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Parametric inference in a perturbed gamma degradatio®esoc

L. Borde$*, C. Paroissify A. Salamt

aUniversité de Pau et des Pays de I'Adour, Laboratoire deh¥datatiques et de leurs Applications - UMR CNRS 5142, Avaali&niversite,
64013 Pau cedex, France.

Abstract

We consider the gamma process perturbed by a Brownian matidependent of the gamma process) as a degradation
model. Parameters estimation is studied here. We assumeitidependent items are observed at irregular instants.
From these observations, we estimate the parameters U@ngdaments method. Then, we study the asymptotic

properties of the estimators. Furthermore we derive sonmt&pkar cases of items observed at regular or non-regular
instants. Finally, some numerical simulations and two dae&h applications are provided to illustrate our method.

Keywords: gamma process, Wiener process, method of moments, corgsisgsymptotic normality
AMS Classification62F10, 62F12, 62N05

1. Introduction and model

Many authors model degradation by a Wienefusiion process. Doksum and Hoéylang [1] applied the Brown-
ian motion with drift to a variable-stress acceleratedtifsting experiment. Next Whitmorf [2] extended the Wiener
degradation process with the possibility of imperfect extpns. Another interesting extension is the bivariatenér
process considered by Whitmore etﬁil.[3] in which the deatiad process and a marker process (that can be seen
as a covariate in medical applications) are combined. FKiWahng |H] has studied the maximum likelihood infer-
ence method for a class of Wiener processes including rarafi@cts. According to Barkeﬂ[S], this process is no
longer monotone, but can take into account minor systeninepeer time. In addition, this process can be negative.
Although such behaviours havdiiltult physical interpretation. They can be explained by &raentioned phenom-
ena like minor repairs or measurement degradation erroraedns that for some types of degradation models, the
possibility of non-negative increments is appropriate.

However in many situations the physical degradation pocas be considered as monotone while the observed
process is a perturbation of the degradation process anccttrebe no longer monotone. Physical degradation pro-
cesses are usually described by monotone Lévy procekedhdi gamma process or the compound Poisson process.
These process implies that the system state cannot be iegpower time, and then this system cannot return to its
original state without external maintenance actions. Tdrama process was originally proposed by Abdel-Hameed
[B] in order to describe the degradation phenomenon. Tloisgss is frequently used in the literature since it is prefer
able from the physics point of view (monotonic deteriorajioMoreover, calculations with this process are often
explicit, it properly accounts for the temporal varialyilif damage and allows determining optimum maintenance
policies

In this paper, we propose a degradation mddle! (Dy).q which combines these two approaches as follows:

VtZO,DtZYt-f-TBt

where {1;)w-0 IS @ gamma process such thatis gamma distributed with scale parameter 0 and shape parameter
a > 0 and whereB)~o is a Brownian motion. This model is defined foe R and the two processes are assumed to
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be independent. Without loss of generality, we can assuate th 0 sincerB; and—7B; have the same distribution
for all t > 0. The motivations behind considering such a model are thewfimg ones. First, this model embeds
the two approaches mentioned above. Indeed, it is cleamthanr = 0, this model turns to be a gamma process.
Moreover, ifa/¢ tends tob > 0 anda/&? tends to 0, then this model converges weakly to a Browniariamatith
positive driftb. Second, measurements of degradation tests reflect mesenirerrors. Hence, the role of Brownian
motion in this model can be interpreted as measurementeffforally, our model can take into account minor repairs
considered on system over time.

In this paper, estimation of model parameters is derivenigusie method of moments. In literature the two most
common methods of gamma process parameter estimation|ypamaimum likelihood and method of moments, are
discussed in||7]. Both methods for deriving the estimatdrgamnma process parameters were initially presented by
Cinlar et al [8]. Besides, Dufresne et EI.[9] propose te agonjugate Bayesian analysis in which the scale parameter
of the gamma process is assumed to have an inverted gammibutish as prior. A method for estimating a gamma
process by means of expert judgement and a Bayesian estinmagéthod is also discussed Eh [7]. Finally maximum-
likelihood and Bayesian estimation of the parameters oBtiogvnian stress—strength model was studied by Ebrahimi
and Ramallingam{[30] and Basu and Linghdni [11].

The organization of the paper is as follows. First, we preaageneral case whereindependent processes are
observed at irregular instants. Both number of observatiom instants are fliérent for each degradation process.
Parameters estimation and asymptotic properties (censigtand asymptotic normality) of the estimators are stud-
ied. Next, we derive some particular cases of items obseaveelgular or non-regular instants. Finally, numerical
simulations and two real data applications are providetiustiate our method.

2. General case

Let (D(”))nE . be a sequence of independent and identically distributed.)i copies of the degradation model
described in tﬁe previous section. Thth degradation process is observddtimes such thalN; € N*. For all
i e N“and allj € {0,...,N;}, we will denote byt;; these instants (with convention that for et N*, tjg = 0). Let

6 = (& @,7%) € ® = R* xR xR, the parameter space of the model. Estimation of model paeasis derived using
the method of moments. Asymptotic properties are thenatudi

2.1. Parameter estimation
For anyi € N*, forany 1< j < N; and for anyk € N, we denote byni(;() thek-th moment and by byl_wi(;() thek-th
central moment of incrementeD;; = DSJ_) - ng)fl :

”ﬂo - E[ADE] and W}(P = E[(ADH - ]E[AD”])k]'

Since the gamma process and the Brownian motion are indepgrde first three moments are equal to:

1 a
mp = gAtij»
@ _ @ i) 422
my = ?A'[ij+ EAtij + AL,
20 a? 2 [« S ar? 2
i = oo o) + o o)

These expressions can be easily computed from the momethts ghmma distribution (seE[lZ] for non-central
moments and se¢ [[13] for a recursive formulae of the centomhemts) and from the ones of the normal distribution

[£2)-

Let f be the following diferentiable map from® to f(®) defined by:

md mi(-l)/ At alé
Yoe o, f(6) = mo | = ﬁ]i(.)/A'[ij = a/§2+72 .
m(3) m(j )/Atij 2(1/53
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The functionf is bijective. Then, the parameters can be expressed in wrmd), m? andm® as follows:

2mb
& N o m®
fim=|a|=| m® 22 | wherem = [m?|.
72 - me

Mo _ VomOm®
2

Letm, be the empirical estimator of the first central three moments

/mg ) 1w AD;jj /At ,
~(3) = i1 = D)
M i=1 i=1 j=1 (AD” _Atijmf(wl)) | At
The estimatod, = f~* () of 6 = (¢, a, 72) is therefore defined by:
(1=
_ o) _ . oL . 2m)
m, m,

2.2. Asymptotic properties
We first recall the following theorem (for more details se@dtem 67 in [[L4)).

Theorem 1. Let (an),»; be a sequence of positive numbers. 6),.; be a sequence of independent random vari-
n ]

ables. We set5= 3 X«. If an — and }, (Var[Xn] /aﬁ) < o0, then(S, — E[Sn]) /an ;L 0.
k=1 — 00 n=1 oo

Then we establish the following lemma.

Lemma 2. We have that} Nn(

n>1

n -2
Ni) < 0.
i=1

Proor. We setA, = N; + ... + Ny. One can note that, = A, — An—1. Then it follows that

SA-AGL N BA-AG L 1l BA-Ar 1l G Bl 1
TLTRONTET R ML ARG SRR LA N AR
51 1.1 1 2
H A N A A N1
O

In the sequel we will prove the consistencybaf

Theorem 3. Under the following assumptions :
Np 1 n -2
WﬂZZWM(ZM < oo,
n>1j=1 i=1

(H2) 3dy, Vie N, Vje{l,....,Ni}, Atij < dy ,
6 converges almost surely &as n tends to infinity.
Proor. One has to prove tha, tends tom a.s. asn tends to infinity. Indeed, sincé™! is continuous onf (@),

we obtain, by applying the continuous mapping theor@ [&Et 0, 2%, 9. Hence let us prove the almost sure
N—oo
convergence off,.



Almost sure convergence of m; (D to m®. By applying Theorerﬂl, it holds that:

(0] e e

1 ! o s
e (S SR ) - 15

n
i=1 i=1 j=1 i=1

Indeed, for alli € N*, N; > 1, implying thatz Ni — Moreover by Assumptio(H;) and since increments are

independent, one gets the following term is finite

Var(Xn) 2 a o YRR
P ZZ Atn;) * Var ADnJ](Z ] =z Z(Atnj) (i Ni] < +oo.

n>1 n>1 j=1

Thus

fﬁ(ql) md.

nN—o0

—~(2
Almost sure conver gence of mﬁ ) tom®. Letus set:

-1 n N

<[ 3n] 32, (0 e0s -5 a0y

i=1 j=1

. —©2)
Hence the following decomposition holdﬁi(q) Mm@ = mn — M@ + m? — mM?. Thus one has to prove that both

=)
m,

1.

2.

— M2 andrif? - M® tend almost surely to O astends to infinity.

—~(2
Almost sure conver gence of mﬁ ' m,(f) to0

- ng)

_ (im)_l w0 - m] 33 [(2ADy - 28 (a0, )) + (E(ADy ) - oty

i=1 i=1 j=1

et S

N; n -1 n N

> oy -2l -m][3n) )Y (a0, - (ay)).
i=1 j=1 i=1 i=1 j=1

Using Assumptior(H,) and as shown previously one can deduce easily that the finstdéthe last expres-

sion tends to O as tends to infinity. Moreover the second term tends also to A gnds to infinity since

=2
m,

[ - m<1)] ——> 0 and(z N) zn‘, % (ADj; - (AD.,)) ——> 0. Indeed using Lemnd 2, Assumptit,)
i=1j=1

and since increments are independent, one gets:

ZZVar ADnJ][Z ]2 = |5+ in:mn,( Y N.)Z < oo

n>1 j=1

as.

Thus one can deduce thai -m@ == 0.

nN—o0

Almost sureconvergenceofmf1 tom?. Applying Theorerr[|1 it follows that:

) D ]Zz(m., (8D~ £ [0y - 2) =2 0
i=1

n—oo
i=1 j=1



Indeed, since increments are independent, one gets thatekists constanig (6) andx, (6) depend only o
(one can compute them explicitly) such that:

Z i (A'[nj)iz Var[(ADnj ~-E [ADnJ])Z] [Zn: Ni] = x1(6) Z N (Z i)z + k2 () Z i (Atnj)’l (zn: Ni]z

n>1 j=1 i=1 n>1 n>1 j=1 i=1

which is finite using Lemmf 2 and Assumptigihy) . Thus it follows tha’m*qz) m2.
n

— 00

=B, _ e
Almost sure convergenceof m, to ™. Similarly as above, we set:

IR

Ned

—~(3 3
M = A - G

—~(3 —~
Next we have the following decompositioﬁ{q) - + P — W, Let us check tham, —

tends almost surely to 0 agends to infinity.

1. Al o
. Almost sure convergenceof m, — M\ to 0.
70 _ o
-1 n N
= [ - [Z ] ZZ[AD.J—AL, * 4 [AD;; - At | [AD; ~ E (ADy)| + [AD”—IE(AD”)]Z]
=1 j=1

i=1 i j

=@

n Ni

- ml$) 5

i=1 i=1 j=1

[3AD2 Aty A0)’ - 3At ADy ) 3AD.J]E(AD”)+At.Jn#)E(AD”)HE(AD”)Z]

Let us show that we can replam&l)“by m® in the above expression. Using Assumptity), ]E(AD”) =
At;;m®) and the fact than tends tom™) asn tends almost surely to infinity, it follows that

-t (S] 5 Sl 2o

i=1 i=1 j=1

-1 n N

- m S 5750 (5 - (o)

i=1 j=1

<d3(mP+ m(l))———>2m(1)d2
N

AN oS V&S AD; s
N|) Z AtAD; (A — V) = [ - )] [Z N,) Z Z AR =L = i 2,
=1 ! h

i=1 j=1 i=1 j=1

[m® - 0 [

<= md)

[m(l) A(l) ( n NI]—l n iAth(l) n‘ﬁ) m(l)] - _m® [ﬁ\ﬁ) (1) (2)[Z )1iiAt nﬁm

i=1 i=1 j=1 i=1 i=1 j=1

<d?
Thus it follows that

1n
=@ Z" Y
n'ln — n'lgls) = m(l) (l) [ NI]
=1

[ADZ AD”)Z - ZAD”E(AD”‘)] + 025 (1)

z TM_Z
N

i i=1
n -1 n 2

= 3[m -] [Z N,] D2 (ADy; —E(ADy))" + 0as (1)
i=1 i=1 j=1

5



which tends almost surely to 0 agends to infinity since

_1n

(Z ] ZZ ADjj — AD”)) < dy 1Y) — d,
i=1 j=1
andm{’ ——» m®. Then we deduce the_r[g1 P —> 0.

naoo

2. Almost sure convergence of M) to M®. After tedious calculations, one obtain that there existsstants
k3 (0), k4 () andxs () depending only 0@ such that:

D i (Atg) Var[(ADn i~ E|[AD, ,—])3] (Z”: Ni]z

n>1 j=1 i=1
n -2 n - n -2
= Kg(e)zz Aty;) [Z Ni] +K4(a)ZNn[Z Ni] +K5(9)ZZA'[ ( N.] .
n>1 j=1 i=1 n>1 i=1 n>1 j=1 i=1
All these series, using Lemrfia @41) and(H), are convergent. Thus we have tha ”n—as—> o). O

Before showing the asymptotic normalityiwf,, we shall establish the following Lemma.
Lemma4. If (H;) and the following assumption hold
(Ha) Yue(0,1,3), lim [Z ] ZZAt” 2 = gu< .
i=1 j=1
Then it follows that

no vz (i - m®
[Z Ni] ~‘2) B Q) IR N(0.x7),
- ~(3) =3)] "7

my” —m

where
¢ 2 2 6o o, bor? 3P
?+T C1 gcl ?C1+3‘r +— 54
) _ 2 br o4, dor’ 207 24a 187 187’
= Fcl —C+2t + 52 ? —501+—5+ 3
Ber 6ar? 30  24e 1827 18?120 126%  90er? (155 | 45?72 6 45t
— i +3t — + = —C+— +— —Ct+—+—F +|—+ + 157 + C3
& g e & & £ £ £ & £ & £

Proor. To prove this Lemma we apply the central limit theorem ofdeberg-Feller[[15] since the increments are
independent. We set first yDj; = ADj; — E (AD;;). Then we have

n, () - m® noyY2 N . AEQ _E(AEE) noyY2an N .
[Sn) [r-m | < [Sn] 355 o) 423 -2{am) < (Sin] 35 o)
i=1 m(f) md i i=1 j=1 AR —E(Aﬁs) i=1 i=1 -1

T . .- .
We setX;; = (Xij]_, Xij2, Xijg) . Let us check the first condition of the Lindeberg-Fellermtteen. For any > 0,
we have:

20 £ | B S e[y

- = i=1 j=1 =]
n 10 N 3 s 2
i [.Z‘ Ni] ;;;‘(Am) 2 (%) 1{II?%|I§>EZ(I§1 Ni)} ' (1)



Moreover because

r

3 ) 3 ij€ | 1
i=
{kg Xizjk > (Atij) 62( Ni]} C U Xizjk > 3 [
=1 i=1 k=1

we have

1 1y <1
bl (2 ) = 2 0
{ Atjij2>6(i§1N') e

Thus it follows that Equation (1) implies that

IA IA
m <|
NP w
S M
—_—
z 7 >
=z =z
N —
—L T L
P
M= LM
=z =z
~—_————
N N
AM_‘Z I M_Z
T =
= =
w w
Mo T
Mo IV
_ &=
L X
£
T 7
? [i—
;I\J
S

(2)

where the last inequality is obtained by applying the Yourgnuality. Moreover one can check that for apy N*,
we have

E(ADY) = E[(AY;+aBy)] = ZO (2) E(AYS)E(ABT) = i(:) 'nl(am;—:S_I) (TZA'[”)(%S E (B
s]:[l(aAtij +Ss I) .

|
>
o+
R
1=
—_
L o
IR
e
[
—
~
>
ot
-
N7

E (B%) = At;j Poly_1 (At;),

whereB ~ N (0, 1) and Pad-1 (Atij) denotes a polynomial of ordgr— 1 with respect ta\t;; the coeficients of which
depend only om. Then Equation (2) is equal to

205 5] S0 e i

I =

_ n n 1 n N
< € 12\/:_)) [ ] [Z N|] Z y At” PO|]_]_ At”)

i=1 i=1 j=

which tends to 0 as tends to infinity sinc<_2n1 Ni) iznjl j%l(m”)z Pok (At;) is bounded using Assumptiofis)
and(Hs).
Next the variance covariance matBiy of X; is given by
Var(AD;) E(Aﬁf} E(AD;,
5 =| E(aD;)  Var|(ap;-E(aDy)f|  E(aB})-E(aDj)E(aD3 )|
E(Aﬁfj) E(Aﬁi) - E(AEﬁ)E(AEﬁ) Var[(ADij - IE(AD”-))S]
7



Thus the second condition of Lindeberg-Feller theoremds aétisfied since:

[i Ni]_l/z Z”: i (aty) Xij] —

i=1 i=1 j=1

Cov

where the finite terms &), under AssumptiofiHs), are obtained from the following equations:

n -1 n N
~ . -2
s _ lim (Z Ni) ZZ (Aty) " =y
i=1 i=1 j=1
such thatryy, pour 1< u < v < 3, are the terms of the variance-covariance maiix
2 6a 6at® 3
o111 = (% +T2) Atjj, 012 = —ZA'[”, o13 = —4A'[ij +(3T4+ ; (Z )At2
& & & & &
6a dat? 2 24« 182 18at?
022 = FAt” + (2‘1’4 + é—';— ; )Atﬁ, 023 = _SAtIJ (? + é‘:—;) Atz
120y 12602 90 150° 452272 45y
o33 = ?Aij (TJF 547 )Atﬁ ( = +TT+15r6+ T)At3.

Finally we conclude that

(zn: Ni]_l/z zn: i (at5) " X — N(0.5¢9).

i=1
In the sequel we will prove the asymptotic normalitydf First, let us prove the asymptotic normalityfo.

Theorem 5. Under Assumption@H; — Hz), we have:

n 12
[Z Ni] M -m) S NO.H),

i=1

where H= A () AT such that A is given by:

Proor. First we note that

n U2 n L2 i — m® 2 ° n, 2 () - m®
~ 2~ (2 . ~ 2~ (2 . -
[ZM] (o= m) [ Ni] HO a4 1 - e [ Ni] A [ Ni) ol
= = Y i+ - = O i=1 i) — m

Second we have

320 )

i=1

= 2(zn: Ni)l/z[mﬂ)—mf})](inl Ni]_lin i(AD”—E(AD”))+[_n Ni]_l_n S Atij[_n Ni]l/z[m(l)—ﬁﬁl)]z

i=1



which tends to 0 as tends to infinity. Indeed we check that the first term of theé &gpression tends in prob-

n 1/2
ability to 0 asn tends to infinity since(z Ni) [m(l) - m(ql)] is normally distributed and, as shown previously,
i=1
n -1 n N
(Z Ni) Y, 3 (AD;; - E(ADj;)) tends to 0 as tends to infinity. Moreover the second term in the right-hand
i=1 i=1j=1

n -1, N; 1/2
side of (3) tends to 0 as tends to infinity becaus(ez Ni) > 3 At is convergent(z N) [m(ql) - m¥] has
i=1 i=1j=1

an asymptotic normal distribution arﬁﬂﬁ) - m(l)] tends almost surely to 0 astends to infinity. Then we deduce
n 12 ~

that(z Ni) (m(qz) - r”r}(f)) tends in probability to 0 as tends to infinity.
i=1

Furthermore one gets that
n 1/2 .3 n 1/2 n -1 n N )
[Z Ni] (mn _ ﬁ\‘f)) - 3( Ni] [m® - (1)][ N,] [ ADjj - E(ADj)) ]+ 0p(2).
i=1 i=1 i= i=1 j=1

Let us show that ] 0N
(3o0) 333" oy - (a0, - v 220
i=1 i=1 j=1

Indeed, since increments are independent, one gets thatdkists constants (6) andx; (6) depending only o
such that

N, n -2 -2 N, n -2
3 3 Ver](a0y - E[aD )] [Z Ni) - wOY) st [Z Ni) N i [Z Ni)
n>1 j=1 i=1 n>1 j=1 n>1 j=1 i=1
which is convergent using Assumpti@,) and Lemmeﬂz. Moreover we have:
(Z ] ZZVar AD.l (% +7'2) Cs.
i=1 j=1 é:

Then one can write that

n vz (my) - m® N2 0 N 1 1 0 0\fADi - E(ADll)z
(Z Ni) ﬁz: -m2| = (Z Ni) Z Z (Atij)7 [ ) 0 , 1 0] Aﬁﬁ - E(ABH) + Op (1)
i=1 —n.h _ m(s) i=1 i=1 j:l —3(5—2 + T )C3 O 1 AB?J _ E (AB”)S
n -1/2 n N; 1
- A[Z N.] DU (At) X
i1 i1 =1

n -1/2 n N _
By Lemmd} we havéz Ni) 3 (Ati,-) 1Xi]- FL N (O, z(w))_ Thus it follows that
= i 00

1/2
(Zn: Ni] (M —m) n—j:: N(0.A =) AT).

Sincef is a diferentiable and bijective function arfd! is continuous orf(®), then we obtain the asymptotic
normality of6, by applying thes-method (see Theorem13in [@]).



Theorem 6. Under Assumption@; — Hs), we have:
n 1/2 §
[Z;Ni) (6n—0) — N(O,M),
i=
where M= G HG' such that G is given by:

ot oft ot 1 20 [m® 1 [
om®  omb - gmD) P e omd 2 \2m®

of-t  afyt  oft

& @ 7P| ™ = 0 0 1
om?  om®  om

ot ot ot 1 me ® I 1
a®  am®  om® m \ om® m \ om® 2\ om®

2.3. Statistical inference

As an application of theorefj 6, one can construct the cord@@rterval with asymptotic level 4 ¢ for each
parameter:

&J_rzl_%#n)]]zl—ﬂ, Amp[ae @izl—g(;&—am}]zl—
i i i V Zij=1 Ni

lim P[g €

nN—oo

and

=1-9

—2
. o ()
lim P(rz € {’T‘Zn +2 gt

n—co 2 m

Wherezlfg is the critical value of the standard normal distributiorl ar(g}),o-(an) ando-(?ﬁ) are the asymptotic

standard deviation @\{q,’d‘n andtZ respectively (square-root of the diagonal of varianceaciance matrisvl appeared
in Theoren[h). Thus one can test wheth®e 0 or not, that could be important to determine if the modelgamma
process or not. Moreover, applying thenethod and using the previous theorem, it can be proved that

@ a| d T
\/ﬁ[?ﬁ - ?) n-_);) N(O,G]_M]_Gl),

: . T . '
where M is the top left 2x< 2 block matrix ofM and whereG; = (—% f%) . Hence one can obtain the confidence

interval with asymptotic level 219 for a/¢2. As mentioned in the introduction, it is useful to test theBnian motion
with a positive drift model against the gamma process model.

3. Particular cases

Before considering several particular cases correspgrtdinvarious sampling scheme, we will introduce some
stronger but more comprehensive assumptions:

(A1) Same number of observations for all the procesg¢es:N*,N; = N
(A2) Same instants of observations for all the procesées:N*,Vj € {1,..., N}, tij = t;

(As3) Regularinstants (not necessary the same instants foegikbcessesyi € N*, 3T; such tha¥j € {1,..., Ni}, Atj; =
Ti/N;

(A4) Same time interval for observatior8T such thati e N, tiy, < T
10



(As) Uniformly bounded delay between consecutive observatid > 0,¥i € N*,Vj e {1,...,Ni},Atj; > d

Note that (&) = (A1). More interesting are the relationships between Asswnpt(H — H3) and Assumptions
(A1 — As). In particular, one can easily check thaJA= (H2) and (A) & (As) = (H1). Moreover simplifications
may occur under some assumptions. For instance,sf éd (A are satisfied, then () and (H;) are equivalent
respectively to:

ho\-2
H) % Nﬁ(z Ni) oo
n>1 i=1

n 1,0
(H) Vue (0.1), fim [Z Ni) (Z Nfu) N
i=1 i=1

iz
In addition if (A1) holds then (H) and (H;) are satisfied. We will now consider fivefilirent special cases that can be
described in terms of Assumptionsy(A As):

e Case 1 - Same number of observations a the same regulatgatan [QT]: (A1) — (As);

e Case 2 - Same number of observations at the same non-reggttamts over [0T]: (A1), (A2) and (Ay);

e Case 3 N\, =i and regular instants over,[0]: (A3) and (A);

e Case 4 N, =i and regular instants over,[d ]: (A3) and (4s);

e Case 5N, = 21 and regular instants over,[0]: (As) and (A;).

One can easily check that estimators in cases 1, 2 and 4 aséstn and asymptotically normal. At least, the
estimator in case 3 is consistent but asymptotic normaditynot be established using our results. In the last case one
can check that consistency and asymptotic normality cammestablished using our results.

4, Numerical illustration

Here we illustrate our theoretical results throughout $ations. We recall that the parameters were fixed as
follows: £ = 1, @ = 0.02 andr? = 0.02. The number of observations for each item was sbt t03 instants between
0 andT = 1000 such thaatj; = 200 Atj; = 300 andAt;3 = 500. We have computed the empirical bias, the empirical
squared error (MSE) and the empirical standard deviatitD)(fr 1000 repetitions. TabIB 1, Tatﬂa 2 and Taﬁle 3
report respectively the empirical bias and the empiricaidard deviation for several sample sineBased on results
given in the TabIeE| i[,] 2 ar[c]j 3 we note the the average of ddgyadawell estimated whatever the sample size since
the largem is, the better the estimation is towards Bias, MSE and StD.

Table 1: Empirical bias Table 2: Empirical MSE
Bias 50 100 200 MSE 50 100 200
¢ 2.22e-1 1.44e-1 6.25e-2 & 8.29e-1 3.35e-1 7.07e-2
a 5.55e-3 3.61le-3 1.57e-3 a 5.25e-4 2.12e-4 4.56e-5
72 6.21e-3 1.16e-3 5.0le-4 72 9.67e-5 5.88e-5 3.0le-5
1000 repetitions 937 983 998 1000 repetitions 937 983 998

5. Real data application

In what follows, we present the results that we have achiéwdtle implementation of the data given in the
following sections:
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Table 3: Empirical standard deviation

StD 50 100 200

& 6.32e-1 5.6le-1 5.2l1e-1
a 7.78e-1 7.48e-1 7.4le-1
72 0.11el 5.0le-1 2.12e-1

1000 repetitions 937 983 998

5.1. NIST dataset

An example of dataset can be found [16]. Fifteen compaemete tested under thredfgirent temperatures
65°C, 85°C and 108C. Degradation percent values were read out at 200 and 1000 hours. We have estimated
the three parameters of the degradation models and we hag&ucted, see Tabl} 4, the 95% confidence interval
of each parameter. First, we denote that values within letaatonstitute the standard deviation of each parameter.
Let us discuss the results. One can note fdgtcreases as temperature increases. Moredwda/£2 increase as

Table 4: Estimation of parameters and 95% confidence ingerva

Parameters £ @ 72 /&2
Estimation (65°C) 551(131) 001(0002) Q0001 (1996) 00006
Confidence interval@@5% [4.84;618] [0.01;002] [0;1011] [0.0004; 00007]
Estimation (85°C) 0.71(037) 0012(049) 00068 (0111) Q025
Confidence interval@@5%) [0.51;089] [0;0.26] [0;0.06] [0;0.54]
Estimation (105°C) 0.29(187) 002(014) 027 (151) 025
Confidence intervalf95%) [0;1.24] [0;0.09] [0; 1.04] [0; 1.06]

temperature increases. Howeweis almost stable. Finally from the confidence intervals &66ur model turns to
be a gamma process since one can acceptthal anda/&? # 0.

5.2. Heating cable test data

Whitmore and Schenkelberml?] presented some heating tedildata. The degradation of the cable is measured
as the natural logarithm of resistance. Degradation islexated by thermal stress so temperature is used as the stres
measure. Five test items were baked in an oven at each tgstitature. Three test temperatures were used00
240°C and 260C, giving a total of 15 items. The clock times are in thousandsaurs. The cable is deemed to
have failed when the log-resistance reaches Is{(2)693. The test continued at the lowest test temperature00
until the test equipment was required for other projects. ke estimated the three parameters of the degradation
models and we have constructed, see Tﬂble 5, the 95% cordideacval of each parameter. Like above, we denote
that values within brackets constitute the standard devialf each parameter. One notes that ande/&£2 increase
as temperature increases. However it is not the case’*foiAlthough we have the same number of items as for
the previous data set, here we observe standard deviatitinsevy large values. It is thereforefficult to choose
between one of the two sub-models, and more generally it reagtbrpreted as bad fitting of the model.

6. Concluding remarks

In this paper we have proposed a gamma process perturbedbwaiBn motion as a degradation model for which
we derived parameters estimator. Asymptotic properti¢kisfestimator have been established. Since degradation of
system is also influenced by the environment, it is intemgstitb consider a model integrating covariates. Such model
will be studied in a forthcoming paper.
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Table 5: Estimation of parameters and 95% confidence ifgerva

Parameters £ a 72 /&
Estimation (200°C) 2.18(507) 047(141) 003(997) 009
Confidence interval@@5%) [0.77;358] [0.08;086] [0;281] [0;0.21]
Estimation (240°C) 2.38(674) 217(310) 014(1157) 038
Confidence interval@@5%) [0.51;425] [1.31;303] [0;3.35] [0;0.88]
Estimation (260°C) 2.75(901) 513(378) 004(1731) 067

Confidence intervalf95%) [0;5.74] [3.87;638] [0;578] [0;201]
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