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ABSTRACT

In this paper we consider the problem of sampling far be-
low the Nyquist rate signals that are sparse linear superposi-
tions of shifts of a known, potentially wide-band, pulse. This
signal model is key for applications such as Ultra Wide Band
(UWB) communications or neural signal processing. Follow-
ing the recently proposed Compressed Sensing methodology,
we study several acquisition strategies and show that the ap-
proximations recovered via !1 minimization are greatly en-
hanced if one uses Spread Spectrum modulation prior to ap-
plying random Fourier measurements. We complement our
experiments with a discussion of possible hardware imple-
mentation of our technique.

Index Terms— Compressive sampling, compressed sens-
ing, pulse trains, Ultra Wide Band, shift-invariant dictionary

1. INTRODUCTION

For many years, signal acquisition systems have been based
on the Nyquist-Shannon sampling theorem that states that the
number of samples needed to recover a signal without error
is twice the bandwidth. Recently, the emerging field of com-
pressive sensing (CS) has given a fresh look at data acquisi-
tion: the number of required measurements needed to recon-
struct a signal without error depends on its sparsity and not on
its bandwidth [1, 2, 3]. Hence, if the signal has a very sparse
representation on some basis, or more generally on some dic-
tionary [4], it is possible to sample it using very few, linear
measurements.

Although the compressive sensing theory is flourishing, it
is not still a completely mature field and important theoretical
and practical questions remain to be solved. When the signal
is a sparse train of Diracs, it was proved in the seminal paper
of Candès and Tao [2] that it can be sampled efficiently using
a small random subset of its Fourier coefficients. More gener-
ally, if the signal has a sparse representation on an orthonor-
mal basis, it is known that a fairly large class of random ma-
trices can be used for obtaining compressive samples. The in-
terested reader is referred to the introductory review paper [5]
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for more information. In the general case where the sparsify-
ing system is a dictionary (a non necessarily tight frame) the
results are themselves quite sparse, though, and it is not clear
what sensing matrices should be used. Likewise, most results
in CS are expressed in terms of the number of measurements
needed to approximate the coefficients of the signal’s sparse
representation. But as we shall see below, there are many situ-
ations where a recovery algorithm can fail approximating the
coefficients and still yield very precise approximations of the
signal itself.

In this paper we concentrate on signals that are sparse on
a dictionary made of all shifts of a fixed, known, waveform or
pulse. This model is introduced and discussed in Section 2.
We then study in Section 3 several measurement strategies
used for compressively sampling these signals. Our main
quality metric is the signal-to-noise ratio and we emphasize
why this constraint has a strong influence on practical results.
In particular, we design and discuss a novel sensing strategy
based on pre-modulating the signal with a spread-spectrum
sequence followed by random sampling in the Fourier do-
main. Section 4 contains ample experimental evidence that
this strategy significantly outperforms other classical com-
pressive sampling scenarios such as pure random Fourier
sampling or gaussian measurements. In Section 5 we discuss
how our scheme can be adapted to meet the requirements
of potential hardware implementation and show that these
modifications do not significantly degrade our results. Our
approach bears several similarities with recent papers on
Analog-to-Information conversion. In particular, [8] intro-
duced random sampling of wide band multi-hop signals and
[9] used the idea of random demodulation which is close in
spirit to our spread spectrum pre-modulation.

2. SIGNAL MODEL

Throughout this paper we will denote by x a real valued
N -dimensional signal, i.e x ∈ RN . We wish to record few,
say M with M " N , linear measurements of our signals
and we thus model this sampling process by a measurement
matrix Φ, with Φ ∈ RM×N . We collect these samples in
the M -dimensional vector y = Φx. Many papers focus on
signal models where x is a sparse vector or has a sparse rep-



resentation on an orthogonal basis. In this work however, we
are motivated by signals which are linear superposition of K
time-shifted pulses :

x[n] =
K−1∑

k=0

αkψ[n− nk],

where the mother pulse ψ has a limited support compared
to N . This type of signal model is of particular interest in
applications such as Ultra Wide Band communications [6]
or bio-sensing [7]. In matrix form, our signals obey a sparse
synthesis model, x = Ψα, where α is a sparse vector of
coefficients, ‖α‖0 = K " N , and the synthesis dictionary
Ψ ∈ RN×N . Moreover, the shift-invariant nature of our prob-
lem imposes that Ψ is a circulant matrix whose columns are
shifted replicas of the mother pulse. It is very convenient to
write Ψ = F ∗ΛF , where F is the column normalized DFT
matrix 1 and Λ is a diagonal matrix with diag(Λ) = Fψ. It
has to be noted that our dictionary Ψ is not an orthogonal ba-
sis2 and that we impose no specific restriction on the pulse ψ.
With these notations, our compressive sampling problem can
be formulated as follows. We would like to collect M < N
measurements of our signal y = Φx = ΦΨα such that it is
possible to reconstruct a good approximation of the original
signal x. In this paper, the quality measure is the output
Signal-to-Noise Ratio (SNR) :

SNRout(x, x̂) = −20 log10 ‖x− x̂‖2/‖x‖2. (1)

This seemingly natural choice has a drastic influence on the
way we present our results. Whereas most research papers in
compressive sensing will discuss the recovery of the sparse
vector α, exact recovery has in fact very little importance for
us. Imagine indeed that for a given x we would recover all
pulses up to a little time shift of each pulse. This would
mean that we would not have recovered α at all. Yet, since
our pulses are waveforms and not perfect spikes, the recon-
structed signal would be very close to the original one ! In
other words, we do not care about perfect identification of the
support of the sparse vector α, instead what really matters for
us is the SNR (1).

One of the difficulties with compressed sensing is that
there are many possible algorithms to recover the signal from
the measurements. One first restriction is that we need to se-
lect an algorithm that does signal approximation and that is
resilient to noise added to the signal x or to the measurements
y. We have tested several algorithms and decided to focus on
the Basis Pursuit Denoising framework, i.e solving the fol-
lowing optimization problem :

min ‖α‖1 subject to ‖ΦΨα− y‖2 ≤ σ. (BPDNσ)

In all our experiments we have used the SPGL13 solver in
1The matrix F used throughout this paper has unit 2-norm columns, so

the usual N -by-N DFT matrix is actually
√

N · F .
2Even if Ψ ∈ RN×N , the span of its columns is smaller than RN .
3http://www.cs.ubc.ca/labs/scl/spgl1/

combination with the SPARCO toolbox4 for its handy syntax
for designing sensing operators.

3. MEASUREMENT STRATEGIES

Given our particular model, the signals we are interested in
are convolutions of a spike train with the mother pulse ψ.
Since random Fourier measurements are close to optimal for
compressive sampling of spike trains, one may be tempted to
reduce our problem to this ideal case. Indeed, let us define the
following measurement matrix :

ΦI = RFF ∗Λ−1F, (2)

where R is the sub-sampling operator : a M -by-N matrix
filled up with zeroes except one element on each row that is
equal to N/M and such that there is at most one non-zero el-
ement on each column. With this normalization, the matrix
RF selects M rows of F and has unit norm columns. The
effect of this measurement matrix is to first invert the convo-
lution with the pulse and then try to recover the spike train
α. Applying (2) to one of our signals indeed results in the
following sampling strategy :

y = ΦIΨα = (RFF ∗Λ−1F )(F ∗ΛF )α = RFα, (INV)

which is simply standard Fourier sub-sampling of α. There
are strong limits to this line of thought, though. For nothing
guarantees that the inverse convolution is well-conditioned :
Λ can even have zeroes. This technique is thus, unsurpris-
ingly, highly sensitive to noise as illustrated on Figure 1: the
amount of measurements M needed to achieve a 30dB SNR
reconstruction increases rapidly as noise is added to the sig-
nal. The amount of noise is controlled by the input SNR , i.e.
SNRin = −20 log10 ‖n‖2/‖x‖2, which, in this experiment,
varied between SNRin = +∞ (no noise) and 40 dB.

In a sense, the previous measurement strategy fails be-
cause it wastes measurements : imagine, schematically, that
Λ is zero on some intervals in the Fourier domain. The Fourier
samples selected by the matrix R will have a non-negligible
probability to fall in one of these intervals and will therefore
bring no information about the signal. Clearly, what we need
is a way to ensure that every measurement counts, i.e we need
to make sure that the signal to which we apply the Fourier
sub-sampling matrix RF occupies the full spectrum. We thus
propose as alternative strategy to pre-modulate the input sig-
nal with a spread spectrum sequence p[n]. There are many
good such sequences, some (pseudo)-random, some deter-
ministic and it is behind the scope of this paper to describe
the full theory of spread spectrum techniques. It should be
noted, though, that we tested several sequences and observed
that the results do not vary significantly. Our proposed sens-
ing strategy is thus the following :

y = ΦSΨα = RFPΨα, (SPREAD)
4http://www.cs.ubc.ca/labs/scl/sparco/
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Fig. 1. Probability of reaching an output SNR greater than 30 dB
as a function of the over-sampling ratio M/K. The results were
obtained by drawing at random 1000 signals of length N = 1024
and sparsity K = 80. The number of measurements was varied
from 2K to N − 1.

where RF is the Fourier sub-sampling matrix described
above and P is a diagonal matrix with diag(P ) = p.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the SPREAD sam-
pling strategy, it is important to compare it to other measure-
ment matrices. In our experiments we systematically com-
pared with the INV strategy described above and with two
classical measurement matrices :

y = ΦF Ψα = RFΨα, (FOURIER)

which is the traditional Fourier sub-sampling, and

y = ΦGΨα = GΨα (GAUSS)

where G is a M -by-N matrix of independent centered gaus-
sian variables [5]. The mother pulse ψ[n] defining Ψ has been
set to a truncated first derivative of Gaussian with 17 non-zero
elements.

Our first experiment consists in evaluating the stabil-
ity of the sampling strategy with respect to the amount
of noise added to the signal, i.e the measurements record
y = Φ(x + n), where n is centered gaussian noise and Φ
is set to one of the sensing strategies described above. The
input SNR varied between -10 dB to 60 dB. The input signal
had length N = 1024 and sparsity K = 15. We gathered
M = 7K ' 100 measurements and measured the output
SNR. The same experiment was repeated for all sampling
strategies (INV, FOURIER, GAUSS and SPREAD) and the
results were averaged over 1000 randomly simulated input
signals5. The outcome, displayed in Figure 2, clearly shows
the attractiveness of the SPREAD technique. First, the results

5K locations were selected randomly in α and filled with random Gaus-
sian values.

are always better than the other three measurement matrices.
At low input SNR, the INV methodology is clearly the worst
one as explained before, while GAUSS and FOURIER be-
have similarly. As the input SNR get higher, INV catches up
with FOURIER and GAUSS: as we already know, FOURIER
wastes measurements and once the effect of noise disappears
the reconstruction quality stalls evidently.
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Fig. 2. Output SNR as a function of input SNR averaged over 1000
signals of length N = 1024 drawn at random. The sparsity was
fixed at K = 15 and the number of measurements at M = 7K.

Our second experiment is aimed at testing how many mea-
surements we need to achieve a given output SNR. More pre-
cisely, we randomly simulated signals of length N = 1024
and varied the sparsity K between 10 and 100. The input
SNR was fixed at 30 dB. For every K, and for all sampling
strategies, we then recorded how many measurements were
needed, in average over all signals, to achieve an output SNR
greater than 25 dB. Figure 3 shows the results in terms of the
over-sampling factor M/N versus the relative sparsity K/N .
One notices that over-sampling diminishes rather quickly and,
for a quite realistic 10% sparsity, it is roughly of the order of
4K.

5. HARDWARE PERSPECTIVE

The previous set of experiments clearly shows the interest
of the SPREAD strategy for compressive sampling of pulse
trains signals. Our experiments and findings were carried out
in a purely digital setting, though, while clearly this technique
is aimed at sampling analog signals. In other words, for a
mother wideband pulse ψ(t), the ideal analog model is in fact
x(t) =

∑K−1
k=0 αkψ(t− tk), on a given time interval of length

∆t. In this case, one would like to keep the whole signal pro-
cessing chain as long as possible within the analog domain,
and only manipulate sub-Nyquist digital samples. Looking
towards this perspective, let us streamline how the SPREAD
strategy can be modified to manipulate analog signals in an
idealized analog architecture (Fig. 4).

First, the spread spectrum sequence will have to be an
analog signal p(t). The pre-modulation x(t) × p(t) can be
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Fig. 4. Possible Analog Architecture.

achieved by flipping (at Nyquist rate) the polarity of the in-
put signal using (pseudo)-random or deterministic strategies
which can be implemented very fast in analog electronics [9].
Second, the Fourier sub-sampling operator, which would re-
quire a large amount of very finely tuned analog band-pass
filters, is replaced by the more analog friendly Hadamard
transform: the pre-modulated signal would be multiplexed
M times analogically and each replica multiplied by a ran-
domly selected Hadamard sequence6 Hr(i)(t), where r(i)
models the ith random selection. The output of each branch
is then accumulated analogically by low-pass filtering (LF) to
form, by time sampling every ∆t seconds, the corresponding
scalar product yi(n∆t) =

∫ (n+1)∆t
n∆t Hr(i)(t) p(t) x(t) dt. In

this way, M measurements are computed in parallel over a
time frame ∆t of the original signal. One of the issues to un-
derstand with this modified scheme is just how sensitive the
SPREAD strategy would be if one trades the Fourier trans-
form for the Hadamard transform. We ran simulations, using
the settings that generated Figure 2 but replaced the DFT ma-
trix F by the corresponding Hadamard matrix. Let us call this
new strategy H-SPREAD. The outcome is shown on Figure 5

6Using the same polarity flipping trick for the analog multiplication, the
Hadamard sequences being composed also of ±1.

where we compare SPREAD, H-SPREAD and GAUSS. Al-
though a small degradation is observed, H-SPREAD behaves
almost exactly like the GAUSS strategy, although the latter
would not be easily implemented in hardware. The modified
sampling technique thus shows really promising potential for
a compressive sampling architecture that would operate as
much as possible in the analog domain.
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Fig. 5. Comparison of the SPREAD, H-SPREAD and GAUSS sam-
pling strategies. The settings are the same as those used in Figure 2.
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