
HAL Id: hal-00481941
https://hal.science/hal-00481941v1

Preprint submitted on 7 May 2010 (v1), last revised 28 Jan 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Views, Program Transformations, and the Evolutivity
Problem

Julien Cohen, Rémi Douence

To cite this version:
Julien Cohen, Rémi Douence. Views, Program Transformations, and the Evolutivity Problem. 2010.
�hal-00481941v1�

https://hal.science/hal-00481941v1
https://hal.archives-ouvertes.fr

Views, Program Transformations, and the

Evolutivity Problem

Julien Cohen1 and Rémi Douence1,2

1: LINA (UMR 6241, CNRS, Université de Nantes, École des Mines de Nantes)

2: ASCOLA (INRIA, École des Mines de Nantes)

Abstract

In this article, we argue that a program transformation approach is a
good way to solve the tyranny of the primary decomposition. We illus-
trate our transformation-based approach on a case study defined with the
expression problem. We also propose the evolutivity problem based on the
experience of the expression problem.

1 Introduction

Evolutivity has become a major criteria of quality for enterprise software. In
most cases, evolutivity comes from design choices on the software architectures.
But it is well know that it is difficult to find software architectures that are evo-
lutive with respect to all concerns. This is illustrated by the so-called expression

problem [6] (section 2) (also called the extensibility problem).
Many solutions have been proposed for the expression problem (for instance,

see [7] for a survey). These solutions allow to extend a program in a modular
way, by adding new compilation units (classes, modules, aspects, mixins...).
So, they tackle extensibility, but they also require strong static type safety,
separate compilation and no modification of the existing code. But evolution is
not only extension, it is also maintenance. We do not always want to add new
functionalities, we often need to modify the existing functionalities, to correct
an error or to change a behavior for instance (corrective, adaptative or perfective
maintenance [5]).

For this kind of evolution, solutions to the expression problem have a major
drawback : changes become non modular. Indeed, the code to modify, which was
initially contained in a single module (or another compilation unit), finds to be
spread over several modules after extensions have been implemented (section 3).
This is not surprising since the expression problem is focused on extension and
forbids modifications of the existing code.

In this paper, we propose to solve the problem of modular evolutivity not
with a programming language approach, but with a program transformation
approach. First we show how a program transformation can allow to have mod-
ular extensions as well as modular changes (section 4). Second, we illustrate
our idea with a (work in progress) program transformation between two given

1

architectures that provide the same functionality (section 5). That particu-
lar transformation is based on a sequence of basic refactoring operations. We
also discuss how that transformation can be subject to evolutions when needed
(section 5.3).

2 The Expression Problem

The expression problem is a practical instance of conflict between two architec-
tural choices.

Let us consider the expression evaluator in Figure 1. The data type Expr

represents the expression language to be evaluated. It has a constructor for each
literal (e.g., Const for integers) and operator (e.g., Add represents the addition).
Functions for evaluating or printing expressions are defined by pattern matching:
a case is defined by constructor.

data Expr =

Const Int

| Add (Expr,Expr)

eval (Const i) = i

eval (Add (e1,e2)) = eval e1 + eval e2

stringOfExpr (Const i) = show i

stringOfExpr (Add (e1,e2)) =

stringOfExpr e1 ++ "+" ++ stringOfExpr e2

Figure 1: Expression Data Type in Haskell

Main

Expr

ToStringModEvalMod

Const Add

eval

toString ToStringMod

EvalMod

Figure 2: Constructor decomposition (architecture of the program Pdata)

This code is modular with respect to functions. Modularity is better seen
in Figure 2 where modules are used to structure this program. The left-hand
side of the figure shows the module dependencies: for instance, the module
EvalMod depends on the data type and its constructors defined in the module
Expr. The right-hand side of the figure shows a matrix of modules with respect
to the constructor and function definitions: for instance, the module EvalMod

uses both constructors Const and Add but it defines a single function eval. The
corresponding code is detailed in the Figure 3. This program architecture makes

2

�

module Expr (Expr(Const ,Add)) where

data Expr =

Const Int

| Add (Expr ,Expr)

�

module EvalMod (eval) where

import Expr (Expr(Const ,Add))

eval (Const i) = i

eval (Add (e1 ,e2)) = eval e1 + eval e2

�

module StringOfExprMod (stringOfExpr) where

import Expr (Expr(Const ,Add))

stringOfExpr (Const i) = show i

stringOfExpr (Add (e1 ,e2)) =

stringOfExpr e1 ++ "+" ++ stringOfExpr e2

�

module Main (main) where

import Expr (Expr(Const ,Add))

import EvalMod (eval)

import StringOfExprMod (stringOfExpr)

e1 = Add (Add (Const 1,Const 2),Const 3)

main = print (stringOfExpr e1)

Figure 3: Functional decomposition in Haskell (program Pfun)

3

it easy to add a new function (e.g., for simplifying expression). However, this
code is not modular with respect to constructors. The code corresponding to a
given constructor (e.g., Add) is spread in all functions. So, when the data type
is extended and a new constructor (e.g., Mult) is introduced, all functions must
be maintained in order to take into account the new constructor.

The alternative program structure in Figure 4 gathers all the pieces of code
related to a given constructor in a corresponding module. For instance, the
module ConstMod collects the eval equation and the stringOfExpr equation for
Const. The right-hand side of the figure makes it explicit: in the matrix modules
are not any more line but columns. The Figure 5 details the corresponding code.
In particular, a function dispatch takes functions as parameters as well as and
expression and it performs pattern matching for applying the right one. In
this context, a function such as eval is defined as the (partial) application of
dispatch to the functions for evaluation.

Main

Expr

ConstMod AddMod

C
o
n
s
t

A
d
d

toString

eval

C
o
n
s
t
M
o
d

A
d
d
M
o
d

Figure 4: Constructor decomposition (architecture of the program Pdata)

This alternative code is modular with respect to constructors. This program
structure makes it easy to add an new constructor (e.g., for product): the cor-
responding module is introduced and dispatch is extended with a new case.
However, this code is not modular with respect to functions. The code corre-
sponding to a given function (e.g., eval) is spread in all modules. So, when a
new function (e.g., simplify) is introduced, every modules must be modified
in order to take into account the new function.

This example shows the tyranny of the primary decomposition in action.
Whatever primary program structure is chosen, it makes it non modular to
extend the program in a way.

The expression problem has found various solutions in the literature. By the
means of advanced features in the host language, is is possible to design program
structures where it is modular to extend the data type, and modular to extend
the functions. But, as we will see, these solutions share a same drawback : they
do not allow modular maintenance.

3 The Evolutivity Problem

3.1 Extension is only part of the problem

In order to illustrate the problem with modular extension solutions, let us now
make abstraction of the particular data type and functions and consider an

4

�

module Expr (Expr(Const ,Add),e1 , dispatch) where

data Expr =

Const Int

| Add (Expr ,Expr)

e1 = Add (Add (Const 1,Const 2),Const 3)

dispatch f_c f_a (Const i) =

f_c (dispatch f_c f_a) i

dispatch f_c f_a (Add (e1 ,e2)) =

f_a (dispatch f_c f_a) e1 e2

�

module ConstMod (eval ,stringOfExpr) where

eval = \ f i -> i

stringOfExpr = \ f i -> show i

�

module AddMod (eval ,stringOfExpr) where

eval = \ f e1 e2 -> (f e1) + (f e2)

stringOfExpr

= \ f e1 e2 -> (f e1) ++ ("+" ++ (f e2))

�

module Main (main) where

import Expr(Expr(Const ,Add), dispatch , e1)

import ConstMod (stringOfExpr ,eval)

import AddMod (stringOfExpr ,eval)

eval = dispatch

(ConstMod.eval)

(AddMod.eval)

stringOfExpr =

dispatch

(ConstMod.stringOfExpr)

(AddMod.stringOfExpr)

main = print (Main.stringOfExpr e1)

Figure 5: Constructor decomposition in Haskell (code of the program Pdata)

5

incremental development scenario for an abstract application. We consider a
data-type with two constructors C1 and C2 (Const and Add in the previous
example), as well as two functions f1 and f2 (eval and stringOfExpr in the
previous example).

The initial (view of the) program may focus on function extensibility or data
extensibility. These two possible structures are pictured below.

C1 C2

f1

f2

C1 C2

f1

f2

In these diagrams, the rounded boxes represent modules.1 The left hand
side diagram means that there is a module for each constructor of the data type
and the code of the functions is spread over these modules. This illustrates
the situation in the classical object approach (pattern composite) and in the
architecture of figure 5. The right hand side diagram means that there is a
module for each function and the code corresponding to a constructor of the
data type is spread over these modules. This illustrates the situation of the
classical functional approach (and also in the visitor pattern).

We now consider that we have chosen a particular solution to extend any
axis by providing a new module (for instance, one of the solutions cited in [7])
and we will see what happens with the following scenario :

1. Extension : We introduce a new constructor C3 (for instance Mult).

2. Extension : We introduce a new function f3 (for instance derivate).

3. Extension : We introduce a new constructor C4 (for instance Div).

4. Extension : We introduce a new function f4 (for instance check div by zero).

5. Maintenance : We modify the function f1.

6. Maintenance : We modify the data constructor C1.

The whole scenario is illustrated by Figure 6 and is detailed below.

Two first extensions (steps 1 & 2). After the first two steps, we will be
in one of the following situations, depending on the initial program :

C1 C2

f1

f2

C3

f3

C1 C2

f1

f2

C3

f3

1We generalize the definition of module to: ”any modular entity of the programming

language”. For instance, a function definition is a modular entity.

6

5

6

4

3

2

1

C1 C2

f1

f2

C1 C2 C3

f2

f1

C1 C2 C3

f2

f3

f1

C1 C2 C3 C4

f1

f2

f3

C1 C2 C3 C4

f1

f2

f3

f4

C1 C2 C3 C4

f1

f2

f3

f4

C1 C2 C3 C4

f1

f2

f3

f4

5

6

4

3

2

1

C1 C2

f1

f2

C1 C2 C3

f2

f1

C1 C2 C3

f2

f3

f1

C1 C2 C3 C4

f1

f2

f3

C1 C2 C3 C4

f1

f2

f3

f4

C1 C2 C3 C4

f1

f2

f3

f4

C1 C2 C3 C4

f1

f2

f3

f4

Figure 6: scenario for some solutions to the extension problem
Grey zones represent new or modified code.

7

In the left hand side diagram, the extension of the data type with C3 is
natural, and adding the function f3 can be done with the chosen specific mech-
anism (in this case, the module for f3 has a different nature from the three
other modules of the application).

In the right hand side diagram, we have extended f1 and f2 with the chosen
specific modular feature to take C3 into account and then we add f3. If we want
the extension for f3 to be fully modular, we have to define f3 on C1, C2 and
C3 in a single module. (An other solution would have been to make a module
with f3 defined on C1 and C2 and to complete the module of C3, but we do not
consider this is modular.) Even if the modules for f1, f2 and f3 are of the same
nature, they do not cover the same subset of constructors.

This means that one cannot fully rely on f1 or f2 as patterns to write f3

(problem 1).

Two following extensions (steps 3 & 4). Now, let us take two more ex-
tensions into account.

C1 C2

f1

f2

C3

f3

C4

f4

C1 C2

f1

f2

C3

f3

C4

f4

In the left hand side diagram, C4 is added naturally as a module, but we
see that the corresponding module does not cover the same functions as the
modules for C1, C2 and C4 (this boils downs to the problem 1). Then f4 is
added with the same technique as f3 but, again, the module for f4 does not
cover the same cases as the module for f3.

We meet the same problems in the case of the right hand side diagram.
We can observe that the regular architecture of the initial programs rapidly

becomes disordered with incremental extensions. This will reveal to be bad at
maintenance time.

Maintenance time (steps 5 & 6). What if we have to modify f1 (to correct
an error or to cope with a change in its specification)? For instance, we could
optimize the expression evaluation with simplifications such as e+0=e and e*0=0,
or we could modify the conversion of expression to string in order from an infix
notation to a prefix notation.

In the left hand side case we have nothing good to hope as the code for f1 is
already spread over several modules in the original program. In the (initially)
operation-centered architecture, the code is finally spread also over several mod-
ules. This means that we have lost the benefits of the initial modularity: the
maintenance is no more modular (problem 2).

This is the same for the maintenance of C1: in the data-centered architecture,
the code has become spread over several modules.

8

Furthermore, as modules of the same nature cover different cases, the mainte-
nance of a function (or of a constructor) is not the same as the maintenance of an
other function. For instance, in the operation-centered architecture (right hand
side diagram), modifying f3 requires to modify (at most) 2 modules whereas
modifying f2 requires to check 3 modules. The maintenance task has lost the
regularity it had in the initial programs (problem 3).

The example of this section shows that, in practice, the technical solutions
for modular extensibility are not sufficient for modular maintainability. Let us
now reformulate the problem.

3.2 The Evolutivity Problem and Modular Evolutions

As the expression problem focuses on the modularity of extensions, we formulate
the evolutivity problem which focuses on the modularity of evolutions (extensions
and maintenance). The evolutivity problem consists in providing means to
implement extensions or changes in a modular way, regardless of whether the
evolution is data-centered or function-centered (or, ultimately, regardless of the
kind of concern the evolution addresses).

We now precise what we mean by modular, since we want to be less restrictive
than in the expression problem.

Modular evolutions. Suppose we want to modify the constructor Const in
our example program. For instance, in the definition of the type Expr, we want
to change Const Int into Const (Int,String). In the data-centered program,
Pdata , we have to modify the type Expr, but also the dispatcher and the type
of its parameter functions (to take into account the string). As a consequence,
the type of the functions in ConstMod changes. For instance, eval = f i ->

i is changed into eval = f i s -> i. In this example, we consider that the
change is modular because the “business logic change” is located into a single
module, the other changes are “administrative” (mechanical consequences of
the change in the business logic).

For this reason, we say that an evolution is modular when the business logic
code to be changed or added is limited to a single module.

4 Programs, Views and Transformations

In this section, we describe a solution to the evolutivity problem which is based
on program transformations.

4.1 Programs and Views

What is a program? Depending on the point of view, we can say that two
programs are equals if they are syntactically, semantically or computationally
equivalent for instance. So, for a given relation of equivalence, a program is a
set elements of the language which are equivalent (i.e. a class of equivalence).
For a given program, that is for a given class of equivalence, we call views of
the program the elements of the class.

Depending on your needs, you will choose the appropriate relation of equiv-
alence. The usual α-equivalence is an example of relation that can be used to

9

denote the computational equivalence. The relation of equivalence on terms of
the λv-calculus defined in [4] is an example of relation denoting the semantic
equivalence. The equality of the textual representations is the smallest rela-
tion of equivalence : any change in the textual representation is considered to
change to program. For instance, when you obfuscate a program (by removing
ends of lines (EOL), removing the comments and renaming all the variables for
instance), you change the properties of the program (from a human point of
view). This last relation is too restrictive to be useful in the problem addressed
in this paper, but it fits our definition of programs and views : a program has
a unique view in this case.

Of course, some of these relations are undecidable, but, in the following, we
will focus on views for which the equivalence is decidable.

Following these definitions, Pdata and Pfun are two views of the same pro-
gram. The relation of equivalence of interest here is the functional behavior
equivalence.

4.2 Refactoring tools to navigate between views

Code refactoring boils down to pass from one view of a program to another (for
the functional behavior equivalence). Several popular languages have a refac-
toring tool. These tools provide elementary refactoring operations. The process
of refactoring a program consists in applying successively such operations on a
(view of a) program. If each of these operations is correct, that is if the in-
put and the result are functionally equivalent, applying successively elementary
refactoring operations is also correct since equivalence is transitive. For this rea-
son, refactoring tools allow to navigate into classes of equivalence of programs.
In the general case, the whole class cannot be accessed by this means, but it is
not important in our case.

It is important to note that some of these tools are not correct. In particular,
this is currently the case for the tool in Eclipse for Java. But some tools, such as
the Haskell Refactorer (HaRe) [2] take a particular attention to provide correct
operations [3].

4.3 A Solution to the Evolutivity Problem

We propose to use navigation between views to solve the evolutivity problem
(and the more general problem of tyranny of the primary decomposition).

To illustrate this solution, let us consider that we have a tool such that if we
have a data-centered view of a program, the tool can compute the operation-
centered view of the same program, and vice-versa. For instance, in our example
of section 2, the tool should be able to transform Pdata into Pfun and vice-versa.
With such a tool, the programmer can choose the view in which the evolution
he has to implement is modular.

Figure 7 illustrates the scenario of the previous section with such an ap-
proach. For instance, when the programmer wants to add a new constructor
(step 1), the program is first presented in the data-centered view ; when the pro-
grammer wants to add a new function (step 2), the program is first presented
in the operation-centered view.

Since no evolution is made transversally to the considered axis of decompo-
sition, the views of interest always keep a regular architecture.

10

C1 C2

f1

f2

C1 C2 C3

f1

f2

C1 C2 C3

f1

f2

f3

C1 C2 C3 C4

f1

f2

f3

C1 C2 C3 C4

f1

f2

f3

f4

C1 C2 C3 C4

f1

f2

f3

f4

C1 C2

f1

f2

C1 C2 C3

f1

f2

C1 C2 C3

f1

f2

f3

C1 C2 C3 C4

f1

f2

f3

C1 C2 C3 C4

f1

f2

f3

f4

C1 C2 C3 C4

f1

f2

f3

f4

1: extension

3: extension

6: maintenance

automatic
transformation

2: extension

4: extension

5: maintenance

Figure 7: evolution scenario in our program transformation setting
Grey zones represent new or modified code.

11

This approach has several advantages:

• Virtually any programming language can be used. As soon as two al-
ternative programming structures can be expressed in a language, the
corresponding transformation can be set.

• As a consequence of the previous point, the programmer does not have to
learn a new language or possibly complex language features.2

• The approach is not limited to two views.

Of course, this solution needs a tool to switch between the appropriate views
of the program. We do not explore the different possibilities to build such a tool
in this paper. Instead we provide in the next section a possible implementation,
which is composed of two sequences of refactoring operations (one for each
way). Since each step of refactoring is correct (we suppose it is guaranteed by
the refactoring tool), the two transformations Pfun → Pdata and Pdata → Pfun ,
which are inverse of each other, are also correct. This explains why we have
claimed that Pfun and Pdata where two views of a same program.

As we will see, the implementation we describe is a work in progress as it is
not yet fully automatized.

5 Implementation of a Transformation

In this section we give a transformation between the two architectures of our ex-
ample program. This transformation can be defined as a global correspondence
between two patterns of programs (see appendix A), but we prefer to define it
by a sequence of elementary transformations, following the divide and conquer
strategy. Each of these elementary transformations can be seen as a refactoring
operation, so that we can use refactoring tools instead of designing a specific
tool from scratch. Such a refactoring tool is available for Haskell : the Haskell
Refactorer (HaRe) [2].

Using a sequence of refactoring steps instead of a global transformation has
the advantage that each elementary step is easy to understand, to prove correct
(if necessary), to maintain and to reuse. Furthermore, many of these refactoring
operations are already available in existing tools.

HaRe has the good property that it will check whether a transformation is
correct in the considered context before applying it [3]. For this reason, we
do not have to provide the proof of correctness for each elementary step of
our transformation if it is handled by HaRe. However, one of the elementary
steps is not supported by HaRe, so we will prove its correctness separately.
At the moment, we cannot just rely on HaRe to handle the transformation.
However, we present the steps of transformation as a case study, assuming
that an engineering effort is still necessary to make the whole transformation
automatic.

5.1 Decomposing the transformation

In order to explain the refactoring steps, we will use two intermediate programs,
noted P1 and P2 which are given in figures 8 and 9. In the following we give

2There is the counterpart that he may have to cope with several views.

12

�

module Expr (Expr(Const ,Add), dispatch) where

data Expr =

Const Int

| Add (Expr ,Expr)

dispatch f_c f_a (Const i) =

f_c (dispatch f_c f_a) i

dispatch f_c f_a (Add (e1 ,e2)) =

f_a (dispatch f_c f_a) e1 e2

�

module EvalMod (eval) where

import Expr (Expr(Const ,Add), dispatch)

eval = dispatch

(\ f i -> i)

(\ f e1 e2 -> (f e1) + (f e2))

�

module StringOfExprMod (stringOfExpr) where

import Expr (Expr(Const ,Add), dispatch)

stringOfExpr = dispatch

(\ f i -> show i)

(\ f e1 e2 -> (f e1) ++ ("+" ++ (f e2)))

�

module Main (main) where

import Expr(Expr , e1)

import StringOfExprMod(stringOfExpr)

import EvalMod(eval)

e1 = Add (Add (Const 1,Const 2),Const 3)

main = print (stringOfExpr e1)

Figure 8: The program P1

13

�

module Expr (Expr(Const ,Add), dispatch) where

data Expr =

Const Int

| Add (Expr ,Expr)

dispatch f_c f_a (Const i) =

f_c (dispatch f_c f_a) i

dispatch f_c f_a (Add (e1 ,e2)) =

f_a (dispatch f_c f_a) e1 e2

�

module EvalMod (eval) where

import Expr (Expr(Const ,Add), dispatch)

eval = dispatch evalConst evalAdd

evalAdd = \ f e1 e2 -> (f e1) + (f e2)

evalConst = \ f i -> i

�

module StringOfExprMod (stringOfExpr) where

import Expr (Expr(Const ,Add), dispatch)

stringOfExpr =

dispatch stringOfExprConst stringOfExprAdd

stringOfExprAdd

= \ f e1 e2 -> (f e1) ++ ("+" ++ (f e2))

stringOfExprConst = \ f i -> show i

�

module Main (main) where

import Expr(Expr , e1)

import StringOfExprMod(stringOfExpr)

import EvalMod(eval)

e1 = Add (Add (Const 1,Const 2),Const 3)

main = print (stringOfExpr e1)

Figure 9: The program P2

14

an overview of the intermediate transformations. Detailed instructions to make
HaRe do the transformations are given in appendix C.

Pfun ←→ P1 ←→ P2 ←→ Pdata

Step Pfun ←→ P1 : transform a recursive definition into an use of an
iterator. The functions eval and stringOfExpr of Pfun can be seen as simple
traversals of trees. It is well known that this kind of function can be expressed
with iterators such as the classical fold operator. The program P1 corresponds
to the replacement of recursive definitions of eval and stringOfExpr into def-
initions using such an iterator.

The reason that made us choose the iterator dispatch instead of fold is
that it is more general.3

This is the transformation that is not supported by HaRe. We have proven
with Coq [1] that the programs Pfun and P1 are equivalent (in the functional
programming language provided with Coq), see appendix B.

Step P1 ←→ P2 : make global definitions for anonymous functions.
In P2, some functions that were used as argument of the dispatch iterator
in P2 are now defined globally. The programs are equivalent as long as the
new definitions are not exported and there are no other definitions with the
same name in the corresponding module. This step in handled by HaRe in the
two directions P1 −→ P2 and P1 ←− P2, as well as the verifications that are
necessary to ensure the correctness.

Step P2 ←→ Pdata : move definitions into the right modules. Trans-
forming P2 into Pdata consists in moving definitions from “function modules”
to “constructor modules”. Additionally, some minor syntax cleaning has to be
done, such as renaming of the functions and creating/removing empty modules.

5.2 Automation of the process.

Currently, to have a fully automatic transformation, the following tasks have to
be automatized:

1. The step Pfun ←→ P1 to transform a recursive function into an use of an
iterator.

2. The orchestration of the successive HaRe refactorings.

As this is a work in progress, it is unclear at the moment how hard these
tasks are. Since HaRe operations are available as a library (in addition to the
human-computer interface), we can hope to simply use this library. However, it
might be necessary to extend HaRe itself.

It would be also useful to provide an high level interface to specify the
orchestration of the elementary refactorings, for instance by the means of a
domain specific language.

3For instance, dispatch allows to define left-to-right evaluators and right-to-left evaluators

whereas the use of fold does not allow to choose the order of evaluation of the subtrees.

15

5.3 Case study on the maintenance of the transformation

Now that we have discussed a possible implementation of a transformation op-
eration, let us discuss the possibility to make it evolve at we meet “severe”
evolutions in the considered program.

A transformation must be sufficiently general to cope with a family of
changes that will occur in one of the views of the program. For instance, adding
a function or a case in the data type should not make us to change the transfor-
mation. However, during the project’s life, we may have to implement evolutions
that break the transformations. In this section, we illustrate that case. For a
given example, we will identify the steps of the transformation that change. Let
us now focus again on our initial example program. We consider we want to add
an environment as a parameter to the function eval to be able to take variables
into account later.

The additional parameter to eval makes that the iterator dispatch is not
convenient anymore in the data-centered architecture. We will use an other
iterator.

5.3.1 Severe modification of a function

In order to extend eval, we use the operation-centered view. We make the
following modification :

eval (Const i) = i

eval (Add (e1,e2)) = eval e1 + eval e2

becomes

eval env (Const i) = i

eval env (Add (e1,e2)) = eval env e1 + eval env e2

This modification is modular in this view. Of course, you have to add an
environment in the existing calls to eval, in particular in the module Main.

5.3.2 Adapting the transformation

The difference with the initial transformation is that we have to use a different
iterator. The fact that functions passed as argument to the iterator, which are
defined in the “constructor modules”, have an additional parameter is transpar-
ent for our transformation since HaRe handles the functions without respect to
their parameters.

The code to appear in P1 is the following :

dispatch_env f_c f_a env (Const i) =

f_c (dispatch_env f_c f_a) env i

dispatch_env f_c f_a env (Add (e1,e2)) =

f_a (dispatch_env f_c f_a) env e1 e2

eval env = dispatch_env

(\ f env i -> i)

(\ f env e1 e2 -> (f env e1) + (f env e2))

env

16

It should be noticed that eval and stringOfExpr are not treated uni-
formly during the first transformation step since they do not use the same
dispatcher. It does not mean that each function should have its own dispatcher
since dispatch env can be used for any number of additional parameter as long
as you group them in a tuple. The iterator dispatch env could also be used to
define stringOfExpr, but then you would have a strange dummy parameter in
the definitions of stringOfExpr in the constructor modules.

Since the following steps do not change, we can account on a good reuse of
the first transformation to build the second one. We finally get the data-centered
view :

�

module ConstMod (eval , StringOfExpr) where

stringOfExpr = \ f i -> show i

eval = \ f env i -> i

�

module AddMod (eval , StringOfExpr) where

stringOfExpr s = \ f e1 e2 -> (f e1) ++ (s ++ (f e2))

eval = \ f env e1 e2 -> (f env e1) + (f env e2)

6 Conclusion

In this paper, the need to consider not only the extensions but also mainte-
nance when dealing with modularity has led us to formulate the evolutivity
problem. We have seen that solutions to the expression problem do not fit in
the evolutivity problem.

We have identified a notion of views of programs in order to propose a
solution to the evolutivity problem. This solution is based on program trans-
formation techniques. In particular, refactoring tools may be used to build a
transformation that is needed in our solution. Building such a tool is not done
yet but promising experiments have been done.

The next big steps to make this views approach usable are :

1. to provide tools that help programmer to build easily (and correctly) their
own transformations ;

2. to study how transformations are impacted by major changes in a view.

Our approach has the following pros and cons with respect to the solutions
to the expression problem :

• It does not depend on particular language features,

• it is not limited to two views,

• the transformation has to be built,

• the programmer may have to cope with several views, which may be dis-
turbing (but each view may be kept simple since specific language features
are not needed).

17

References

[1] The Coq Proof Assistant. Web site : http://coq.inria.fr.

[2] Hare – the Haskell Refactorer. Web page, 2003-2009. http://www.cs.kent.
ac.uk/projects/refactor-fp/hare.html.

[3] H. Li and S. Thompson. Formalisation of Haskell Refactorings. In M. van
Eekelen and K. Hammond, editors, Trends in Functional Programming,
September 2005.

[4] G. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical
Computer Science, 1:125–159, 1975.

[5] E. B. Swanson. The dimensions of maintenance. In ICSE ’76: Proceedings

of the 2nd international conference on Software engineering, pages 492–497,
Los Alamitos, CA, USA, 1976. IEEE Computer Society Press.

[6] P. Wadler. The expression problem. Message to java-genericity electronic
mailing list, November 1998.

[7] M. Zenger and M. Odersky. Independently extensible solutions
to the expression problem. In Proc. FOOL 12, Jan. 2005.
http://homepages.inf.ed.ac.uk/wadler/fool.

A Global transformation

In this appendix, we define a global transformation between the data-centered
architecture and the operation-centered architecture by expressing these archi-
tectures as patterns where with exhibit which part of the code are common.
Figures 10 and 11 give these two patterns.

In addition to the set of constructors {C1, · · · , Cn} and to the set of func-
tions {f1, · · · , fp}, the common parts in the two architectures are the expres-
sions noted Eij , from which some parameters have been abstracted. We note
E[x1, · · · , xk] an expression E where the identifiers x1 to xk have be abstracted,
which means that we can write E[a1, · · · , ak] to express the substitution of the
x’s for the a’s in E.

One one hand, this transformation is easy to specify (as done here). But on
the other hand, it does not provide any hints to decompose it into small parts
to make it easier to implement or prove correct.

18

http://coq.inria.fr
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html

data t = C1 t1 | ... | Cn tn

dispatch g1 g2 · · · gn (C1 (x1, x2, · · · , xa1
))

= g1 (dispatch g1 g2 · · · gn) x1 x2 · · · xa1

dispatch g1 g2 · · · gn (C2 (x1, x2, · · · , xa2
))

= g2 (dispatch g1 g2 · · · gn) x1 x2 · · · xa2

...
dispatch g1 g2 · · · gn (Cn (x1, x2, · · · , xan

))

= gn (dispatch g1 g2 · · · gn) x1 x2 · · · xan

module C1Mod (f1, · · · , fp) where

f1 h x1 x2 · · · xa1
= E1 1[h, x1, x2, · · · , xa1

]
f2 h x1 x2 · · · xa1

= E1 2[h, x1, x2, · · · , xa1
]

...
fp h x1 x2 · · · xa1

= E1 p[h, x1, x2, · · · , xa1
]

...
module CnMod (f1, · · · , fp) where

f1 h x1 x2 · · · xan
= En 1[h, x1, x2, · · · , xan

]
f2 h x1 x2 · · · xan

= En 2[h, x1, x2, · · · , xan
]

...
fp h x1 x2 · · · xan

= Enp[h, x1, x2, · · · , xan
]

module Main (main) where

import qualified ...

f1 = dispatch C1Mod.f1 C2Mod.f1 ... CnMod.f1
f2 = dispatch C1Mod.f2 C2Mod.f2 ... CnMod.f2
...
fp = dispatch C1Mod.fp C2Mod.fp ... CnMod.fp

main = ...

n : number of constructors
ai : arity of the constructor Ci

p : number of traversal functions

Figure 10: data-centered Program Scheme

19

data t = C1 t1 | ... | Cn tn

module f1Mod (f1) where

import (t(C1, C2, · · · , Cn))

f1(C1 (x1, x2, · · · , xa1
)) = E1 1[f1 x1, x2, · · · , xa1

]
f1(C2 (x1, x2, · · · , xa2

)) = E2 1[f1 x1, x2, · · · , xa2
]

...
f1(Cn (x1, x2, · · · , xan

)) = En 1[f1 x1, x2, · · · , xan
]

module f2Mod (f2) where

import (t(C1, C2, · · · , Cn))

f2(C1 (x1, x2, · · · , xa1
)) = E1 2[f2 x1, x2, · · · , xa1

]
f2(C2 (x1, x2, · · · , xa2

)) = E2 2[f2 x1, x2, · · · , xa2
]

...
f2(Cn (x1, x2, · · · , xan

)) = En 2[f2 x1, x2, · · · , xan
]

...

module fnMod (fn) where

import (t(C1, C2, · · · , Cn))

fn(C1 (x1, x2, · · · , xa1
)) = E1n[fn x1, x2, · · · , xa1

]
fn(C2 (x1, x2, · · · , xa2

)) = E2n[fn x1, x2, · · · , xa2
]

...
fn(Cn (x1, x2, · · · , xan

)) = Enn[fn x1, x2, · · · , xan
]

module Main (main) where

import ...

main = ...
n : number of constructors
ai : arity of the constructor Ci

p : number of traversal functions

Figure 11: operation-centered Program Scheme

20

B Proof of correctness of the first step of trans-

formation

In this appendix we first give a proof that the definition of eval and stringOfExpr
with an iterator fold are equivalent to the recursive definition with pattern
matching. Then we discuss the proof for the case of the dispatch iterator,
which correspond to the step Pfun ←→ P1.

B.1 Proof for the use of fold

We give here the Coq definitions, theorems and their proofs stating that using
fold to define eval and stringOfExpr is correct.

�

(* Proof that the use of an iterator preserves the *)

(* semantics. We use fold as instance of iterator. *)

(* Proofs for dispatch are more complex and more

restrictive , they are given separately. *)

(* ----- the inductive data type and ---------------

----- the corresponding iterator ---------------- *)

Inductive expr : Set :=

| Const : nat -> expr

| Add : expr -> expr -> expr.

Fixpoint fold (t:Type) f_c f_a (e:expr) : t :=

match e with

| Const i => f_c i

| Add e1 e2 =>

f_a (fold t f_c f_a e1) (fold t f_c f_a e2)

end.

(* remark : (t:Type) expresses the polymorphism *)

(* ---------- FUNCTION EVAL ----------------------- *)

Fixpoint eval (e:expr) : nat := match e with

| Const n => n

| Add e1 e2 => eval e1 + eval e2

end.

(* eval with fold *)

Definition eval2 (e:expr) :=

fold nat (fun i => i) (fun n1 n2 => n1 + n2) e.

(* theorem and proof that these two definitions

are equivalent *)

Theorem eval_equal_fold_eval :

forall e, eval e = eval2 e.

21

Proof.

induction e.

compute ; auto.

simpl.

unfold eval2.

simpl.

fold (eval2 e1) ; fold (eval2 e2).

auto.

Qed.

(* -------- FUNCTION STRINGOFEXPR -----------------*)

(* We keep the string data type abstract

to show the generality of the proof. *)

Parameter abstractstring : Set.

Parameter string_of_nat : nat -> abstractstring.

Parameter concat :

abstractstring -> abstractstring -> abstractstring.

Fixpoint stringOfExpr (e:expr) : abstractstring :=

match e with

| Const n => string_of_nat n

| Add e1 e2 =>

concat (stringOfExpr e1) (stringOfExpr e2)

end.

Definition stringOfExpr2 (e:expr) :=

fold abstractstring string_of_nat concat e.

Theorem stringOfExpr_equal_stringOfExpr2 :

forall e, stringOfExpr e = stringOfExpr2 e.

Proof.

induction e.

compute ; auto.

simpl.

unfold stringOfExpr2.

simpl.

fold (stringOfExpr2 e1) ; fold (stringOfExpr2 e2).

rewrite IHe1 ; rewrite IHe2 ; auto.

Qed.

22

B.2 Proof for the use of dispatch

The dispatch iterator is more general than fold, it leaves more control to
the programmer. In particular, one can use non terminating functions using
dispatch, which is not the case with fold (as long as each argument function
always terminate). For instance, dispatch can be used to write an evaluator
for terms expressing recursion.

For this reason, the proof is more difficult to set in Coq for the use of
dispatch and we provide it in the file eval dispatch.v instead of inserting it
into this report.

C Detailed use of HaRe

We detail in this appendix the procedure to follow to make HaRe perform the
transformation P1 ←→ P2 ←→ Pdata . At the time this report is written, there
are some bugs left in HaRe, we will explain how to pass over them.

In the following, F is the set of function names to consider and C is the list
of constructors to consider. There is no ordering in F but the order in C is im-
portant because of the order of the arguments of the dispatch operator. In our
example program, we have F = {eval, stringOfExpr} and C = [Const, Add].

For any c ∈ C, pos(c) denotes the position of c in C. It also corresponds to the
position of the argument for the constructor c in the parameters of dispatch.

We give the algorithms as sequences of commands corresponding to actions
in Emacs in the HaRe mode.

C.1 Step P1 → P2 : extract local definitions

In this step, new names have to be given for new definitions. We will create
these new names by concatenating existing names : we note f.c the identi-
fier corresponding to the concatenation of the identifier f and the name of a
constructor c. For instance, eval.Add stands for evalAdd.

We call the definition of f the point of the program where the identifier f is
locally or globally bound to an expression, if there is only one such definition.

The Algorithm 1 gives the sequence of commands to run to make the trans-
formation P1 → P2.

C.2 Step P2 → Pdata : move definitions into coherent mod-

ules

The algorithm for the step P2 → Pdata is given in two parts, that is P2 → P3 →
Pdata , with an intermediate state P3. The first part, P2 → P3 in Algorithm 2,
gives the instructions to reach a data-centered architecture. The second part,
P3 → Pdata in Algorithm 3, gives some final syntactic changes to reach Pdata

which are not currently supported by HaRe.
In these algorithms, nMod stands for a name (constructor name or function

name) resulting from the concatenating of the name n and the suffix "Mod". For
instance, AddMod is build on this model.

During this step, the compilation sequence changes as the program is trans-
formed. Note also that the program Pdata is compiled with the ghc option
-fno-monomorphism-restriction.

23

Algorithm 1 P1 → P2

for all f ∈ F do
for all c ∈ C do
In the definition of f , select the argument of dispatch in position pos(c).

In the HaRe menu, run ”introduce new def”.

Answer f.c when prompted for a name for the new definition (a new local
definition for f.c is created and f.c is used as argument of dispatch).

Place the cursor at the beginning of the identifier f.c.

In the HaRe menu, run ”lift def to top level” (the local definition is
transformed into a global definition).

end for
end for

Algorithm 2 P2 → P3

for all c ∈ C do
Create an empty module named cMod.
Use the “Add file” menu to add the module in the HaRe project.

end for
for all c ∈ C do
for all f ∈ F do
Place the cursor on the identifier f.c.

Run the HaRe command “move def to another module” from the menu.

When prompted for a module name, answer cMod (the definition is moved
and export/import statements are added).

end for
end for
for all c ∈ C do
for all f ∈ F do
Rename f.c into f .

end for
end for

Algorithm 3 P3 → Pdata

for all f ∈ F do
Move f from fMod to the module Main (and update the import/exports).

Remove the module named fMod.
end for

24

Bugs in HaRe. When applying Algorithm 2, the following bugs in the current
version of HaRe (0.5) are encountered when you move a definition from a module
to another :

• You may have to add “ends of line” between two definitions in the target
module.

• You may need to correct the indentation of some definitions in the target
module.

• The literal "+" is not handled by the refactoring “move def to another
module”. That bug can be corrected in HaRe source code by adding a line

in refactorer/RefacUtils.hs. The diff patch is the following :

2534a2535

> lit (HsString s)= return (HsString s)

Furthermore, HaRe should be able to handle the moves in Algorithm 3 but
we have encountered blocking problems when using it. Finally, some steps which
have been done by hand, such as creating/removing modules, are features that
should be easy to add in refactoring tools like HaRe.

C.3 From Pdata to P2 : expand functions defined in other

modules

Algorithm 4 Pdata → P1

for all f ∈ F do
for all c ∈ C do
Place the cursor on the qualified namemc.f in the definition of f (module
Main).

In the HaRe menu, run “unfold def” (the name is replaced by the corre-
sponding function).
et remove def

end for
end for
In the HaRe menu, run “clean imports” (module Main).
for all c ∈ C do
Remove the empty module mc.

end for
for all f ∈ F do
Create a new empty module named mf and add it to the HaRe project.

Add “import Expr(Expr(Const,Add), dispatch)” into that module.

Place the cursor on the identifier f (module Main).

In the HaRe menu, run “Move def to another module”.

When prompted for a module name, answer mf .
end for

Note : in the general case, if intermediate functions are used in the functions
to be moved, they should also be taken into account.

25

