
HAL Id: hal-00482002
https://hal.science/hal-00482002v1

Preprint submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variable elimination for building interpreters
Julien Cohen, Jean-Louis Giavitto, Olivier Michel

To cite this version:
Julien Cohen, Jean-Louis Giavitto, Olivier Michel. Variable elimination for building interpreters.
2010. �hal-00482002�

https://hal.science/hal-00482002v1
https://hal.archives-ouvertes.fr

Variable elimination for building interpreters

Julien Cohen∗ Jean-Louis Giavitto† Olivier Michel‡

Abstract

In this paper, we build an interpreter by reusing host language functions in-
stead of recoding mechanisms of function application that are already available
in the host language (the language which is used to build the interpreter). In
order to transform user-defined functions into host language functions we use
combinatory logic : λ-abstractions are transformed into a composition of com-
binators. We provide a mechanically checked proof that this step is correct for
the call-by-value strategy with imperative features.

1 Introduction

When one writes an interpreter for a programming language with functions, he
has to implement a mechanism for reducing function applications. Moreover, he
may need to implement several reduction mechanisms when there are different
kinds of functions in the language.

Most of the time, the language that is used to build the interpreter, which we
call the host language, already supports functions and their application. Then
is it really necessary to encode in the interpreter such mechanisms which are
already available in the host language? Can’t we reuse host language function
application instead of recoding it? Higher order abstract syntax [PE88] allows
us to do it. In [WW03], an example of such an evaluator is given, but, as we
will see, using it into an interpreter is generally not direct.

In order not to address a too specific problem, we put the following con-
straints to the answer we will give:

• The technical solution should accept mainstream languages as host lan-
guage.

• The interpreted language should possibly have higher-order functions,
non-strict features and imperative features.

∗LINA (UMR 6241 : CNRS Université de Nantes École des Mines de Nantes)
†IBISC (FRE 3190 : CNRS, Université d’Évry Val d’Essonne, Genopole)
‡LACL (Université Paris-Est Créteil)

1

• It should be easy to include in the interpreted language library functions,
that is functions which are defined in host language libraries or in inter-
faced language libraries.

• The performances of the interpreter should be comparable to other widely
used interpreters.

In this paper we propose an evaluation scheme which reuses function appli-
cation mechanisms of the host language instead of recoding them. That scheme
is described in section 2 for a functional language with a call-by-value strat-
egy. An interpreter is built with the OCaml host language. We will see that
the tricky task is to transform user-defined functions into host language func-
tions. In order to do this we use a decomposition of user-defined functions into
combinators. In section 3 we discuss the introduction of imperative features
into the base language considered previously. In section 4 we show that the
performances of the scheme are at least acceptable. In section 5 we state that
the decomposition of user-defined functions into combinators is correct for the
call-by-value strategy and imperative features. A mechanically checked proof is
provided. In section 6, we give clues to implement the scheme with various host
languages, and we give examples in Java. Finally, we discuss related work in
section 7 and we recall the advantages and drawbacks of our approach.

2 Interpretation with Host Language Reduction

In this section, we present our scheme of interpretation by building an interpreter
for a small language. The host language is OCaml [OCa]. As discussed in
section 6, one can choose another host language.

We consider as the language to be interpreted a λ-calculus with constants,
external functions and a conditional if-then-else construct. This language is
described by the following data type expr.

type expr =

| E_Const of value

| E_Var of ident

| E_Abs of ident * expr

| E_App of expr * expr

| E_If of expr * expr * expr

Constants are handled with the E Const construct. This constructor is used
to represent integer constants, boolean constants and external functions. We
use the type value defined below to represent constants.

type value =

| V_Int of int

| V_Bool of bool

| V_Fun of (value->value)

...

2

External functions are represented by value->value host language func-
tions. They are embedded in the type value with the V Fun construct.

In order to compare our idea to the classical setting, we first build a classical
interpreter using an environment in order to deal with λ-abstraction parameters
(section 2.1). After that, we will present our interpretation scheme (section 2.2).
The type value is a bit different in these two schemes. These is why we let some
dots in its definition given above. We will then discuss the performances of our
scheme (section 2.3).

2.1 A classical scheme

We build here a simple call-by-value interpreter with the classical use of environ-
ments. We hide the implementation of environments, a naive approach would
be to use association lists.

type ’a environment

val env_assoc : ident -> ’a environment -> ’a

val env_add : ident -> ’a -> ’a environment

We have to add one more construct to the type of the values given sooner:
user defined functions (i.e. λ-abstractions by opposition to external/pre-defined
functions), which are represented by closures. Closures are λ-abstractions equipped
with the environment in which they have been defined.

type value =

| V_Int of int

| V_Bool of bool

| V_Fun of (value->value)

| V_Closure of ident * expr * (value environment)

This abstract syntax does not contain variables, applications, or conditionals.
However, such constructs may appear in the body of a closure. The types value
and expr are mutually recursive (they should be declared together in OCaml).

The type value contains two kinds of functions : λ-abstractions represented
by closures and external functions. Each kind of function will have a particular
reduction mechanism. Let us have a look at these mechanisms in the evaluation
function. That function takes as parameters an environment and the expression
to evaluate.

let rec eval env = function

| E_Const v -> v

| E_Var i -> env_assoc i env

| E_Abs (i,e) -> V_Closure (i,e,env)

| E_App (e1,e2) ->

(match (eval env e1, eval env e2) with

| V_Closure (x,e,env2), v2 -> eval (env_add x v2 env2) e

3

| V_Fun f, v2 -> f v2 (* caml application here *)

| _ -> raise TypeError)

| E_If (e1,e2,e3) ->

(match (eval env e1) with

| V_Bool true -> eval env e2

| V_Bool false -> eval env e3

| _ -> raise TypeError)

The reduction of external function applications uses a simple host-language
application of the function to its parameter. The reduction of λ-abstraction
applications builds a new environment and evaluates the body of the abstraction,
achieving an usual β-reduction.

We can see that the applications of host language functions are more easily
expressed than applications of λ-abstractions since their reduction is delegated
to the host language.

2.2 Our interpretation scheme

We are now going to present our proposal to build a simpler interpreter. In
order to do this, we are going to unify the different kinds of functions that are
handled by transforming λ-abstractions into host-language functions. First, let
us see why this unification yields a simpler evaluator.

2.2.1 The core evaluator

We would like to use the language m expr (minimal expressions) to represent
expressions:

type m_expr =

| M_Const of value

| M_App of m_expr * m_expr

This language contains host language functions in the M Const construct, but
it does not contains abstractions anymore. Furthermore, it does not contains
variables since variables cannot be bound by abstractions anymore. We have also
removed the conditional construct E If from the language m expr, assuming it
can be transformed into function applications. This is discussed in section 2.2.3

Additionally, we do not need closures in the type value anymore (and value

does not depend on the type expr anymore):

type value =

| V_Int of int

| V_Bool of bool

| V_Fun of (value -> value)

4

At this point, as we expect, the eval function is extremely simple : there is
only one kind of application which reduction is performed by the host language.
Moreover, there is no need for dealing with environments.

let rec eval = function

| M_Const v -> v

| M_App (e1, e2) ->

(match (eval e1, eval e2) with

| (V_Fun f , v) -> f v (* caml application *)

| _ -> raise TypeError)

2.2.2 Our scheme of interpretation

Two steps are necessary to reach the type m expr from expr :

1. transforming λ-abstractions into host language functions, which we call
variable elimination, and

2. transforming conditionals into functions, which we call non-strictness elim-
ination1.

Our interpretation scheme is pictured in the following diagram where P stands
for the non-strictness elimination, C stands for the variable elimination and E
stands for the evaluation step.

expr
P−→ p expr

C−→ m expr
E−→ value

We use a different type for the result of each step in order to show that each
step is independent from the others.

We now explain the first two steps, P and C, in sections 2.2.3 and 2.2.4.

2.2.3 Non-strictness elimination

The if-then-else conditional construct is a typical example of non-strict func-
tion, that is a function that does not always evaluate its arguments (the three
branches of the conditional are seen as its arguments). Pattern matching of ML,
switch/case construct of C, macros of LISP, and lazy logical operators are other
examples of non-strict functions. Even the sequence of imperative languages
can be seen as a non-strict function.

We want to transform non-strict functions into standard call-by-value func-
tions. The classical way to suspend the evaluation of the argument of a function
in a call-by-value setting is to encapsulate it into an abstraction whose body will
be evaluated when necessary [HD97]. This is the solution we choose here. The
terms after non-strictness elimination are in the p expr type (purely functional
expressions) :

1Non-strictness elimination could also be performed in the classical setting in order to
simplify the eval function, but it is more natural in our scheme where we tend to transform
most constructs into functions.

5

type p_expr =

| P_Const of value

| P_Var of ident

| P_Abs of ident * p_expr

| P_App of p_expr * p_expr

The non-strictness elimination, P in the diagram, is given by the purify

function which transforms only the if-then-else construct.

let rec purify = function

| E_Const c -> P_Const c

| E_Var x -> P_Var x

| E_Abs (x,e) -> P_Abs (x, purify e)

| E_App (e1, e2) -> P_App (purify e1, purify e2)

| E_If (e1, e2, e3) ->

let e’1 = purify e1

and e’2 = P_Abs(dummy_var, purify e2)

and e’3 = P_Abs(dummy_var, purify e3)

in P_App(P_App(P_App (P_Const (V_Fun fun_IF),e’1),e’2),e’3)

The behavior of the conditional is realized at evaluation time by the function
fun IF given below. That function checks its first argument (a value) and
triggers the evaluation of the relevant then or else branch by applying it to
a dummy parameter. That application is reduced by the host language. The
expressions e’2 and e’3 above being abstractions, they will be transformed into
host language functions (or function expressions, that is expressions evaluating
into functions) by the variable elimination step. This explains why the function
comb IF expects e2 and e3 to be functions.

let fun_IF =

fun e1 -> V_Fun (

fun (V_Fun e2) -> V_Fun (

fun (V_Fun e3) ->

match e1 with

| V_Bool true -> e2 dummy_val (* caml application *)

| V_Bool false -> e3 dummy_val (* caml application *)

| _ -> raise TypeError))

2.2.4 Variable elimination

The goal of this step is to transform terms with variables and λ-abstractions
(type p expr) into terms of the m expr type, that is, without variables and
abstractions.

In multi-level programming languages, that step is done directly by creating
at run-time new expressions of the host language that can be used immediately2.

2For instance, the Scheme expression (eval (list ’lambda (list (string->symbol

"x")) (list ’+ (string->symbol "x") 1))) allows to create the Scheme function (lambda

(x) (+ x 1)).

6

But few languages provide this kind of features and we will do without it.
Combinatory logic [CF58, CH06] provides many algorithms to translate λ-

terms into compositions of pre-defined functions called combinators. We will
naturally find candidates for our variable elimination step among these algo-
rithms. However, one should remember that most of these algorithms are de-
signed for the call-by-name evaluation strategy whereas we are interested in
call-by-value.

We illustrate our scheme by using a translation into compositions of combi-
nators S, K and I. The classical algorithm applies the rewriting rules (a), (b)
and (f) of figure 1 in the following order : (f) wherever possible, then (a) then
(b). It is noted (fab).

λx.U → (K U) (a)

λx.x → I (b)

λx.(M N) → ((S λx.M) λx.N) (f)

λx.c → (K c) (av)

I = λx.x

K = λx.λy.x

S = λx.λy.λz.((x z) (y z))

Figure 1: Basic variable elimination rules and combinators

In theses rules, M and N stand for any term while U stands for a term
where x does not appear (more precisely, x does not appear in a free position).
Since (a) is applied after (f), U may not contain applications. Therefore, in the
(fab) algorithm one can replace the (a) rule by the rule (av) of figure 1 where c
is a constant, an external function or a variable different from x.

In fact, the rule (a) taken alone is not correct in the call-by-value setting
whereas (av) is. For this reason we use the rules (f), (av) and (b), in any order
(they are disjoint).

That transformation is realized by the function elim given below.

let rec elim = function

P_Const c -> P_Const c

| P_Var x -> P_Var x

| P_App (e1, e2) -> P_App (elim e1, elim e2)

| P_Abs(s, P_Var s’) ->

if s = s’

then cI

7

else (P_App (cK, P_Var s’))

| P_Abs(_, P_Const c) -> P_App (cK, P_Const c)

| P_Abs(s,P_App(e1,e2)) ->

P_App(P_App(cS, elim (P_Abs(s,e1))), elim (P_Abs(s,e2)))

| P_Abs(s, (P_Abs(_,_) as t))-> elim (P_Abs(s,elim t))

As the elim function has to apply to its result, its return type has to be
p term as the type of its argument. For this reason, we use the following
check no var function to transform p expr terms into m expr terms after ski
has been applied :

let rec check_no_var = function

| P_Const c -> M_Const c

| P_App (e1, e2) -> M_App (check_no_var e1, check_no_var e2)

| P_Var _ -> raise UnexpectedError

| P_Abs _ -> raise UnexpectedError

let trans e = check_no_var (elim e)

If the term passed to elim does not contain any free variables then the trans-
formed term does not contain any variable nor abstraction and the check no var

function cannot fail.
The combinators S, K, and I used in elim are defined as follows :

let cI = P_Const (V_Fun (fun x -> x))

and cK = P_Const (V_Fun (fun c -> V_Fun (fun _ -> c)))

and cS = P_Const (V_Fun (

fun (V_Fun f) -> V_Fun (

fun (V_Fun g) -> V_Fun (

fun x -> match (f x) with (* 1 caml capplication *)

V_Fun h -> h (g x))))) (* 2 caml applications *)

2.2.5 Handling of higher-order library functions

Let us focus on the handling of higher-order functions in our scheme. Let us
suppose we want to provide access to an higher-order function defined in the
host language. We take as an example the function host compose defined as
follows:

let host_compose f g x = f (g x)

8

In order to give access to this function in the interpreted language, we have
to provide a wrapper to transform it into a value->value function and embed
it into a V Fun constructor. Here is such a wrapper:

let compose_embed =

V_Fun (function (V_Fun f) ->

V_Fun (function (V_Fun g) ->

V_Fun (host_compose f g)))

Since functions in the interpreted language are represented by host language
functions, the wrapper is very simple: it just unwraps the two arguments re-
ceived and pass them to host compose.

In the classical approach described sooner, the wrapper would need to make
the difference between external functions and λ-abstractions. The wrapper for
host compose could be as follows :

let app f v = match f with

| V_Fun h -> h v

| V_Closure (x,e,env) -> eval (env_add x v env) e

let compose_embed =

V_ExtFun (function f ->

V_ExtFun (function g ->

V_ExtFun (host_compose (app f) (app g))))

Here we have a dynamical dispatch to host language application (case V Fun)
or to interpreted application reduction (case V Closure).

We have now detailed all the steps of our interpretation scheme. However,
the elim variable elimination algorithm (fab/favb) is not plainly satisfactory
because, as is well known, it creates terms very inefficient to evaluate. We
investigate other variable elimination rules in section 2.3.

2.3 Towards better performances

The use of the combinators S, K and I leads to an explosion of the size of
the terms, and thus to an explosion of the evaluation time. We propose here
additional rewriting rules to improve the size (and the evaluation speed) of the
terms produced. All the rules we present fit exactly in our scheme, that is they
can be added to the variable elimination algorithm without need to modify
the other steps. This way we keep the simplicity of the whole scheme and the
simplicity of the evaluation function.

2.3.1 Using the B, C and N combinators

The combinators B and C are classically used with the rules (d) and (e) of figure 2
where U does not contain x free but M may. These two rule are not correct
in call-by-value when U contains applications because it leads to evaluation of

9

λx.(U M) → ((B U) λx.M) (d)

λx.(M U) → ((C λx.M) U) (e)

λx.(c M) → ((B c) λx.M) (dv)

λx.(M c) → ((C λx.M) c) (ev)

λx.(c1 c2) → ((N c1) c2) (nv)

B = λa.λg.λx.(a (g x))

C = λf.λb.λx.((f x) b)

N = λa.λb.λx.(a b)

Figure 2: Selective rules and combinators

applications that are initially protected in the body of a λ-abstraction. For this
reason, we use the rules (dv) and (ev) instead of (d) and (e). In addition, we
propose to use the rule (nv) together with (dv) and (ev). That rule follows the
same idea as (dv) and (ev) to avoid the distribution of a λ over branches of an
application. We use the standard combinators B and C and a third combinator
noted N (Fig 2).

2.3.2 Safely reducing partial applications before evaluation time

The form λx.c is transformed into (K c) by the rule (a) or (av). Reducing the
application of K to c before evaluation time does not change the semantics of
the term since we do not reduce an application that was in the initial term but
one which has been artificially added. At the risk of spending time reducing an
application that might be never reduced at evaluation time, we can reduce once
an application that may be reduced many times at evaluation time, leading to
a speedup.

This kind of pre-evaluation can be considered whenever a combinator is
introduced. In fact, given a combinator of the form λx1.λx2. . . . λxn.E, we can
safely reduce its applications to n− 1 arguments as long as these arguments are
values or can be safely pre-evaluated into values.

All the combinators we have presented have this form. Moreover, the rules
that introduce them apply them to “n− 1” arguments.

We present two ways to apply this idea : “by hand” by providing rules
introducing pre-reduced forms or automatically by launching a kind of eval
when we know it is safe.

10

Hand-made reduction at transform time. Let us consider again the ex-
ample of λx.c transformed into (K c) by the rule (av). The following line in
the function elim given above does this transformation (except when c is a
variable):

| P_Abs(_, P_Const c) -> P_App (cK, P_Const c)

We can compute by hand the result of evaluation of the expression P App

(cK, P Const c). It is V Fun (fun -> c) (see the definition of cK on page 8).
So we can produce directly the convenient host language function with :

| P_Abs(_, P_Const c) -> P_Const (V_Fun (fun _ -> c))

This is formalized with the rule (ãv) where c is a constant or an external
function (not a variable because the created function cannot be explored by
further transformation steps) and Kc is defined by λx.c :

λx.c → Kc (ãv)

It can seem strange that λx.c is transformed into λx.c (the x is not necessarily
the same in the two terms) but the second term is implemented by a host
language function whereas the first one is not.

Here, Kc is not a combinator but a family of combinators indexed by c. We
can generate each of them with the following function :

let make_K_c c = P_Const (V_Fun (fun _ -> c))

Each necessary combinator will be created at transform time, possibly twice.
We can apply this kind of by-hand pre-evaluation wherever the rules (av),

(dv), (ev) and (nv) apply. Here are the corresponding rules:

λx.(c M) → (Bc λx.M) (d̃v)

λx.(M c) → (Cc λx.M) (ẽv)

λx.(c1 c2) → Nc1c2 (ñv)

The rule (f) introducing the combinator S is not concerned since if one of
the term is a constant, the rules (d/d̃v) or (e/ẽv) will be preferred.

About dynamic generation of combinators. One may wonder why we
cannot generate at transform time the host-language function corresponding
directly to an expression since we are able to generate ad-hoc combinators.

The reason is that we cannot make the link between the parameter of a
function and the corresponding bound variable at an arbitrary depth in an
expression. Indeed, to be able to handle expressions of arbitrary depth, we
would need for instance a recursive operation and the host-language binding

11

could not be preserved during the recursive calls (except by achieving a kind
of environment but that environment would need to be accessed at execution
time, which we want to avoid in this work).

For this reason, we cannot generate at transform time a host-language func-
tion for each expression. So we are restricted to do it for most frequent forms
and for the general form we use the variable elimination rules given above.

Automatic reduction at transform time. We have seen how we can mod-
ify the transformation rules to achieve some pre-evaluation. A similar result
can be obtained by systematically reducing partial applications of combinators
before evaluation time. To avoid to change the semantics of the terms, we have
to check which applications can be pre-reduced.

Let us consider the combinator S. It waits for 3 arguments and none appli-
cation reduction is triggered before the 3 arguments are received. Let us now
consider the form (((S v1) v2), where v1 and v2 are constants or external func-
tions. For the reason given above, we can safely reduce the two applications
without risking to apply v1 or v2.

For any combinator which does not apply anything before having received
all its arguments, each time we produce a form where it misses an argument
we can pre-evaluate that form. We do this with the following function which
checks that the arguments are values or can safely be pre-reduced into values:

let rec pre_eval_app e = match e with

| P_App (e1,e2) ->

(match (pre_eval_app e1, pre_eval_app e2)

with

| (P_Const (V_Fun f),P_Const v) -> P_Const (f v)

| (e’1,e’2) -> P_App (e’1,e’2)

)

| _ -> e

This allows to have a general mechanism for pre-evaluation instead of using
ad-hoc rules where pre-evaluations have been made by hand. In our transfor-
mation function elim, we can apply pre eval app each time we generate an
expression. For instance, here is the difference in elim for the introduction of
the combinator S:

Code without pre-evaluation:

| P_Abs(s,P_App(e1,e2)) ->

P_App(P_App(cS, elim (P_Abs(s,e1))), elim (P_Abs(s,e2)))

Code with automatic pre-evaluation:

| P_Abs(s,P_App(e1,e2)) ->

pre_eval_app(

P_App(P_App(cS, elim (P_Abs(s,e1))), elim (P_Abs(s,e2)))

)

12

The same can be done for all the rules we have proposed so far.
Doing pre-evaluation during transformation time gives better results than

doing it between transformation and evaluation because applying elim on sim-
pler terms may allow to use a different combinator (for instance a K instead of
an S).

2.3.3 Using a combinator dedicated to the conditional construct

When the conditional is under an abstraction, that abstraction is going to be dis-
tributed over the three branches of the conditional with the variable elimination
algorithms presented so far. Thus it may not be necessary to over-protect the
then and else branches with additional dummy abstractions in this case. This
is the idea we develop in this section. In order to be able to dump the dummy
abstraction, we use a dedicated combinator noted SIF which will selectively
distribute the received value onto the convenient branch. The corresponding
rewriting rule is the following :

λx.(((IF e1) λz.e2) λz.e3) → (((SIF λx.e1) λx.e2) λx.e3) (i)

In this rule, the dummy λz abstractions introduced during the non-strictness
elimination step are discarded. The combinator SIF plays the role of the S and
IF (fun IF in section 2.2.3) combinators. It is defined as follows :

let cSIF = P_Const (

V_Fun (fun (V_Fun e1) ->

V_Fun (fun (V_Fun e2) ->

V_Fun (fun (V_Fun e3) ->

V_Fun (fun x ->

match e1 x with (* caml application *)

V_Bool true -> e2 x (* caml application *)

| V_Bool false -> e3 x (* caml application *)

| _ -> raise TypeError)))))

2.3.4 Multiple abstractions and multiple applications

Patterns like λx.λy.(e1 e2) and λx.(e1 e2 e3) often occur in real programs or
in temporary expressions encountered during the variable elimination rewriting
steps. In this section, we introduce rules for dealing with several abstractions
over an application, with an abstraction over several applications and other
combinations of these kinds.

Let us consider the form λx.λy.(e1 e2). The (favb) algorithm would trans-
form it into (S ((S (K S)) [λx.λy.e1]) [λx.λy.e2]) (the brackets denote the appli-
cation of the variable elimination algorithm considered). We propose instead the
rule (s2) given in figure 3. The corresponding combinator S2 is also given in fig-
ure 3. Using (s2) in the considered example produces a form with 2 applications
instead of a form with 5 applications for the (favb) algorithm.

13

λx.λy.(e1 e2) → ((S2 λx.λy.e1) λx.λy.e2) (s2)

λx.(e1 e2 e3) → (((S2 λx.e1) λx.e2) λx.e3) (s2)

λx.λy.(e1 e2 e3) → (((S22 λx.λy.e1) λx.λy.e2) λx.λy.e3 (s22)

λx.λy.c → (K2 c) (k2)

λx.λy.x → I2 (i2)

S2 = λf.λg.λx.λy.((f x y) (g x y))

S2 = λf.λg.λh.λx.((f x) (g x) (h x))

S22 = λf.λg.λh.λx.λy.((f x y) (g x y) (h x y))

K2 = λx.λy.λz.x

I2 = K

Figure 3: Rules and combinators for multiple abstractions/applications

Now, let us consider the form λx.(((e1 e2) e3). Instead of transforming it
into ((S ((S [λx.e1]) [λx.e2])) [λx.e3]), we propose the rule (s2) of figure 3. Here
we produce 3 applications instead of 4.

We can also combine these two rules into the rule (s22) which is better than
applying separately the two rules. The use of K and I can also be extended with
the rules (k2) and (i2). Of course, these rules can be extended for more than two
abstractions and applications. However, it should be noted that as the number
of combinators increases, the number of cash misses at the processor level during
evaluation also increases, which can lead to decreasing performances. For this
reason, some optimizations are interesting only for some processors and it is
difficult to predict the result of a particular optimization.

Generalizing the use of the combinators B, C and N to multiple abstractions
and applications gives the family of combinators described by Diller [Dil02].
However, as we have restricted the use of B and C to fit with a call-by-value
strategy, the use of Diller combinators has to be restricted in the same way.

2.3.5 On the complexity of the code

As we add new rewriting rules and combinators, the code of the interpreter
becomes more complex to handle. This seems to be in opposition with our goal
to have a simple scheme. It is true that the variable elimination step becomes
more complex as we want to optimize the produced code. However :

• Since the three steps steps of the scheme are independent, the optimization
of this step does not affect the code of the other steps. In particular, the
eval function (step E) is left clean.

14

• When you add features in the interpreted language, you do not have to
modify the variable elimination step because all the features are trans-
formed into functions by the previous step (P).

• The algorithm is defined by independent rules, which should make easy
to have a well structured code. Then it should be easy to add new rules
to the algorithm. For instance, for the OCaml code given here, adding a
rule is done by adding a case to a structural pattern matching.

For these reasons, we believe that the optimization of this step is compatible
with our goal of simplicity.

2.3.6 Conclusion on the need to optimize

We have proposed in this section several improvements of the variable elimina-
tion algorithm. As we will see in section 4, a few of these improvements are
sufficient to cope with the explosion of the size of the produced terms and to
provide performances comparable to a naive classic approach.

We will also see that the presented optimizations are not sufficient to provide
guaranteed drastic speedups compared to the naive classic approach. In order
to achieve this, one should consider other families of optimizations, including
well known ones.

In the next section, we see that imperative features fit well in our scheme.

3 Imperative Features

In this section, we illustrate the handling of imperative features in our scheme.
In order to do this, we add to our language two operators, get and set, to read
and write into references (i.e. imperative variables):

type expr =

...

| E_Get of tag

| E_Set of tag * expr

The type tag is used to name references. A term E Get(t) stands for a read
access to the reference named t and E Set(t,e) stands for the writing of the
value of e into t. The complete semantics is given by the classical evaluator
implementation in section 3.1. References are not values here : they cannot be
handled independently of a get or set operator.

The values associated to references at a given moment are gathered into a
store. The structure of stores is left abstract.

type ’a store

value store_get : tag -> ’a store -> ’a

value store_set : tag -> ’a -> ’a store

15

We first discuss different possibilities to take imperative features into ac-
count, we illustrate two of them with the classical interpreter, and then we
show how to integrate it into our scheme.

3.1 Dealing with imperative features

There are several ways to implement our operators.

The monad approach. One purely functional approach is to see stores as
values of the language and to pass the store as an argument to functions which
have to access to it (see [PJW93]). To modify the store, a function has to return
a new store which will be taken as argument by an other function.

Taking the store as a parameter and returning it creates a data flow which
enforces the control. It is very useful in lazy languages where the control is
difficult to anticipate.

This approach has the advantage that it fits very well in purely functional
calculus : imperative features become purely functional. For this reason, it
would fit directly in our scheme. However, we are going to show that a less
purely functional approach fits too and we will not deal anymore with the monad
approach in the rest of this section.

Another functional approach. Another approach is to let the eval func-
tion handle the store which is no longer a value of the language but rather a
parameter of the evaluation. Unlike the environment (see section 2.1) which
is independent in the two branches of an application, the store resulting of
the evaluation of one of the branches of an application must be passed to the
evaluation of the second branch.

The classical evaluator can be modified as follows to apply this idea.

let rec eval env s = function

| E_Const v -> (v, s)

| E_Var x -> (env_assoc x env, s)

| E_Abs (x,e) -> (V_Closure (x,e,env), s)

| E_App (e1,e2) ->

let (v2,s2) = eval env s e2 (* we have to choose an order

of evaluation to pass the

store between the two evaluations *)

in (match eval env s2 e1 with

| (V_Closure (x,e,env2), s’) -> eval (env_add x v2 env2) s’ e

| (V_ExtFun f, s’) -> (f v2, s’) (* caml application *)

| (_,_) -> raise TypeError

)

| E_If (e1,e2,e3) ->

(

16

match eval env s e1 with

(V_Bool true, s’) -> eval env s’ e2

| (V_Bool false, s’) -> eval env s’ e3

| _ -> raise TypeError)

| E_Get t -> let v = store_get t s in (v, s)

| E_Set (t,e) -> let (v, s’) = eval env s e in

(v, store_set t v s’)

Note that eval returns a value and a store.

An imperative implementation. This extension of the classical evaluator
is more complicated than the original one. A way to simplify it is to consider
the store as a mutable global variable. If we do so, we can still have confidence
in the use of the store because eval is the only function to access it, it is (or it
should be) sequential and the accesses are triggered at definite times. Here is
such an implementation:

let rec eval env = function

| E_Const v -> v

| E_Var x -> env_assoc x env

| E_Abs (x,e) -> V_Closure (x,e,env)

| E_App (e1,e2) ->

(match (eval env e1, eval env e2) with

| V_Closure (x,e,env2), v2 -> eval (env_add x v2 env2) e

| V_ExtFun f , v2-> f v2 (* caml application *)

| _ -> raise TypeError

)

| E_If (e1,e2,e3) ->

(

match eval env e1 with

V_Bool true -> eval env e2

| V_Bool false -> eval env e3

| _ -> raise TypeError)

| E_Get t -> store_get t !store

| E_Set (t,e) ->

let v = eval env e in

begin store := store_set t v !store ; v end

In OCaml, the expression !r is a read access to the value of the reference r,
the expression r := e sets the value of e into the reference r and the expression
begin e1 ; e2 end is a sequential evaluation of e1 and e2 which returns the
value computed for e2.

17

That code is finally the same as in section 2.1 with two additional cases for
get and set which make use of the store as a mutable global variable.

Whether this version is better than the previous one or not is not the subject
of this paper. However we can compare them. The first one is more easy to
formalize since it does not use imperative features, but the store is present in
all the parts of the code. The second one is more difficult to formalize but it is
simpler to read, as long as the imperative part is well understood. In that one,
imperative features and purely functional features are completely independent
which shows a good separation of concerns and makes easier the extension of
the language with new features.

This point is particularly important for us since our goal is to build an easily
extendable interpreter.

For these reasons, we will use such a mutable global variable to represent the
store in the implementation of our scheme of interpretation and we will keep the
imperative implementation of the classical evaluator as a reference to compare
the two approaches.

3.2 Imperative features in our scheme

In section 2.2, when building the variable elimination algorithm (step C), we
have rejected rules which were correct in the call-by-name setting but false in
the call-by-value setting. By doing so, we have ensured that the order of the
applications was not disturbed by the transformation C.

This means that as long as imperative features are triggered by the evalua-
tion of an application, the transformation C preserves the order of the imperative
features.

This means also that it is sufficient to represent features by function appli-
cations to integrate them nicely in our interpretation scheme.

For this reason, in our scheme we transform all imperative features into
applications as we have done for non-strict features. The imperative features
are then embedded in external functions with side effects.

Here is the code doing it as an extension of the purify function (step P).

let rec purify = function

...

| E_Get m -> P_App (make_get m , dummy_val)

| E_Set (m,e) -> P_App (make_set m, purify e)

let make_get t =

P_Const (V_Fun (fun _ -> store_get t !store))

let make_set t =

P_Const (V_Fun (fun v -> begin

store := store_set t v !store ;

v

end))

18

This is sufficient to deal with imperative features since having the store
as a global variable allows to keep the rest of the code unchanged as seen in
section 3.1. The other steps C and E are left unchanged.

This example shows that adding new features in our language may be very
simple since it can be sufficient to extend only one step. Furthermore, extending
that step is rather simple since it is done by adding one case to the transforma-
tion.

4 Experimental evaluation

In this section, we observe the performances of our interpretation scheme. We
first compare it to the classical implementation proposed, then to widely used
interpreters for other (dynamically typed) languages.

4.1 Comparison to the classical scheme

We compare execution times of our interpreter to execution times of the classical
interpreter by running both of them on several source programs. The set of
source programs we have selected is composed of the Fibonacci and Ackermann
functions, an insertion sort and an implementation of the 8 queens problem.

For Ackermann, Fibonacci and sort, we provide two different source codes.
In the first one, the omega function λx.(xx) is used to encode recursive calls (see
Figure 6). In the other one, imperative references are used to do this. In order
to implement the sort algorithm and the 8 queens problem, we have added lists
in the interpreted language : lists of values are added to the value type and the
list operators (cons, head, and tail) are external functions. The corresponding
input programs and interpreters are provided with this report.

We give the results for two different variable elimination algorithms noted C1
and C2 (or C1 and C2 in diagrams). The first one, C1, has the following features:

• use of the combinators S, K, I, B, C, N and SIF (sections 2.3.1 and 2.3.3),

• use of the automatic pre-evaluation (section 2.3.2).

This algorithm has been chosen because it has a good ratio performances/coding
effort (using only S, K and I gives too poor performances).

The second algorithm, C2, has the following features:

• S, K, I, B, C, N,

• S2, S
2 and S22 (section 2.3.4),

• all combinators extending S2 to the selective distribution of the abstrac-
tions (B, C, N style),

• all combinators extending S2 to the selective distribution of the abstrac-
tions (B, C, N style),

19

• SIF and SIF
2 (in the style of S2),

• use of the automatic pre-evaluation (section 2.3.2).

This algorithm is the best we have found with the presented optimizations
without using all the combinations of S2

2 with the selective distribution in the
B, C, N style (which corresponds to Diller’s combinators [Dil02]).

The following diagram shows the execution time of our two implementations
based on C1 and C2 normalized against the classical interpreter (section 2.1) on
several input programs with short execution times (less than 1 second for the
classical interpreter). The machine used is a Pentium D 2.8 GHz with 1 GB of
memory, running Linux.

We see that C1 has erratic performances. Performances of C2 are also irreg-
ular, but better than the classical interpreter on most of these inputs.

Now, let us have a look at the performances when the size of the problem
increases. The diagrams of figure 4 show speedups for increasing problem sizes.
Reference times are given in Table 1.

For Fibonacci and the 8 queens, the performances are stable. For the sort,
they are decreasing when the size of the problem increases (the number of ele-
ments to sort). Our interpreter based on C2 becomes slower than the classical
interpreter for 8000 elements, when the execution time is 57 seconds (omega)
or 45 seconds (imperative references). On Ackermann (omega) we observe bad
performances which are getting worth when the size of the problem increases.
Note that we can find combinations of optimizations giving better performances
for this input program, but the ones we have considered have made decrease the

20

Figure 4: Speedups for two variable elimination algorithms

21

Cl. C1 C2 Python Erlang
Fibonacci (omega) 28 0,77 0,72 0.34 1.39 341
Fibonacci (omega) 38 94 87,67 39,82 167,94
Fibonacci (imp) 29 0.97 0.56 0.28 0,76
Fibonacci (imp) 40 195,0 112,2 56,8 146,3
Ackermann (omega) (3,6) 0.34 0.86 0.39 0.50 146
Ackermann (omega) (3,11) 357.9 1744 967 711
Ackermann (imp) (3,6) 0.17 0.46 0.10 0.33
Ackermann (imp) (3,11) 254 1139 172 488.0
sort (omega) 1000 0,79 1.34 0.59 /
sort (omega) 64 000 5603 14046 /
sort (imp) 1000 0.61 0.90 0.47 /
sort (imp) 64 000 4516 13570 10381 /
queens problem (imp) 8 761 1105 563 /

Table 1: Performances (in seconds, on Pentium D)

performances for less specific input programs such the sort and the 8 queens.
Ackermann (imperative references) shows also decreasing speedups, but it stays
above 1 in our experiments.

Figure 5 compares the speedups of C2 on two different architectures : the
Pentium D already used for previous experiments, and a Pentium M (laptop)
1.1 GHz with 512 MB of memory, also running Linux.

For the sort, the speedup is better on the laptop for small problems and it
tends to be equal or worth than the desktop machine as the speedup becomes
a slowdown. For the queen problem, the difference between speedups is stable
(between 14% and 23% of difference), but for Ackermann, it is not (50% for
Ackermann(3,11) (omega)).

During all our experiments, no memory leak has been observed. Further-
more, the technique discussed in this paper has been used in the MGS in-
terpreter, which has been used for intensive biological simulations [RBCL+06]
running for days, and no memory leak has been observed either.

4.2 Comparison to widely used interpreters

Now, let us compare our interpreter with other interpreters which are widely
used. Of course, comparing the performances of our interpreter to the ones
of statically typed languages such as OCaml or Java tends to show that our
interpreter has poor performances, but it is fairer to compare to dynamically
typed languages.

Performances of the Python interpreter (2.6.4) are given in Figure 4 and
table 1 for our programs that do not use lists (lists in Python are modified in
place so we could not use the same input programs).

The source codes for Python programs used in these tests are as close as

22

Figure 5: Speedups for our best algorithm on several programs, on two different
hardwares

23

possible to the code used as input of our interpreters (see for instance the code
for Fibonacci in Figure 6). In particular, curried λ-expressions are used. The
Python interpreter shows much better performances with uncurried functions,
but this would be also the case for the classical interpreter and in our scheme
of interpretation.

Our comparison shows that the performances of our interpreter can compete
with Python’s ones (Python 2.6.4). We conclude that the performances of our
scheme, even if it does not improve the performances of the classical, naive
interpreter, are acceptable.

Table 1 gives also some results for the Erlang interpreters. The very poor
performances observed for Erlang can be explained by the fact that our test pro-
grams use mainly anonymous, uncurried functions(Fig. 6), which are available
in Erlang but are not designed to be the main means of defining functions.

Fibonacci in our language:

(((\f.(f f))

(\f. \n. if (n <= 1)

then 1

else (((f f) (n - 2)) + ((f f) (n - 1))) fi)

) 28)

Fibonacci in Python:

(((lambda x : x(x))

(lambda f : lambda n : (1 if (n <= 1)

else ((f)(f)) (n-2) + (f(f)) (n-1))))

(28))

Fibonacci in Erlang:

((fun (F) -> F (F) end)

(fun (F) ->

fun (N) ->

if (N =< 1) -> 1 ;

true -> (((F (F)) (N - 2)) + ((F (F)) (N - 1)))

end end end))

(28).

Figure 6: The Fibonacci function using the omega function in our language,
Python and Erlang.

24

5 Correctness

We have seen in section 2.2.4 that some classical variable elimination algorithms
are not correct in the call-by value setting. However, the algorithm (favb) is
known to be correct in the λv-calculus [GD92]. We provide a mechanically
checked proof that the algorithm (favb) is also correct when we add some im-
perative features into that language.

The proof is checked with the Coq proof assistant [Coq] and is provided as
Coq files with this report. In this section we explain what is proven rather than
the proof itself.

In our language, combinators are seen as particular λ-abstractions to simplify
the proof. The property we show is that a term e and the term C(e), which is
the transformation of e by the (favb) algorithm, share the same semantics. This
idea is formalized by an equivalence relation.

Some definitions we give here are extended from those of [Plo75] or [GD92].

Terms. We consider the language Λvr defined below. We do not consider
constants, external functions and conditionals, but we take imperative references
into accounts. Tags is a set of tags, Vars is a set of variables, Vals is the set of
values of the language.

Definition 1 (syntax of Λvr)

M ∈ Λvr

af ∈ Fun-Consts

x ∈ Vars

V ∈ Vals

V ::= x | λx.M | af
M ::= V | (M M)

Only applications are not values. We follow Plotkin’s λv-calculus [Plo75]
and consider variables as values. This is convenient since the semantics allows
variables to be substituted only for values. Moreover, in practice, programs
with free variables will be rejected before being evaluated. Taking variables as
values simplifies the proof.

The construct af corresponds to external functions. Imperative features are
seen as external functions. For instance, the reference operators seen in section 3
are seen as particular external functions (we can consider there is an operator
for each reference).

Stores. We consider an abstract set of stores S. That set comes with a set
FS of total functions of type Vals × S → Vals × S. For instance, store get t

and store set t (for a given t) of section 3 can be viewed as such functions
(by adding dummy parameters and results to their original type).

25

A total function δ : Fun-Consts → FS gives the semantics of the external
functions of the language. This function is also left abstract.

We do not need to enforce more properties on stores for the proof. In the
following σ stands for a store (an element of S).

Reduction. The relation −→ is defined inductively by the rules below. This
relation gives the call-by-value operational semantics of the language.

Definition 2 (reduction)

((λx.M) V) / σ −→ [V/x]M / σ
(βvr)

M1 / σ1 −→ M2 / σ2

(M1 M) / σ1 −→ (M2 M) / σ2
(Left)

M1 / σ1 −→ M2 / σ2

(V M1) / σ1 −→ (V M2) / σ2
(Right)

(V2, σ2) = δ(af)(V1, σ1)

(af V1) / σ1 −→ V2 / σ2
(δ)

The βvr rule corresponds to the usual β reduction rule in call-by-value λ-
calculus : reduction can be triggered only when the argument is a value. We
use the classical proper substitution with automatic variable renaming (we do
not adopt Barendregt convention requiring renaming to avoid collisions). This
difference between the proof setting and our interpreter is not important since
in practice we are interested in programs with no free variables and then the
interpreter does not need to rename variables (values used in β-reductions never
contain free variables).

The Left and Right rules state that we reduce the left hand side of an
application before reducing the right hand side.

The (δ) rule associate a semantics functions to external function symbols.
In order to take imperative features into accounts, semantics function of FS

take the “current” store as a parameter and the returned store is set as the
“current” store. This corresponds to the monad style, whereas in section 3.2
the store was a global mutable variable. As discussed in section 3.1, this should
make no difference in the call-by-value setting.

Equivalence. We define a relation of equivalence on Λvr noted �. The rules
are based on the ones for the λv-calculus in [GD92].

Definition 3 (term equivalence)

M � M
(reflexivity)

M � N

N � M
(symmetry)

M1 � M2 M2 � M3

M1 � M3
(transitivity)

26

M1 � M2

(M1 N) � (M2N)
(Compatibility-L)

M1 � M2

(N M1) � (N M2)
(Compatibility-R)

∀σ,M1 / σ −→ M2 / σ

M1 � M2
(βvr−eq)

M1 � M2

λx.M1 � λx.M2
(ξ)

(λx1.M1) y � (λx2.M2) y y not free in λx1.M1 y not free in λx2.M2

λx1.M1 � λx2.M2
(ζ′)

Combinators. We consider the combinators as particular terms of the lan-
guage : I = λx.x, K = λx.λy.x and S = λx.λy.λz.((x z) (y z)), where x, y and z
are distinct elements of Vars (these are not meta-variables).

Variable elimination. We now define the (favb) algorithm, noted C.

Definition 4 (variable elimination algorithm) The functions C and D are
defined inductively by the following rules (x and y range over Vars) :

D(x, x) = I

D(x, (M1 M2)) = ((S D(x,M1)) D(x,M2)))

D(x, y) = (K y) where x �= y

D(x, c) = (K c) where c ∈ {I,K, S, af}

C(x) = x

C((M1 M2)) = (C(M1) C(M2))

C(λx.M) = D(x, C(M))

C(af) = af

Correctness. The correctness theorem states that a term and its transformed
form are equivalent.

Theorem 1 (Correctness of (favb)) ∀M ∈ Λvr,M � C(M)

This result means that, for a given store, if a term M evaluates into a value
V then C(M) evaluates into a value which is equivalent to V . Furthermore, if
the evaluation of M is stuck then the same is true for the evaluation of C(M)
(but not necessarily in an equivalent store) and if it does not terminate, so for
C(M).

The proof of this theorem is checked by the Coq system [Coq], the corre-
sponding Coq files are provided with this report.

27

6 Choice of the host language

We have illustrated our scheme with OCaml as host language. However, our
scheme can be used with other host languages as long as they can deal with
functions and they have a call by value reduction strategy.

In C language, functions can be handled with pointers. Since closures are
necessary for managing partial applications (for K and S for instance), it is
necessary to encode closures, for instance with records, and a form of garbage
collecting. In C#, lambda expressions are available directly in the language and
in C++ as a library. In Java, function are encapsulated into objects (or classes).

In this section, we give guidelines to use of our scheme in Java. In particular,
we give the higher order data structure needed for the evaluation step (E),
after what the three steps P , C and E become trivial to implement following
section 2.2.

6.1 The Value data structure

We give here the data structure to represent the type value of section 2.2. We
adapt the composite pattern which is usually used to represent abstract syntax
trees in object languages. At the root of the hierarchy, we find an abstract class:
Value.

public abstract class Value {}

Value

ValInt

+ i : int

ValFun

- function(x : Value) : Value

Plus S K I

The most basic sort of values are integers (we skip booleans here):

public final class ValInt extends Value {

public int i ;

public ValInt (int i){

this.i = i ;

}

}

28

We see functions as objects with a method called function, taking a value
as argument and returning a value. Since in Java all the objects of a class have
the same methods (functions are not first-class values), we define a class for
each different function. For this reason, the class for functions is abstract.

public abstract class ValFun extends Value {

abstract Value function (Value x) ;

}

6.2 Pre-defined functions and combinators

We now define some combinators and an external function as subclasses of
ValFun. The combinator I is direct:

public class I extends ValFun {

Value function (Value x) { return (x) ; }

}

The combinator K has two arguments. So we have to use closures since the
two arguments are not passed at the same time. Closures are usually encoded in
Java with internal classes. Here, the method returns an object of a new subclass
of ValFun at each call:

public class K extends ValFun{

Value function (final Value c) {

return new ValFun(){

Value function (Value dummy) { return (c) ; }

};

}

}

The same is done for the combinator S with three arguments:

public class S extends ValFun {

Value function (final Value f) {

return new ValFun(){

Value function (final Value g) {

return new ValFun(){

Value function (Value x) {

ValFun fx = (ValFun) ((ValFun) f).function(x) ;

Value gx = ((ValFun) g).function(x) ;

return (fx.function(gx));

}

};

}

};

}

}

29

Let us now consider the integer addition as an example of external function.
We suppose ExternalFuns.plus is the usual operator on base integers. It has
two arguments so the method uses closures:

public class Plus extends ValFun{

Value function (final Value x) {

return new ValFun(){

Value function (final Value y) {

int vx = ((ValInt) x).getInt();

int vy = ((ValInt) y).getInt();

return(new ValInt (ExternalFuns.plus(vx, vy)));

}

};

}

}

7 Conclusion

7.1 Benefits and drawbacks of our approach.

Initial Constraints verified. The first advantages have been put as condi-
tions :

• Mainstream languages as Java or C can be used.

• The scheme supports higher-order functions, non-strict features, impera-
tive features and external functions.

• The performances of the interpreter are acceptable compared to other
widely used interpreters (for dynamically typed languages) and can be
improved with standard optimization such as uncurrying of functions.

Unifying external and user-defined functions. We have seen that we
transform user-defined functions into host language functions. External func-
tions are also represented by host language functions. A consequence of that
unification is that the handling of higher order is very simple, even when using
function in libraries defined independently of the interpreter. For instance, in
order to evaluate our interpreter on programs such as sorting and the queen
problem, we have included lists in the language. Higher order functions such
as List.filter from the OCaml standard library have been included in the
language with only structural wrappers to deal with dynamical typing. In the
classical approach, the wrapper has to check the kind of function received, and
when a user-defined function is received, then a call to eval is needed. Unlike
the wrapper in our approach, the wrapper is not only structural anymore and
it depends on the evaluation function.

30

Simplicity of the scheme and of the evaluator. We have seen that the
evaluation step E in the scheme is extremely simple. The step P which trans-
forms non-strict and imperative features into functions is also simple. Depending
on the number of optimizations needed, the step C which transforms user-defined
functions into combinators can become complex. However, the algorithm keeps
cleanly specified by a set of simple rewriting rules. That algorithm can be im-
plemented modularly by structural pattern matching (a rewriting rule in the
algorithm becomes a pattern-matching case in the implementation) or other
tree traversal technique such as in the Composite design pattern. The most
complex algorithm we have used (C2 in section 4) is about 100 lines long (plus
200 lines for the definition of the 34 combinators).

Moreover, each step is independent of the other, and many new features can
be added into the interpreted language without modifying C or E , just by adding
a case to P .

Traversal is difficult. The recurrent drawback of higher-order abstract syn-
tax is the difficulty to traverse the syntax trees. Indeed, host language functions
cannot be inspected as ordinary trees can. This means that once the user-defined
functions have been transformed into host language functions, further analysis
or transformations are very limited. Solutions to this problem are not simple,
see [WW03] for instance. However, many analysis and transformations can still
be done before transformation into combinators. Moreover, in our higher order
abstract syntax trees, if we except the pre-evaluation optimization, only a few
number of pre-defined host language functions are encountered, and they can
be identified by using physical equality for instance.

7.2 Related work

Although the idea is not new (it is suggested in [WW03]), higher-order abstract
syntax has found few applications for building interpreters. The two first ex-
periments the authors are aware of is the implementation of the MGS language
which this paper is based on [Coh04], and the work of Barzilay [Bar06]. The
latter makes the assumption that the host language has some multi-level pro-
gramming facilities, such as generating new host-language variables at execution
time, which we do not consider since we want to be able to use languages such
as Java or C. This difference is important only for the step C which transforms
user-defined functions into host language functions. With multi-level program-
ming facilities, it is not necessary to decompose functions into combinators.
Note also that Barzilay deals with call-by-name and call-by-need whereas we
deal with call-by-value strategy.

The fact that the generation of host language functions is not trivial and
that the generated functions cannot be inspected might explain that higher-
order abstract syntax had not been used before to implement interpreters.

31

Web Sites

[Coq] The Coq Proof Assistant. http://coq.inria.fr .

[OCa] Objective Caml. http://caml.inria.fr/ocaml/ .

References

[Bar06] Eli Barzilay. A self-hosting evaluator using HOAS – a Scheme pearl.
In Scheme and Functional Programming Workshop, University of
Chicago Technical Report TR-2006-06, 2006.

[CF58] Haskell B. Curry and Robert Feys. Combinatory Logic, volume I.
North Holland, 1958.

[CH06] Felice Cardone and J. Roger Hindley. History of lambda-calculus
and combinatory logic. Research Report MRRS-05-06, Swansea
University Mathematics Department, 2006.

[Coh04] Julien Cohen. Intégration des collections topologiques et des trans-
formations dans un langage fonctionnel. PhD thesis, université
d’Évry Val d’Essonne, December 2004.

[Dil02] Antoni Diller. Efficient multi-variate abstraction using an array
representation for combinators. Inf. Process. Lett., 84(6):311–317,
2002.

[GD92] John Gateley and Bruce F. Duba. Call-by-value combinatory
logic and the lambda-value calculus. In Mathematical Foundations
of Programming Semantics, 7th International Conference, 1991,
volume 598 of Lecture Notes in Computer Science, pages 41–53.
Springer, 1992.

[HD97] John Hatcliff and Olivier Danvy. Thunks and the λ-calculus. Jour-
nal of Functional Programming, 7(3):303–319, 1997.

[PE88] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Pro-
ceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 199–208. ACM Press,
1988.

[PJW93] Simon L. Peyton Jones and Philip Wadler. Imperative func-
tional programming. In POPL ’93: Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 71–84, New York, NY, USA, 1993. ACM.

[Plo75] Gordon Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1:125–159, 1975.

32

[RBCL+06] Pierre Barbier de Reuille, Isabelle Bohn-Courseau, Karin Ljung,
Halima Morin, Nicola Carraro, Christophe Godin, and Jan Traas.
Computer simulations reveal properties of the cell-cell signaling
network at the shoot apex in Arabidopsis. Proceedings of the Na-
tional Academy of Sciences, 103(5):1627–1632, 2006.

[WW03] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas:
Encoding higher-order abstract syntax with parametric polymor-
phism. In ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 249–262, 2003.

33

