ω.

Function w is called the conjunctive weight function3 associated to m [6]. If m is

separable, then wD(A) = 1 and w(A) ≤ 1 for all A ⊂ Ω. Otherwise, w(A) > 1 for some

A ⊂ Ω. For any nondogmatic BBA m, we may write

m = ∩©A⊆ΩAw(A),

where Aw(A) is a simple BBA if w(A) ≤ 1, and a “generalized simple BBA” (which is not

a BBA) if w(A) > 1. The conjunctive weight function is a new equivalent representation

of a nondogmatic BBA, which may be computed directly from m as follows:

lnw(A) = −
∑
A⊆B

(−1)|B|−|A| ln q(B), ∀A ⊂ Ω.

We notice the similarity with (2). Hence, as pointed out in [6], any procedure suitable

for transforming q to m can be used to compute ln w from − ln q.

Finally, we note that function w has a simple property with respect to the TBM

conjunctive rule. Let w1 and w2 be two weight functions, and let w1 ∩©2 denote the

result of their ∩©-combination. Then the following relation holds:

w1 ∩©2(A) = w1(A)w2(A), ∀A ⊂ Ω.

3We note that function w is only defined for strict subsets of Ω, as the notation Ωw0 corresponds to

the vacuous BBA no matter the value assigned to w0: consequently, w(Ω) could be fixed arbitrarily. In

[17], the authors propose a particular way to extend function w to 2Ω. However, this extension will not

be needed in this paper.
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2.2.2 Disjunctive Weight Function

Using a similar reasoning as in Section 2.2.1, Denœux [6] showed that any subnormal

BBA m can be uniquely decomposed as follows:

m =
(
∪©A⊃∅AvC(A)

)
6∪©

(
∪©A⊃∅AvD(A)

)
,

where vC(A) ∈ (0, 1], vD(A) ∈ (0, 1] and max(vC(A), vD(A)) = 1 for all A ⊆ Ω such

that A 6= ∅, and the notation Ax denotes the negation of A
x. Let v denote the mapping

from 2Ω \ ∅ to (0,+∞) defined as

v(A) =
vC(A)
vD(A)

, ∀A ⊃ ∅.

This new function, referred to as the disjunctive weight function associated to m, may

be recovered from b as follows [6]:

ln v(A) = −
∑
B⊆A

(−1)|A|−|B| ln b(B), ∀A ⊃ ∅.

It is related to the conjunctive weight function w associated to the negation m of m by

the equation:

v(A) = w(A), ∀A 6= ∅. (5)

The TBM disjunctive rule has a simple expression using the disjunctive weight func-

tion. Let m1 and m2 be two subnormal BBAs with disjunctive weight functions v1 and

v2, and let v1 ∪©2 be the disjunctive weight function associated to m1 ∪©m2. We have:

v1 ∪©2(A) = v1(A)v2(A), ∀A ⊃ ∅.

2.3 Informational Comparison of Belief Functions

The least commitment principle (LCP) of the TBM postulates that, given a set of BBAs

compatible with a set of constraints, the most appropriate BBA is the least informative

[37]. It is similar to the principle of minimal specificity in possibility theory [45]. This

principle becomes operational through the definition of partial orderings allowing the

informational comparison of BBAs. Such orderings, generalizing set inclusion, were

proposed by Yager [46] and Dubois and Prade [10]. Their interpretations are discussed

from a set-theoretical perspective in [10] and from the point of view of the TBM in [12].

They are defined as follows:

• pl-ordering: m1 vpl m2, iff pl1 (A) ≤ pl2 (A) for all A ⊆ Ω ;

• q-ordering: m1 vq m2, iff q1 (A) ≤ q2 (A) for all A ⊆ Ω;
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• s-ordering: m1 vs m2, i.e., m1 is a specialization of m2, iff m1 can be obtained

from m2 by transferring each mass m2(A) to subsets of A.

A BBA m1 is said to be x-more committed than m2, with x ∈ {pl, q, s}, if we have

m1 vx m2. It was shown in [10] that those definitions are not equivalent: m1 vs m2

implies m1 vpl m2 and m1 vq m2, but the converse is not true. Furthermore, the

orderings vpl and vq are not comparable. The vacuous BBA mΩ is the unique greatest

element for partial orderings vx with x ∈ {s, q, pl}, i.e., we have m vx mΩ for all

m. Informally, this latter property means that all beliefs are more informative than

ignorance, as should be.

In [6], Denœux defined a new partial ordering based on the conjunctive weight func-

tion. Given two nondogmatic BBAs m1 and m2, m1 is said to be w-more committed,

which is noted m1 vw m2, iff w1(A) ≤ w2(A), for all A ⊂ Ω. The vacuous BBA mΩ is

not a greatest element for vw, but it is only a maximal element (actually the unique

maximal element), i.e., we have mΩ vw m ⇒ m = mΩ, for all nondogmatic bba m. It

was shown in [6] that the w-ordering is strictly stronger than the s-ordering, i.e., we

have, for any two nondogmatic BBAs m1 and m2, m1 vw m2 ⇒ m1 vs m2.

Let us reproduce a lemma related to the w-ordering, which will be needed later.

Lemma 1 ([6]). Let m be a nondogmatic BBA with conjunctive weight function w, and

let w′ be a mapping from 2Ω\ {Ω} to (0,+∞) such that w′(A) ≤ w(A) for all A ⊂ Ω.

Then w′ is the conjunctive weight function of some nondogmatic BBA m′.

In [6], Denœux also defined yet another partial ordering, which is the disjunctive

counterpart of vw. This ordering, called the v-ordering, is based on the disjunctive

weight function. It is defined as follows: given two subnormal BBAs m1 and m2, m1 vv

m2 iff v1 (A) ≥ v2 (A) for all A 6= ∅. The v-ordering is strictly stronger than the

s-ordering. However, vv and vw are not comparable.

As explained in [6], all these partial orderings seem equally well justified and rea-

sonable. The choice of a particular partial ordering for a given problem is then guided

by different considerations such as existence of a solution or tractability of calculations.

In the following section, we review how the vw and vv orderings can be used to derive

two rules of combination.

2.4 Two Idempotent Rules Based on the Weight Functions

We have seen that the TBM conjunctive and disjunctive rules are based on pointwise

combination of conjunctive and disjunctive weights, respectively, using the product.

Recently, Denœux [6] proposed two other rules, called the cautious and bold rules of
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combination, in which the product is replaced by the minimum. This section summarizes

necessary material on those two rules.

2.4.1 The Cautious Rule of Combination

The TBM conjunctive rule is justified only when it is safe to assume that the items

of evidence combined be distinct or, in other words, that the information sources be

independent. When this assumption does not hold, an alternative consists in adopting

a cautious, or conservative, attitude to the merging of belief functions by applying the

LCP [6, 8, 13]. Let us now recall the building blocks of the cautious merging of belief

functions.

As remarked in [10], it is possible to think of vx as generalizing set inclusion. This

reasoning can be used to see conjunctive combination rules as generalizing set inter-

section. Let us consider the following situation. Suppose we get two reliable sources

of information. One states that ω is in A ⊆ Ω, whereas the other states that it is in

B ⊆ Ω. It is then certain that ω is in C such that C ⊆ A and C ⊆ B. The largest

subset C satisfying those constraints is A∩B. Now, suppose we get two reliable sources

of information that provide two BBAs m1 and m2. Upon receiving those two pieces

of information, the agent’s state of belief should be represented by a BBA m12 more

informative than m1 and m2. Let Sx (m) be the set of BBAs m′ such that m′ vx m,

with x ∈ {v, w, s, q, pl}. Hence m12 ∈ Sx (m1) and m12 ∈ Sx (m2), or equivalently

m12 ∈ Sx (m1)∩Sx (m2). According to the LCP, the x-least committed BBA should be

chosen in Sx (m1) ∩ Sx (m2). This defines a conjunctive combination rule if the x-least

committed BBA exists and is unique. When m1 and m2 are nondogmatic, choosing the

w-ordering yields an interesting solution [6, Proposition 4] which Denœux uses to define

the so-called cautious rule of combination.

Definition 1 ([6]). Let m1 and m2 be two nondogmatic BBAs, and let m1 ∧©2 = m1 ∧©m2

denote the result of their combination by the cautious rule. The nondogmatic BBA m1 ∧©2

has the following conjunctive weight function:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω,

where ∧ is the minimum operator.

We thus have:

m1 ∧©2 = ∩©A⊂ΩAw1(A)∧w2(A).

The cautious rule is commutative, associative, idempotent and monotonic with re-

spect to vw. This last property means that if a nondogmatic BBA m1 is less informative
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than a nondogmatic BBA m2 according to the vw ordering, then this order is unchanged

after combination by ∧© with a third nondogmatic BBA. Of interest for Section 4 of this

paper is the fact that all of these properties are due to similar properties of the mini-

mum on (0,+∞], much as the properties of the TBM conjunctive rule may be seen as

consequences of the properties of the product on (0,+∞].

2.4.2 The Bold Rule of Combination

We have seen that the cautious rule of combination extends set intersection, and that it

supposes the sources of information to be reliable. Let us now consider another situation.

Suppose we get two sources of information and that it is known that at least one of the

two sources is reliable, but we do not know which one. One of them states that ω is in

A ⊆ Ω, whereas the other one states that it is in B ⊆ Ω. The smallest set containing

both A and B is A ∪ B. This reasoning is used in [6] to derive a disjunctive merging

of belief functions based on the LCP, which can be summarized as follows. Suppose we

get two sources of information that provide two BBAs m1 and m2, and that at least one

of the sources is reliable but it is not known which one. Then, the BBA m12 resulting

from the merging of m1 and m2 should be the x-most committed BBA amongst the

BBAs which are x-less committed than m1 and m2, with x ∈ {v, w, s, pl, q} [6]. Denœux

showed that when m1 and m2 are subnormal, using the v-ordering yields an interesting

solution [6, Proposition 13], from which he defined the so-called bold rule of combination.

Definition 2 ([6]). Let m1 and m2 be two subnormal BBAs, and let m1 ∨©2 = m1 ∨©m2

denote the result of their combination by the bold rule. The disjunctive weight function

of the subnormal BBA m1 ∨©2 is:

v1 ∨©2(A) = v1(A) ∧ v2(A), ∀A 6= ∅.

We thus have:

m1 ∨©2 = ∪©A6=∅Av1(A)∧v2(A).

The bold rule has similar properties as the cautious rule since they are both based

on the minimum. Eventually, let us remark that the cautious and bold rules are related

by De Morgan’s laws [6]. We have:

m1 ∨©m2 = m1 ∧©m2, (6)

m1 ∧©m2 = m1 ∨©m2. (7)
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3 Singularity of the TBM Conjunctive and Disjunctive

Rules

As shown above, the cautious and TBM conjunctive rules share a remarkable property:

they are based on pointwise combination of conjunctive weights using a binary operator

on (0,+∞]. This binary operator is the minimum in the former case, and the product

in the latter. As a consequence, the vacuous BBA is a neutral element for the TBM

conjunctive rule, whereas it is not for the cautious rule. This property of the cautious

rule seems difficult to interpret, as the vacuous BBA expresses total ignorance: as such,

it could be expected to have no impact when combined conjunctively with any other

BBA. We may thus wonder whether there exists a rule

1. based on pointwise combination of conjunctive weights (such a rule will be hereafter

referred to as w-based);

2. having the vacuous BBA as neutral element, and

3. w-less committed than the TBM conjunctive rule.

As will be shown in Section 3.1, such a rule does not exist. We will demonstrate

that the TBM conjunctive rule is less committed according the vw ordering and, con-

sequently, according to the orderings vx with x ∈ {s, pl, q} as well, than any other

w-based rule having the vacuous BBA as neutral element. Section 3.2 will provide a

counterpart to this result for the TBM disjunctive rule. Eventually, our justification of

the TBM conjunctive rule will be compared in Section 3.3 to the other ones proposed

in the literature.

3.1 Justification of the TBM conjunctive rule

Let us consider a w-based rule based on a binary operator ◦ on (0,+∞]. It is clear that

this rule has the vacuous BBA as neutral element if and only if 1 is a neutral element

of ◦. We may remark that the product on (0,+∞] satisfies this property, whereas the

minimum on (0,+∞] does not, hence the difference between the TBM conjunctive rule

and the cautious rule.

However, not all binary operators on (0,+∞] correspond to a w-based rule, as the

combination of two weight functions should yield a valid weight function associated to

some BBA. The set of binary operators allowing the definition of a w-based rule with

the vacuous BBA as neutral element is completely characterized by Proposition 1 and

Theorem 1 below. We may already remark that this characterization is essential since

it will lead to the justification of the TBM conjunctive rule.
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Proposition 1. Let ◦ be a binary operator on (0,+∞] such that 1 ◦ x = x ◦ 1 = x for

all x ∈ (0,+∞) and x ◦ y ≤ xy for all x, y ∈ (0,+∞). Then, for any conjunctive weight

functions w1 and w2, the function w1◦2 defined by:

w1◦2(A) = w1(A) ◦ w2(A), ∀A ⊂ Ω,

is a conjunctive weight function associated to some nondogmatic BBA m1◦2.

Proof. We have

w1◦2(A) ≤ w1 ∩©2(A), ∀A ⊂ Ω.

From Lemma 1, w1◦2 is a conjunctive weight function since w1 ∩©2 is a conjunctive weight

function.

Proposition 1 has shown that if a binary operator is below the product and has 1 as

neutral element, then it can be used to define a w-based rule that has the vacuous BBA

as neutral element. One may wonder if the constraint of being below the product can

be relaxed. The answer is provided by the following theorem.

Theorem 1. Let ◦ be a binary operator on (0,+∞] such that

• 1 ◦ x = x ◦ 1 = x for all x ∈ (0,+∞) and

• x ◦ y > xy for some x, y ∈ (0,+∞).

Then, there exist two nondogmatic BBAs m1 and m2 on a frame Ω such that the function

obtained by pointwise combination using ◦ of the conjunctive weight functions associated

to m1 and m2 is not a conjunctive weight function.

Proof. See Appendix A.

The immediate corollary of this theorem constitutes one of the main results of this

paper.

Corollary 1. The TBM conjunctive rule ∩© is the x-least committed rule, with x ∈
{w, s, pl, q}, among the w-based rules that have the vacuous BBA mΩ as neutral element.

Proof. From Theorem 1 and Proposition 1, it is clear that any w-based rule ◦© that has

the vacuous BBA as neutral element is based on a binary operator ◦ on (0,+∞] with 1

as neutral element and such that x ◦ y ≤ xy for all x, y ∈ (0,+∞). For all nondogmatic

BBAs m1 and m2, we thus have

w1(A) ◦ w2(A) ≤ w1 ∩©2(A), ∀A ⊂ Ω.

Consequently, m1 ◦©m2 vw m1 ∩©m2, and m1 ◦©m2 vx m1 ∩©m2 for x ∈ {s, pl, q}.
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According to this corollary, the TBM conjunctive rule thus respects a central prin-

ciple of the TBM: the least commitment principle, under the two requirements of being

based on pointwise combination of conjunctive weights and having the vacuous BBA

as neutral element. Corollary 1 further implies that it is the only rule satisfying these

properties. We thus have provided a new formal justification of the TBM conjunctive

rule for combining nondogmatic belief functions.

In Section 3.3, this justification will be compared to the other ones proposed in the

literature. Before that, we will first state a corresponding result for the TBM disjunctive

rule, which is a consequence of the duality between these two rules.

3.2 The Disjunctive Case

The bold and TBM disjunctive rules are based on pointwise combination of disjunctive

weights using a binary operator on (0,+∞] (respectively, the minimum and the product).

The difference between these two rules is that the or-vacuous BBA m∅ is a neutral

element for the TBM disjunctive rule, whereas it is not for the bold rule. This property

is important in the context of a disjunctive merging. Indeed, it is a direct consequence

of generalizing set union, as is the use of the principle of maximal commitment (instead

of the LCP). The study of rules based on pointwise combination of disjunctive weights

(v-based rules for short) and which admits the or-vacuous BBA as neutral element leads

to the following conclusion.

Corollary 2. The TBM disjunctive rule ∪© is the x-most committed rule, with x ∈
{v, s, pl, q} among the v-based rules that have the or-vacuous BBA m∅ as neutral element.

Proof. Let ◦ be a binary operator on (0,+∞] having 1 as neutral element. Let v1 and

v2 be the disjunctive weight functions associated to two subnormal BBAs m1 and m2.

Let w1 and w2 be the conjunctive weight functions associated to m1 and m2. We have:

∪©A6=∅Av1(A)◦v2(A) = ∩©A6=∅Av1(A)◦v2(A)

= ∩©A6=∅Ā
v1(A)◦v2(A)

since Ax denotes the negation of A
x. Furthermore, we have from (5):

∩©A6=∅Ā
v1(A)◦v2(A) = ∩©A6=∅Ā

w1(Ā)◦w2(Ā)

= ∩©A⊂ΩAw1(A)◦w2(A). (8)

From Theorem 1 and Lemma 1, (8) is guaranteed to be a BBA iff ◦ is such that x◦y ≤ xy.

For any operator ◦ on (0,+∞] having 1 as neutral element and such that x ◦ y ≤ xy for
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all x, y ∈ (0,+∞), we have

v1 (A) ◦ v2 (A) ≤ v1 ∪©2 (A) , ∀A 6= ∅.

Consequently, the disjunctive rule based on ◦ is at most as v-committed as the rule ∪©.

This result can be extended to weaker orderings vx with x ∈ {s, pl, q}.

This corollary shows that the TBM disjunctive rule respects the principle of maximal

commitment, which is the one to be followed in the context of disjunctive merging. It

may thus be seen as a new justification for the TBM disjunctive rule.

3.3 Discussion

The justification of the TBM conjunctive rule proposed in this article as well as the ones

proposed in [9, 36, 18, 19, 16] completely fit the TBM since they are obtained without

introducing any underlying probability concepts. However, it is interesting to remark

that our approach is completely different from the other ones. Indeed, the justifications

presented in [36, 18, 19, 16] result essentially from the associativity and commutativity

properties required of the combination operator, as rightfully remarked by Smets in

[44], and the justification of Dubois and Prade [9] is based on the requirement that the

combination should satisfy the so-called separability property.

In comparison, our justification is based on two other requirements: the combination

should be w-based and it should have the vacuous BBA as neutral element. Whereas

the latter requirement is intuitively appealing, the former may seem more difficult to

interpret. However, some justification may be found in the meaning of the canonical

decomposition of a belief function, which breaks down a belief function into elementary

pieces of evidence pertaining to single propositions. It may be argued that the combina-

tion of two belief functions should be performed by considering in turn each proposition

and combining the two elementary pieces of evidence pertaining to it, which leads to

the w-based requirement. As a further motivation for introducing this requirement, we

may notice that w-based combinations offer a rarely considered, yet promising outlook

on the combination of belief functions, as demonstrated by the recent introduction of

the cautious rule.

As the arguments developed in this paper are based on the canonical conjunctive

decomposition, which is rigorously defined only for nondogmatic belief functions, our

justification of the TBM conjunctive rule is formally restricted to this particular class

of belief functions. As noted in [39], it seems possible to extend this decomposition to

any belief function using an infinitesimal discount rate. However, this idea remains to
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be fully investigated from a mathematical point of view. In any case, it may be argued

that the restriction to nondogmatic belief functions is of little practical significance, as

any belief function can always be discounted by an arbitrarily small amount, resulting

in a more conservative representation of a piece of evidence [6].

In summary, all the justifications proposed for the TBM conjunctive rule seem rea-

sonable and have their merits, even though the requirements on which they are based

can always be subject to discussion. Globally, however, there seems to be a convergence

of arguments in favor of this particular rule, even if other rules may be valuable in some

situations as explained in the introduction of this paper. As a matter of fact, Section

4 below will reveal the existence of infinite families of combination rules in which the

TBM conjunctive rule and the cautious rule are particular members.

4 Four Infinite Families of Combination Rules

As discussed in Section 1, having only one rule is not the ideal situation to cope with real-

world problems. It could thus be useful to have other rules of combination. Such rules

should at least satisfy a few basic properties such as commutativity or associativity. This

section shows that the cautious and TBM conjunctive rules can be seen as particular

members of two distinct families of combination rules. It thus provides an answer to the

need for more flexibility in terms of combination rules, and sheds some new light on the

fundamentally different behaviors of the cautious and TBM conjunctive rules. It also

allows us to put the result of the preceding section in a broader perspective.

The key to the introduction of those families of rules is to remark that the cautious

and TBM conjunctive rules are based on the minimum and the product, respectively,

and that these two operators on (0,+∞] essentially differ by the position of their neutral

element. Indeed, on the one hand, the minimum on (0,+∞] is commutative, associative,

and monotonic. In addition, the upper bound of (0,+∞] serves as neutral element for

the minimum. The minimum on (0,+∞] has thus similar properties as triangular norms

(t-norms for short) [20], except that t-norms are usually defined on [0, 1]. On the other

hand, the product on (0,+∞] is commutative, associative, monotonic and has one as

neutral element. It has thus similar properties as uninorms [47], which are usually

defined as commutative, associative, monotonic operators on [0, 1] that admit a number

e ∈ [0, 1] as neutral element. This comparison between the minimum and the product

leads us to extend the definitions of t-norms and uninorms on (0,+∞] as follows.

Definition 3. A t-norm on (0,+∞] is a binary operator on (0,+∞], which is commu-

tative, associative, monotonic, and which admits +∞ as neutral element.
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Definition 4. A uninorm on (0,+∞] is a binary operator on (0,+∞], which is commu-

tative, associative, monotonic, and which admits some positive real number e ∈ (0,+∞]

as neutral element.

The construction of such generalized t-norms and generalized uninorms being out

of the scope of this paper, the interested reader is referred to [26], where means are

provided to obtain such operators out of t-norms on [0, 1]. Example 1 below gives

nonetheless an example of a t-norm on (0,+∞] different from the minimum and an

example of a uninorm on (0,+∞] different from the product (the operators of Example

1 were obtained using the construction mechanisms provided in [26]).

Example 1. The operator ? defined by

x ? y =


(

1
x + 1

y −
1
x ·

1
y

)−1
if x ∧ y > 1,

x ∧ y otherwise,

for all x, y ∈ (0,+∞] is a t-norm on (0,+∞].

The operator ◦ defined by

x ◦ y =


x · y if x ∨ y ≤ 1,

((1/x) ∧ (1/y))−1 if x ∧ y ≥ 1,

x ∧ y otherwise,

for all x, y ∈ (0,+∞] is a uninorm on (0,+∞] having 1 as neutral element. We may

further remark that this uninorm verifies x ◦ y ≤ xy for all x, y ∈ (0,+∞].

4.1 Conjunctive T-rules

As previously mentioned, the minimum is a t-norm on (0,+∞]. The cautious rule thus

belongs to a family of rules based on pointwise combination of conjunctive weights using

t-norms on (0,+∞]. In order to characterize this family, we need to remark that the

minimum is the largest t-norm on (0,+∞], much as it is the largest t-norm on [0, 1].

Lemma 2. The minimum is the largest t-norm on (0,+∞].

Proof. Any t-norm ? on (0,+∞] has by definition +∞ as neutral element and is mono-

tonic, hence we have x ? y ≤ x ? +∞ = x and x ? y ≤ +∞ ? y = y, so x ? y ≤ x ∧ y, for

all x, y ∈ (0,+∞].

We may then show the following.
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Proposition 2. Let ? be a t-norm on (0,+∞]. Then, for any conjunctive weight func-

tions w1 and w2, the function w1 ?©w2 defined by:

w1 ?©w2(A) = w1(A) ? w2(A), ∀A ⊂ Ω,

is a conjunctive weight function associated to some nondogmatic BBA m1 ?©w2.

Proof. From Lemma 2, we have

w1 ?©w2(A) ≤ w1 ∧©2(A), ∀A ⊂ Ω.

From Lemma 1, w1 ?©w2 is a conjunctive weight function since w1 ∧©2 is a conjunctive

weight function.

Proposition 2 allows us to define combination rules for nondogmatic belief functions

which can be formally defined as follows.

Definition 5 (T-norm-based conjunctive combination rule). Let ? be a t-norm on

(0,+∞]. Let m1 and m2 be two nondogmatic BBAs. Their combination using the

t-norm-based conjunctive combination rule, or conjunctive t-rule for short, is noted

m1 ?©w2 = m1 ?©wm2. It is defined as a nondogmatic BBA with the following conjunctive

weight function:

w1 ?©w2(A) = w1(A) ? w2(A), ∀A ⊂ Ω.

We thus have:

m1 ?©w2 = ∩©A⊂ΩAw1(A)?w2(A).

Proposition 3. Any conjunctive t-rule ?©w has the following properties:

• Commutativity: for all nondogmatic BBAs m1 and m2, m1 ?©wm2 = m2 ?©wm1;

• Associativity: for all nondogmatic BBAs m1,m2 and m3,

m1 ?©w(m2 ?©wm3) = (m1 ?©wm2) ?©wm3;

• Monotonicity with respect to vw: for all nondogmatic BBAs m1, m2 and m3, we

have m1 vw m2 ⇒ m1 ?©wm3 vw m2 ?©wm3;

Proof. These properties follow directly from corresponding properties of the t-norm

?.

Finally, the following proposition situates the cautious rule in the family of conjunc-

tive t-rules.
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Proposition 4. Among all conjunctive t-rules, the cautious rule is the x-least commit-

ted, with x ∈ {w, s, pl, q}:

m1 ?©wm2 vx m1 ∧©m2,

for all nondogmatic BBAs m1 and m2.

Proof. Since the minimum is the largest t-norm on (0,+∞], we have, for all nondogmatic

BBAs m1 and m2, m1 ?©wm2 vw m1 ∧©m2, and m1 ?©wm2 vx m1 ∧©m2 for x ∈ {s, pl, q}.

4.2 Conjunctive U-rules

We have seen that the TBM conjunctive rule is based on the product and that the prod-

uct is a uninorm on (0,+∞] with 1 as neutral element (1-uninorm for short). Hence, the

TBM conjunctive rule belongs to a family of rules characterized by pointwise combina-

tion of conjunctive weights using 1-uninorms. From Proposition 1 and Theorem 1, the

condition that those uninorms must respect is known, i.e., they must satisfy x ◦ y ≤ xy

for all x, y ∈ (0,+∞). New combination rules based on uninorms may thus be defined

as follows.

Definition 6 (Uninorm-based conjunctive combination rule). Let ◦ be a 1-uninorm,

such that x ◦ y ≤ xy for all x, y ∈ (0,+∞). Let m1 and m2 be two nondogmatic BBAs.

Their combination using the uninorm-based conjunctive combination rule, or conjunctive

u-rule for short, is noted m1 ◦©w2 = m1 ◦©wm2. It is defined as a nondogmatic BBA with

the following conjunctive weight function:

w1 ◦©w2(A) = w1(A) ◦ w2(A), ∀A ⊂ Ω.

We thus have:

m1 ◦©w2 = ∩©A⊂ΩAw1(A)◦w2(A).

Proposition 5. Any conjunctive u-rule ◦©w is commutative, associative, monotonic

with respect to vw, and such that: m ◦©wmΩ = m, for all nondogmatic BBA m.

Proof. These properties follow directly from corresponding properties of the uninorm

◦.

The next proposition shows that the TBM conjunctive rule has a special position in

the family of the conjunctive u-rules.
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Proposition 6. Among all conjunctive u-rules, the TBM conjunctive rule is the x-least

committed, with x ∈ {w, s, pl, q}:

m1 ◦©wm2 vx m1 ∩©m2,

for all nondogmatic BBAs m1 and m2.

Proof. From the definition of the conjunctive u-rules, we have, for all nondogmatic BBAs

m1 and m2, m1 ◦©wm2 vw m1 ∩©m2, and m1 ◦©wm2 vx m1 ∩©m2 for x ∈ {s, pl, q}.

Finally, we complete the characterization of the conjunctive u-rules by the following

proposition.

Proposition 7. Conjunctive u-rules are not idempotent.

Proof. This follows from the fact that idempotence and having the vacuous BBA as

neutral element are incompatible properties for w-based rules. Indeed, from Proposition

1 and Theorem 1, a w-based rule that has the vacuous BBA as neutral element is based

on a binary operator ◦ satisfying x ◦ y ≤ xy, for all x, y > 0. Let z ∈ (0, 1), we have

z ◦ z ≤ z2 < z, hence ◦ is not idempotent.

4.3 Disjunctive T-rules and U-rules

For the sake of completeness, this section presents results corresponding to the previ-

ous ones for v-based rules. Obvious results are stated succinctly, whereas De Morgan

relations between conjunctive and disjunctive rules are more detailed.

4.3.1 Disjunctive T-rules

The bold rule is based on the minimum. Hence, it belongs to a family of rules based on

pointwise combination of disjunctive weights using t-norms on (0,+∞]. The counterpart

of Proposition 2 for disjunctive weights allows us to define a belief function combination

rule ?©v, called a disjunctive t-rule, as

m1 ?©v2 = ∪©A6=∅Av1(A)?v2(A),

where ? is a t-norm on (0,+∞], and m1 and m2 are two subnormal BBAs.

Any disjunctive t-rule ?©v is commutative, associative and monotonic with respect

to vv. Furthermore, it may easily be shown, using similar arguments as developed in

Section 4.1, that the bold rule is the x-most committed disjunctive t-rule, with x ∈
{v, s, pl, q}.
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Finally, the following proposition shows that the ?©w and ?©v operations are dual to

each other with respect to complementation, i.e., they are linked by De Morgan laws

analogous to (6) and (7).

Proposition 8. Let ?©w and ?©v be respectively, conjunctive and disjunctive t-rules based

on a t-norm ? on (0,+∞]. We have:

m1 ?©vm2 = m1 ?©wm2,

for all subnormal BBAs m1 and m2, and

m1 ?©wm2 = m1 ?©vm2, (9)

for all nondogmatic BBAs m1 and m2.

Proof. Let m1 and m2 be two subnormal BBAs. We have

m1 ?©vm2 = ∪©A6=∅Av1(A)?v2(A)

= ∩©A6=∅Av1(A)?v2(A)

= ∩©A6=∅Ā
w1(Ā)?w2(Ā)

= ∩©A⊂ΩAw1(A)?w2(A)

= m1 ?©wm2.

The proof of (9) is similar.

4.3.2 Disjunctive U-rules

The TBM disjunctive rule is based on the product of disjunctive weights. Hence, it

belongs to a family of rules defined by pointwise combination of disjunctive weights

using 1-uninorms. From Corollary 2, the condition that those uninorms must respect is

known. We may thus define a belief function combination rule ◦©v, called a disjunctive

u-rule, as

m1 ◦©v2 = ∪©A6=∅Av1(A)◦v2(A),

where ◦ is a 1-uninorm, such that x ◦ y ≤ xy for all x, y ∈ (0,+∞), and where m1 and

m2 are two subnormal BBAs.

Any disjunctive u-rule ◦©v is commutative, associative, monotonic with respect to

vv and has the BBA m∅ as neutral element. Furthermore, the TBM disjunctive rule is

the x-most committed disjunctive u-rule, with x ∈ {v, s, pl, q}.
Finally, the following proposition shows that the ◦©w and ◦©v operations are dual to

each other with respect to complementation.
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Proposition 9. Let ◦©w and ◦©v be respectively, conjunctive and disjunctive u-rules

based on a 1-uninorm ◦. We have:

m1 ◦©vm2 = m1 ◦©wm2, (10)

for all subnormal BBAs m1 and m2, and

m1 ◦©wm2 = m1 ◦©vm2, (11)

for all nondogmatic BBAs m1 and m2.

Proof. The proof of (10) is direct using the proof of Proposition 2. The proof of (11) is

similar.

5 Conclusion

In this paper, it has been shown that the unnormalized Dempster’s rule of combination is

the least committed rule among the rules based on pointwise combination of conjunctive

weights and that have the vacuous belief function as neutral element. This constitutes

a new justification for this rule as a mechanism for combining distinct and nondogmatic

belief functions.

It has also been brought forward that the unnormalized Dempster’s rule ∩© and the

more recent cautious rule ∧© have fundamental different algebraic properties: the former

is based on a uninorm on (0,+∞] and has a neutral element while the latter is based

on a t-norm on (0,+∞] and has no neutral element. Similar properties hold for the

disjunctive duals of these two rules, namely the TBM disjunctive rule ∪© and the bold

rule ∨©.

In addition, it was revealed that to each of those four basic rules corresponds one

infinite family of combination rules. Indeed, there exist two t-norm-based families that

are based, respectively, on the conjunctive and disjunctive weight functions. There

exist also two uninorm-based families that are based, respectively, on the conjunctive

and disjunctive weight functions. It was also shown that t-norm-based conjunctive and

disjunctive rules, as well as uninorm-based conjunctive and disjunctive rules, are related

by De Morgan laws. The existence of such families of rules suggests that Dempster-

Shafer theory is not poorer than Possibility theory [11] in terms of fusion operators, as

already noted in [6].

Of particular interest is that the four basic rules occupy a special position in each of

their respective family: the ∩© and ∧© rules are the least committed elements, whereas

the ∪© and ∨© rules are the most committed elements. This is summarized in Figure 1.
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Figure 1: The four families of combination rules studied in this paper, and the singular

positions of the four basic rules ∩©, ∧©, ∪© and ∨©.

To conclude, it is worth mentioning that, despite the numerous properties shared

by the unnormalized Dempster’s rule and the conjunctive u-rules, it was shown in [27]

that the unnormalized Dempster’s rule is the only conjunctive u-rule that satisfies a

particular axiom of the valuation algebra framework [21]. This property further singles

out this rule among uninorm-based conjunctive combination rules.
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A Proof of Theorem 1

The proof of Theorem 1 requires the two following technical lemmas (Lemmas 3 and 4).
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Lemma 3. Let m be a BBA. For B ⊂ Ω, the following equality holds:∑
A⊆B

(−1)|A| q (A) =
∑

A∩B=∅

m (A) .

Proof. Let mB denote a BBA with single focal element B ⊂ Ω. Let m be a BBA and

m′ = m ∩©mB. We have

m′(∅) =
∑

A∩B=∅

m (A)

Let qB denote the commonality function associated to mB.

qB(A) =

{
1 if A ⊆ B,

0 otherwise.

Let q′ and q denote the commonality functions associated to m′ and m, respectively.

We have:

q′(A) = q(A) · qB(A) ∀A ⊆ Ω

Hence

q′(A) =

{
q(A) if A ⊆ B,

0 otherwise.

Consequently, using (2), we have

m′(∅) =
∑
C⊆Ω

(−1)|C| q′ (C)

=
∑
A⊆B

(−1)|A| q (A) ,

which completes the proof.

Lemma 4. Let m be a normal, nondogmatic BBA and such that m(C) > 0, for a proper

subset C ⊂ Ω. Let w be the conjunctive weight function associated to m. Further, let

m′ = m 6∩©Bw(B) ∩©Bw(B)+ε, with B ⊂ Ω, C ∩B = ∅ and ε > 0. m′ is not a BBA.

Proof. The proof consists in showing that m′(∅) < 0. Let B be a strict subset of Ω such

that C ∩B = ∅. The following equality holds:

m′(∅) =
∑
A⊆Ω

(−1)|A|
q(A)
qB(A)

q′B(A),
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where q, qB and q′B are the commonality functions associated to m, Bw(B) and Bw(B)+ε,

respectively. We have:

qB(A) =

{
1 if A ⊆ B,

w (B) otherwise,
(12)

q′B(A) =

{
1 if A ⊆ B,

w (B) + ε otherwise.
(13)

Using (12) and (13), one can obtain:

m′(∅) =
∑
A⊆B

(−1)|A|q(A) +
∑
A6⊆B

(−1)|A|q(A)
w (B) + ε

w (B)
.

As

m(∅) =
∑
A⊆Ω

(−1)|A|q(A)

=
∑
A⊆B

(−1)|A|q(A) +
∑
A6⊆B

(−1)|A|q(A),

then

m′(∅) = m(∅) +
ε

w (B)

∑
A6⊆B

(−1)|A|q(A).

We can thus remark that m′(∅) is equal to m(∅), which is itself equal to 0, plus another

term. Let us prove that this term is always strictly smaller than 0. We have

ε

w (B)

∑
A6⊆B

(−1)|A|q(A) =
ε

w (B)

m(∅)−
∑
A⊆B

(−1)|A|q(A)


= − ε

w (B)

∑
A⊆B

(−1)|A|q(A).

We thus have from Lemma 3:

m′(∅) = − ε

w (B)

∑
A∩B=∅

m (A) . (14)

As m(C) > 0 for C such that C ∩ B = ∅, the sum in the right-hand side of (14) is

strictly greater than zero. Further we have ε > 0 and w (B) > 0. Hence m′(∅) < 0, thus

m′ is not a BBA.

Theorem 1 can then be proved as follows.

Proof. Let x and y be any two numbers such that x◦y > xy. Obviously, as 1 is assumed

to be a neutral element of ◦, we have x 6= 1 and y 6= 1. Let ε = x ◦ y − xy > 0. The

proof consists in choosing two logically consistent BBAs m1 and m2, i.e., m1 ∩©2(∅) = 0,

such that:
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• ∃B ∈ 2Ω\ {Ω} such that w1 (B) = x and w2 (B) = y;

• ∀A ∈ 2Ω\ {Ω, B}, w1 (A) = 1 or w2 (A) = 1;

• ∃C ∈ 2Ω such that m1 ∩©2(C) > 0 and C ∩B = ∅.

For those BBAs, we thus have:

w1 ∩©2(B) = w1(B) · w2(B),

w1 ∩©2(A) =

{
w1(A) if w2(A) = 1,

w2 (A) otherwise,

for all A 6= B, and

w1(B) ◦ w2(B) = w1 ∩©2(B) + ε,

w1(A) ◦ w2(A) = w1 ∩©2(A),

for all A 6= B. Hence, we have:

∩©A⊂ΩAw1(A)◦w2(A) = ∩©
A ⊂ Ω,

A 6= B

Aw1 ∩©2(A)
∩©Bw1 ∩©2(B)+ε

= ∩©A⊂ΩAw1 ∩©2(A)
6∩©Bw1 ∩©2(B)

∩©Bw1 ∩©2(B)+ε

= m1 ∩©2 6∩©Bw1 ∩©2(B)
∩©Bw1 ∩©2(B)+ε, (15)

and ∃C ∈ 2Ω such that m1 ∩©2(C) > 0 and C ∩B = ∅. By Lemma 4, (15) is not a BBA,

hence w1 ◦ w2 is not a conjunctive weight function of some nondogmatic BBA.

Let us now provide the BBAs m1 and m2 which verify the above scheme. Since

the considered numbers x and y take their values in (0,+∞)\ {1}, we consider in the

remainder of this proof the following cases:

• Case 1: x ∨ y < 1;

• Case 2: x ∧ y > 1;

• Case 3: x ∨ y > 1 and x ∧ y < 1.

We must thus provide a pair of BBAs m1 and m2 verifying the above scheme for each

of the three possible cases.

• Case 1:
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Let Ω = {a, b, c} and let m1 and m2 be two BBAs defined on Ω as follows, for

α, β ∈ (0, 0.5):

m1(A) =


α if A = {a, b} or A = {b, c} ,

1− 2α if A = Ω,

0 otherwise.

m2(A) =


β if A = {a, c} or A = {b, c} ,

1− 2β if A = Ω,

0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α) if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α) if A = {b} ,

1 otherwise.

w2(A) =


(1−2β)
(1−β) if A = {a, c} or A = {b, c} ,
(1−β)2

(1−2β) if A = {c} ,

1 otherwise.

For those two BBAs, we have:

– m1 ∩©2(∅) = 0,

– ∃B = {b, c} such that w1 (B) = x, x ∈ (0, 1) as w1 (B) = f(α) with f

a surjective function from (0, 0.5) to (0, 1), and w2 (B) = y, y ∈ (0, 1), as

w2 (B) = g(β) with g a surjective function from (0, 0.5) to (0, 1).

– ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,

– ∃C = {a} such that m1 ∩©2(C) > 0 and C ∩B = ∅.

• Case 2:

Let Ω = {a, b, c, d, e} and let m1 and m2 be two BBAs defined on Ω as follows, for

α ∈ (0, 0.5) and β ∈ (0, 1/3):

m1(A) =


α if A = {a, b} or A = {b, c} ,

1− 2α if A = Ω,

0 otherwise.
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m2(A) =


β if A ∈ {{a, b, c} , {a, c, e} , {b, d, e}} ,

1− 3β if A = Ω,

0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α) if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α) if A = {b} ,

1 otherwise.

w2(A) =



1−3β
1−2β if A ∈ {{a, b, c} , {a, c, e} , {b, d, e}} ,
(1−β)3(1−3β)

(1−2β)3
if A = {∅} ,

(1−2β)2

(1−β)(1−3β) if A ∈ {{b} , {e} , {a, c}} ,

1 otherwise.

For those two BBAs, we have:

– m1 ∩©2(∅) = 0,

– ∃B = {b} such that w1 (B) = x, x ∈ (1,+∞) as w1 (B) = f(α) with f a

surjective function from (0, 0.5) to (1,+∞), and w2 (B) = y, y ∈ (1,+∞), as

w2 (B) = g(β) with g a surjective function from (0, 1/3) to (1,+∞).

– ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,

– ∃C = {a} such that m1 ∩©2(C) > 0 and C ∩B = ∅.

• Case 3:

Let Ω = {a, b, c, d} and let m1 and m2 be two BBAs defined on Ω as follows, for

α ∈ (0, 0.5) and β ∈ (0, 1/3):

m1(A) =


α if A = {a, b} or A = {b, c} ,

1− 2α if A = Ω,

0 otherwise.

m2(A) =


β if A ∈ {{a, b, c} , {a, b, d} , {a, c, d}} ,

1− 3β if A = Ω,

0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α) if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α) if A = {b} ,

1 otherwise.
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w2(A) =



1−3β
1−2β if A ∈ {{a, b, c} , {a, b, d} , {a, c, d}} ,
(1−β)3(1−3β)

(1−2β)3
if A = {a} ,

(1−2β)2

(1−β)(1−3β) if A ∈ {{a, b} , {a, c} , {a, d}} ,

1 otherwise.

For those two BBAs, we have:

– m1 ∩©2(∅) = 0,

– ∃B = {a, b} such that w1 (B) = x, x ∈ (0, 1) as w1 (B) = f(α) with f a

surjective function from (0, 0.5) to (0, 1), and w2 (B) = y, y ∈ (1,+∞), as

w2 (B) = g(β) with g a surjective function from (0, 1/3) to (1,+∞).

– ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,

– ∃C = {c} such that m1 ∩©2(C) > 0 and C ∩B = ∅.
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