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Abstract. Here we propose a survey on Mahler’s theory for transcendence and algebraic independence
focusing on certain applications to the arithmetic of periods of Anderson t-motives.
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1. Introduction

In his mathematical production, Kurt Mahler (1903-1988) introduced entire new subjects. One of
them, perhaps chronologically the first one, aimed three fundamental papers [27, 28, 29] and was,
later in 1977, baptised “Mahler’s method” by Loxton and van der Poorten. By this locution we
mean a general method to prove transcendence and algebraic independence of values of a certain
class of functions by means of the following classical scheme of demonstration whose terminology
will be explained in the present text (1):

(AP) - Construction of auxiliary polynomials,

(UP) - Obtaining an upper bound, by means of analytic estimates,

(NV) - Proving the non-vanishing, by means of zeros estimates,

∗The presentation of the paper essentially follows, in an expanded form, the instructional talk the author gave
in the conference “t-motives: Hodge structures, transcendence and other motivic aspects”, held in Banff, Alberta,
(September 27 - October 2, 2009). The author is thankful to the organisers of this excellent conference for giving
the opportunity to present these topics, and thankful to the Banff Centre for the exceptional environment of
working it provided. The author also wishes to express his gratitude to B. Adamczewski and P. Philippon for
discussions and hints that helped to improve the presentation of this text.

1We borrowed this presentation from Masser’s article [31, p. 5], whose point of view influenced our point of
view.
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(LB) - Obtaining a lower bound, by means of arithmetic estimates.

For example, with Mahler’s method, and with the help of the basic theory of heights, it is
possible to show the transcendence of values at algebraic complex numbers of transcendental
analytic solutions f(x) ∈ L[[x]] (with L a number field embedded in C) of functional equations
such as

f(xd) = R(x, f(x)), d > 1, R ∈ L(X,Y ), (1)

with d integer, see [27].
In this text, we will also be interested in analogues of these functions over complete, alge-

braically closed fields other than C and for this purpose it will be advantageous to choose right
away an appropriate terminology. Indeed, in the typical situation we will analyse, there will be
a base field K, together with a distinguished absolute value that will be denoted by | · |. Over K
there will be other absolute values as well, and a product formula will hold. We will consider the
completion of K with respect to | · |, its algebraic closure that will be embedded in its completion
K with respect to an extension of | · |. The algebraic closure of Kalg., embedded in K, will also
be endowed with a absolute logarithmic height that will be used to prove transcendence results.
Here, an element of K is transcendental if it does not belong to Kalg..

If L is a finite extension of K in K and f ∈ L[[x]] is a formal series solution of (1), we will
say that f is a Mahler’s function over K. If f converges at α ∈ Kalg. \ {0} (for the distinguished
absolute value), we will say that f(α) ∈ K is a Mahler’s value and α is a base point for this
value. In spite of the generality of this terminology, in this text we will restrict our attention to
the base fields Q,K = Fq(θ) and C(t) where C is the completion of an algebraic closure of the
completion of K for the unique extension of the absolute absolute value defined by |a| = qdegθ a,
with a ∈ K.

The interest of the method introduced by Mahler in [27] is that it can be generalised, as
it was remarked by Mahler himself in [28], to explicitly produce finitely generated subfields of
C of arbitrarily large transcendence degree. This partly explains, after that the theory was
long-neglected for about forty years, a regain of interest in it, starting from the late seventies,
especially due to the intensive work of Loxton and van der Poorten, Masser, Nishioka as well as
other authors we do not mention here but that are quoted, for example, in Nishioka’s book [37].

In some sense, Mahler’s functions and Siegel’s E-functions share similar properties; large
transcendence degree subfields of C can also be explicitly constructed by the so-called Siegel-
Shidlowski theorem on values of Siegel E-functions at algebraic numbers (see Lang’s account on
the theory in [26]). However, this method makes fundamental use of the fact that E-functions
are entire, with finite analytic growth order. This strong assumption is not at all required when
it is possible to apply Mahler’s method, where the functions involved have natural boundaries for
analytic continuation; this is certainly an advantage that this theory has. Unfortunately, no com-
plex “classical constant” (period, special value of exponential function at algebraic numbers. . . )
seems to occur as a complex Mahler’s value, as far as we can see.

More recently, a variety of results by Becker, Denis [9, 17, 18, 19, 20] and other authors
changed the aspect of the theory, especially that of Mahler’s functions over fields of positive
characteristic. It was a fundamental discovery of Denis, that every period of Carlitz’s exponential
function is a Mahler’s value, hence providing a new proof of its transcendency. This motivates
our choice of terminology; we hope the reader will not find it too heavy. At least, it will be useful
to compare the theory over Q and that over K.

The aim of this paper is to provide an overview of the theory from its beginning (transcen-
dence), trough its recent development in algebraic independence and its important excursions in
positive characteristic, where it is in “competition” with more recent, and completely different
techniques inspired by the theory of Anderson’s t-motives (see, for example, the work of An-
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derson, Brownawell, Papanikolas, Chieh-Yu Chang, Jing Yu, other authors [6, 14, 39] and the
related bibliographies).

Here is what the paper contains. In Section 2, we give an account of transcendence theory of
Mahler’s values with Q as a base field; this is part of the classical theory, essentially contained
in one of the first results by Mahler. In Section 3, we will outline the transcendence theory with,
as a base field, a function field of positive characteristic (topic which is closer to the themes of
the conference). Here, the main two features are some applications to the arithmetic of periods
of Anderson’s t-motives and some generalisations of results of the literature (cf. Theorem 3.3).
In Section 4, we first make an overview of known results of algebraic independence over Q of
Mahler’s values, then we describe more recent results in positive characteristic (with the base field
K = Fq(θ)) and finally, we mention some quantitative aspects. The main features of this section
are elementary proofs of two results: one by Papanikolas [39], describing algebraic dependence
relations between certain special values of Carlitz’s logarithms, and another one, by Chieh-Yu
Chang and Jing Yu, describing all the algebraic dependence relations of values of Carlitz-Goss
zeta function at positive integers.

This paper does not contain a complete survey on Mahler’s method. For example, Mahler’s
method was also successful in handling several variable functions. To keep the size of this survey
reasonable, we made the arguable decision of not describing this part of the theory, concentrating
on the theory in one variable, which seemed closer to the other themes of the conference.

2. Transcendence theory over the base field Q

2.1. An example to begin with. The example that follows gives an idea of the method. We
consider the formal series:

fTM(x) =
∞∏

n=0

(1− x2
n

) =
∞∑

n=0

(−1)anxn ∈ Z[[x]]

(an)n≥0 being the Thue-Morse sequence (an is the reduction modulo 2 of the sum of the digits
of the binary expansion of n and, needless to say, the subscript TM in fTM stands for “Thue-
Morse”). The formal series fTM converges in the open unit ball B(0, 1) to an analytic function
and satisfies the functional equation

fTM(x2) =
fTM(x)

1− x
, (2)

(in (1), d = 2 and R = Y
1−X so that fTM is a Mahler’s function. In all the following, we fix an

embedding in C of the algebraic closure Qalg. of Q. We want to prove:

Theorem 2.1. For all α ∈ Qalg. with 0 < |α| < 1, fTM(α) is transcendental.

This is a very particular case of a result of Mahler [27] reproduced as Theorem 2.2 in the
present paper. The proof, contained in 2.1.3 uses properties of Weil’s logarithmic absolute height
reviewed in 2.1.2. It will also use the property that fTM is transcendental over C(x), proved
below in 2.1.1.

2.1.1. Transcendence of fTM.. The transcendence of fTM over C(x) can be checked in several
ways. A first way to proceed appeals to Pólya-Carlson Theorem (1921), (statement and proof
can be found on p. 265 of [48]). It says that a given formal series φ ∈ Z[[x]] converging with
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radius of convergence 1, either has {z ∈ C, |z| = 1} as natural boundary for holomorphy, or

can be extended to a rational function of the form P (x)
(1−xm)n , with P ∈ Z[x]. To show that fTM

is transcendental, it suffices to prove that fTM is not of the form above, which is evident from
the functional equation (2), which implies that fTM has bounded integral coefficients. Indeed,
if rational, fTM should have ultimately periodic sequence of the coefficients. However, it is well
known (and easy to prove, see [47, Chapter 5, Proposition 5.1.2]) that this is not the case for the
Thue-Morse sequence.

Another way to check the transcendence of fTM is that suggested in Nishioka’s paper [35].
Assuming that fTM is algebraic, the field F = C(x, fTM(x)) is an algebraic extension of C(x)
of degree, say n, and we want to prove that this degree is 1. It is possible to contradict this
property observing that the extension F of C(xd) ramifies at the places 0 and ∞ only and
applying Riemann-Hurwitz formula. Hence, fTM is rational and we know already from the lines
above how to exclude this case.

2.1.2. A short account on heights.. Here we closely follow Lang [26, Chapter 3] and Wald-
schmidt [54, Chapter 3]. Let L be a number field. The absolute logarithmic height h(α0 : · · · : αn)
of a projective point (α0 : · · · : αn) ∈ Pn(L) is the following weighted average of logarithms of
absolute values:

h(α0 : · · · : αn) =
1

[L : Q]

∑

v∈ML

dv logmax{|α0|v, . . . , |αn|v},

where v runs over a complete set ML of non-equivalent places of L, where dv = [Lv : Qp] with
v|Q = p the local degree at the place v (one then writes that v|p) (Lv,Qp are completions of L,Q
at the respective places so that if v|∞, Lv = R or Lv = C according to whether the place v is
real or complex), and where | · |v denotes, for all v, an element of v chosen in such a way that
the following product formula holds:

∏

v∈ML

|α|dv
v = 1, α ∈ L×, (3)

where we notice that only finitely many factors of this product are distinct from 1. A common
way to normalise the | · |v’s is to set |x|v = x if x ∈ Q, x > 0, and v|∞, and |p|v = 1/p if v|p.

This formula implies that h does not depend on the choice of the number field L, so that we
have a well defined function

h : Pn(Q
alg.) → R≥0.

If n = 1 we also write h(α) = h(1 : α). For example, we have h(p/q) = h((1 : p/q)) =
logmax{|p|, |q|} if p, q are relatively prime and q 6= 0. With the convention h(0) := 0, this
defines a function

h : Qalg. → R≥0 (4)

satisfying, for α, β ∈ Qalg.×:

h(α+ β) ≤ h(α) + h(β) + log 2,

h(αβ) ≤ h(α) + h(β),

h(αn) = |n|h(α), n ∈ Z.

More generally, if P ∈ Z[X1, . . . , Xn] and if α1, . . . , αn are in Qalg.,

h(P (α1, . . . , αn)) ≤ logL(P ) +

n∑

i=1

(degXi
P )h(αi), (5)
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where L(P ) denotes the length of P , that is, the sum of the absolute values of the coefficients of
P . Proofs of these properties are easy collecting metric information at every place. More details
can be found in [54, Chapter 3].

Liouville’s inequality, a sort of “fundamental theorem of transcendence”, reads as follows.
Let L be a number field, v an archimedean place of L, n an integer. For i = 1, . . . , n, let αi be
an element of L. Further, let P be a polynomial in n variables X1, . . . , Xn, with coefficients in
Z, which does not vanish at the point (α1, . . . , αn). Assume that P is of degree at most Ni with
respect to the variable Xi. Then,

log |P (α1, . . . , αn)|v ≥ −([L : Q]− 1) logL(P )− [L : Q]

n∑

i=1

Nih(αi).

The proof of this inequality is again a simple application of product formula (3): [54, Section
3.5]. It implies that for β ∈ Qalg., β 6= 0,

log |β| ≥ −[L : Q]h(β). (6)

This inequality suffices for most of the arithmetic purposes of this paper (again, see [54] for the
details of these basic tools).

2.1.3. Proof of Theorem 2.1. Step (AP). For all N ≥ 0, we choose a polynomial PN ∈
Q[X,Y ] \ {0} of degree ≤ N in both X and Y , such that the order of vanishing ν(N) at x = 0
of the formal series

FN (x) := PN (x, fTM(x)) = cν(N)x
ν(N) + · · · (cν(N) 6= 0).

(not identically zero because fTM is transcendental by 2.1.1), is ≥ N2.
The existence of PN follows from the existence of a non-trivial solution of a homogeneous

linear system with N2 linear equations defined over Q in (N + 1)2 indeterminates. We will not
need to control the size of the coefficients of PN and this is quite unusual in transcendence theory.

Step (NV). Let α be an algebraic number such that 0 < |α| < 1 and let us suppose by contra-
diction that fTM(α) is also algebraic, so that there exists a number field L containing at once α
and fTM(α). Then, by the functional equation (2), for all n ≥ 0,

FN (α2n+1

) = PN (α2n+1

, fTM(α2n+1

)) = PN

(
α2n+1

,
fTM(α)

(1− α) · · · (1− α2n)

)
∈ L.

We know that FN (α2n+1

) 6= 0 for all n big enough depending on N and α; indeed, fN is not
identically zero and analytic at 0.

Step (UB). Writing the expansion of fN at 0

fN (x) =
∑

m≥ν(N)

cmx
m = xν(N)


cν(N) +

∑

i≥1

cν(N)+ix
i




with the leading coefficient cν(N) which is a non-zero rational integer (whose size we do not
control), we see that for all ǫ > 0, if n is big enough depending on N,α and ǫ:

log |FN (α2n+1

)| ≤ log |cν(N)|+ 2n+1ν(N) log |α|+ ǫ.
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Step (LB). At once, by (5) and (6),

log |FN (α2n+1

)| ≥

≥ −[L : Q](L(PN ) +Nh(α2n+1

) +Nh(f(α)/(1 − α) · · · (1− α2n)))

≥ −[L : Q](L(PN ) +N2n+1h(α) +Nh(fTM(α)) +
n∑

i=0

h(1− α2n))

≥ −[L : Q](L(PN ) +N2n+2h(α) +Nh(fTM(α)) + (n+ 1) log 2).

The four steps allow to conclude: for all n big enough,

2−n−1 log |cν(N)|+ ν(N) log |α|+ 2−n−1ǫ ≥

≥ −[L : Q](L(PN )2−n−1 + 2Nh(α) +N2−n−1h(fTM(α)) + (n+ 1)2−n−1 log 2).

Letting n tend to infinity and using that ν(N) ≥ N2 (recall that log |α| is negative), we find the
inequality

N log |α| ≥ −2[L : Q]h(α).

But the choice of the “auxiliary” polynomial PN can be done for every N > 0. With

N >
2[L : Q]h(α)

| log |α||
, (7)

we encounter a contradiction.

2.1.4. A more general result. For R = N/D ∈ C(X,Y ) with N,D relatively prime polyno-
mials in C(X)[Y ], we write hY (R) := max{degY N, degY D}. With the arguments above, the
reader can be easily prove the following theorem originally due to Mahler [27].

Theorem 2.2 (Mahler). Let L ⊂ C be a number field, R be an element of L(X,Y ), d > 1
an integer such that hY (R) < d. Let f ∈ L[[x]] be a transcendental formal series such that, in
L((x)),

f(xd) = R(x, f(x)).

Let us suppose that f converges for x ∈ C with |x| < 1. Let α be an element of L such that
0 < |α| < 1.

Then, for all n big enough, f(αdn

) is transcendental over Q.

Obviously, for all n big enough, L(f(αdn

))alg. = L(f(αdn+1

))alg.. It can happen, under the
hypotheses of Theorem 2.2, that f(α) is well defined and algebraic for certain α ∈ Qalg. \ {0}.
For example, the formal series

f(x) =

∞∏

i=0

(1− 2x2
i

) ∈ Z[[x]],

converging for x ∈ C such that |x| < 1 and satisfying the functional equation

f(x2) =
f(x)

1− 2x
, (8)

vanishes at every α such that α2i = 1/2, i ≥ 0. In particular, f being non-constant and

having infinitely many zeroes, it is transcendental. By Theorem 2.2, f(1/4) = limx→1/2
f(x)
1−2x is

transcendental.
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Remark 2.3. Nishioka strengthened Theorem 2.2 allowing the rational function R satisfying
only the relaxed condition hY (R) < d2 (see [37, Theorem 1.5.1] for an even stronger result). The
proof, more involved than the proof of Theorem 2.2, follows most of the principles of it, with
the following notable difference. To achieve the proof, a more careful choice of the polynomials
PN is needed. In step (AP) it is again needed to choose a sequence of polynomials (PN )N with
PN ∈ Q[X,Y ] of degree ≤ N in X and Y , such that the function FN (x) = PN (x, f(x)) vanishes
at x = 0 with order of vanishing ≥ c1N

2 for a constant c1 depending on α and f . Since for
hY (R) ≥ d the size of the coefficients of PN influences the conclusion, the use of Siegel’s Lemma
is now needed to accomplish this choice [53, Section 1.3]. To make good use of these refinements
we need an improvement of the step (NV), since an explicit upper bound like c2N logN for the
integer k such that F (xd

s

) = 0 for s = 0, . . . , k is required (2).

2.2. Some further discussions.. In this subsection we discuss about some variants of Mahler’s
method and applications to modular functions (in 2.2.1). We end with 2.2.2, where we quote a
criterion of transcendence by Corvaia and Zannier quite different from Mahler’s method, since
it can be obtained as a corollary of Schmidt’s subspace theorem.

2.2.1. The “stephanese” Theorem. We refer to [50] for a precise description of the tools
concerning elliptic curves and modular forms and functions, involved in this subsection.

Let

J(q) =
1

q
+ 744 +

∑

i≥1

ciq
i ∈ (1/q)Z[[q]]

be the q-expansion of the classical hauptmodul for SL2(Z), converging for q ∈ C such that
0 < |q| < 1. The following theorem was proved in 1996; see [8]:

Theorem 2.4 (Barré-Sirieix, Diaz, Gramain and Philibert). For q complex such that 0 < |q| < 1,
one at least of the two complex numbers q, J(q) is transcendental.

This stephanese theorem (3) furnished a positive answer to Mahler’s conjecture on values of
the modular j-invariant (see [30]). Although we will not say much more about, we mention that
a similar conjecture was independently formulated by Manin, for p-adic values of J at algebraic
α’s, as the series J also converges in all punctured p-adic unit disks, for every prime p. Manin’s
conjecture is proved in [8] as well. Manin’s conjecture is relevant for its connections with the
values of p-adic L-functions and its consequences on p-adic variants of Birch and Swinnerton
Dyer conjecture.

Mahler’s conjecture was motivated by the fact that the function J satisfies the autonomous
non-linear modular equation Φ2(J(q), J(q

2)) = 0, where

Φ2(X,Y ) = X3 + Y 3 −X2Y 2 + 1488XY (X + Y )− 162000(X2 + Y 2) +

40773375XY + 8748000000(X + Y )− 157464000000000.

Mahler hoped to apply some suitable generalisation of Theorem 2.2. It is still unclear, at the
time being, if this intuition is correct; we remark that Theorem 2.2 does not apply here.

The proof of Theorem 2.4 relies on a variant of Mahler’s method that we discuss now. We
first recall from [50] that there exists a collection of modular equations

Φn(J(q), J(q
n)) = 0, n > 0,

2This is not difficult to obtain; see 2.2.1 below for a similar, but more difficult estimate.
3Sometimes, this result is called stephanese theorem from the name of the city of Saint-Etienne, where the

authors of this result currently live.
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with explicitly calculable polynomials Φn ∈ Z[X,Y ] for all n. The stephanese team make use of
the full collection of polynomials (Φn)n>0 so let us briefly explain how these functional equations
occur.

For q complex such that 0 < |q| < 1, J(q) is the modular invariant of an elliptic curve
analytically isomorphic to the complex torus C×/qZ; if z ∈ C is such that ℑ(z) > 0 and e2πiz = q,
then there also is a torus analytic isomorphismC×/qZ ≡ C/(Z+zZ). Since the lattice Z+nzZ can
be embedded in the lattice Z+zZ, the natural map C×/qZ → C×/qnZ amounts to a cyclic isogeny
of the corresponding elliptic curves which, being projective smooth curves, can be endowed with
Weierstrass models y2 = 4x3−g2x−g3 connected by algebraic relations independent on the choice
of z. At the level of the modular invariants, these algebraic relations for n varying are precisely
the modular equations, necessarily autonomous, defined over Z as a simple Galois argument
shows.

Assuming that for a given q with 0 < |q| < 1, J(q) is algebraic, means that there exists an
elliptic curve E analytically isomorphic to the torus C×/qZ, which is definable over a number
field (it has Weierstrass model y2 = 4x3 − g2x − g3 with g2, g3 ∈ Qalg.). The discussion above,
with the fact that the modular polynomials Φn are defined over Z, implies that J(qn) is algebraic
as well.

Arithmetic estimates involved in the (LB) step of the proof of Theorem 2.4 require a precise
control, for J(q) algebraic, of the height of J(qn) and the degree dn of Q(J(qn), J(q)) over
Q(J(q)). the degree dn can be easily computed counting lines in F2

p for p prime dividing n; it
thus divides the number ψ(n) =

∏
p|n(1 + 1/p) and is bounded from above by c3n

1+ǫ, for all

ǫ > 0. As for the height hn = h(J(qn)), we said that the modular polynomial Φn is related
to a family of cyclic isogenies of degree n connecting two families of elliptic curves. We then
have, associated to the algebraic modular invariants J(q), J(qn), two isogenous elliptic curves
defined over a number field, and the isogeny has degree n. Faltings theorem asserting that the
modular heights of two isogenous elliptic curves may differ of at most the half of the logarithm of
a minimal degree of isogeny gives the bound c3(h(J(q)) + (1/2) logn) for the logarithmic height
h(J(qn)) (this implies the delicate estimates the authors do in [8]).

With these information in mind, the proof of Theorem 2.4 proceeds as follows. As in remark
2.3, we use standard estimates of the growth of the absolute values of the (integral) coefficients
of the q-expansions of the normalised Eisenstein series E4, E6 of weights 4, 6 to apply Siegel’s
Lemma and construct a sequence of auxiliary polynomials (AP) (PN )N≥1 in Z[X,Y ] \ {0} with
degX PN , degY PN ≤ N , such that FN (x) := PN (x, xJ(x)) vanishes with order ≥ N2/2 at x = 0.

The (UB) estimate is then exactly as in the Proof of Theorem 2.2. All the authors of [8] need
to achieve their proof is the (NV) step; and it is here that a new idea occurs. They use that the
coefficients of J are rational integers to deduce a sharp estimate of the biggest integer n such
that FN (x) vanishes at qm for all m = 1, . . . , n − 1. This idea, very simple and appealing to
Schwarz lemma, does not seem to occur elsewhere in Mahler’s theory; it was later generalised by
Nesterenko in the proof of his famous theorem in [33, 34], implying the algebraic independence
of the three numbers π, eπ,Γ(1/4) and the stephanese theorem (4). We will come back to the
latter result in Section 4.

2.2.2. Effects of Schmidt’s Subspace Theorem. We mention the following result in [16]
whose authors Corvaja and Zannier deduce from Schmidt’s Subspace Theorem.

Theorem 2.5 (Corvaja and Zannier). Let us consider a formal series f ∈ Qalg.((x))\Qalg.[x, x−1]
and assume that f converges for x such that 0 < |x| < 1. Let L ⊂ C be a number field and S

4We take the opportunity to notice that a proof of an analog of the stephanese theorem for the so-called
“Drinfeld modular invariant” by Ably, Recher and Denis is contained in [1].
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a finite set of places of L containing the archimedean ones. Let A ⊂ N be an infinite subset.
Assume that:

(1) α ∈ L, 0 < |α| < 1

(2) f(αn) ∈ L is an S-integer for all n ∈ A.

Then,

lim inf
n∈A

h(f(αn))

n
= ∞

This theorem has as an immediate application withA = {d, d2, d3, . . .}, d > 1 being an integer.
If f ∈ Qalg.[[x]] is not a polynomial, converges for |x| < 1 and is such that f(xd) = R(x, f(x))
with R ∈ Qalg.(X,Y ) with hY (R) < d, then, f(αdn

) is transcendental for α algebraic with
0 < |α| < 1 and for all n big enough. This implies a result (at least apparently) stronger than
Theorem 2.2; indeed, the hypothesis that the coefficients of the series f all lie in a given number
field is dropped.

3. Transcendence theory in positive characteristic

The reduction modulo 2 in F2[[x]] of the formal series fTM(x) ∈ Z[[x]] is an algebraic formal series.
In this section we will see that several interesting transcendental series in positive characteristic
are analogues of the series satisfying the functional equation (8).

Let q = pe be an integer power of a prime number p with e > 0, let Fq be the field with q
elements. Let us write A = Fq[θ] and K = Fq(θ), with θ an indeterminate over Fq, and define
an absolute value | · | on K by |a| = qdegθ a, a being in K, so that |θ| = q. Let K∞ := Fq((1/θ))
be the completion of K for this absolute value, let Kalg.

∞ be an algebraic closure of K∞, let C be
the completion of Kalg.

∞ for the unique extension of | · | to Kalg.
∞ , and let Kalg. be the algebraic

closure of K embedded in C. There is a unique degree map degθ : C× → Q which extends the
map degθ : K× → Z.

Let us consider the power series

fDe(x) =

∞∏

n=1

(1− θxq
n

),

which converges for all x ∈ C such that |x| < 1 and satisfies, just as in (8), the functional
equation:

fDe(x
q) =

fDe(x)

1− θxq
(9)

(the subscript De stands for Denis, who first used this series for transcendence purposes).
For q = 2, we notice that fDe(x) =

∑∞
n=0 θ

bnx2n, where

(bn)n≥0 = 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, . . .

is the sequence with bn equal to the sum of the digits of the binary expansion of n (and whose
reduction modulo 2 precisely is Thue-Morse sequence of Section 2.1). It is very easy to show

that fDe is transcendental, because it is plain that fDe has infinitely many zeros θ−1/q, θ−1/q2 , . . .
(just as the function occurring at the end of 2.1.4). We shall prove:

Theorem 3.1. For all α ∈ Kalg. with 0 < |α| < 1, fDe(α) is transcendental.
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3.1. Proof of Theorem 3.1. The proof of Theorem 3.1 follows the essential lines of Section
2.1, once the necessary tools are introduced.

3.1.1. Transcendence of functions. Not all the arguments of 2.1.1 work well to show the
transcendence of formal series such as fDe; in particular, the so-called Riemann-Hurwitz-Hasse
formula does not give much information for functional equations such as fDe(x

d) = afDe(x) + b
with the characteristic that divides d. Since in general it is hard to detect zeros of Mahler’s
functions, we report another way to check the transcendency of fDe, somewhat making use of
“automatic methods”, which can also be generalised as it does not depend on the location of
the zeroes. To simplify the presentation, we assume, in the following discussion, that q = 2 but
at the same time, we relax certain conditions so that, in all this subsection, we denote by ϑ an
element of C and by fϑ the formal series

fϑ(x) =
∞∏

n=0

(1− ϑxq
n

) =
∞∑

n=0

ϑbnxn ∈ F [[x]] ⊂ C[[x]]

with F the perfect field ∪n≥0F2(ϑ
1/2n), converging for x ∈ C with |x| < 1. In particular, we

have
fθ(x) = fDe(x

1/2) ∈ F2[θ][[x]].

We shall prove:

Theorem 3.2. The formal series fϑ is algebraic over F (x) if and only if ϑ belongs to Fq,
embedded in C.

Proof. If ϑ ∈ Fq, it is easy to show that fϑ is algebraic, so let us assume by contradiction that
fϑ is algebraic, with ϑ that belongs to C \ Fq.

We have the functional equation:

(1− ϑx)fϑ(x
2) = fϑ(x). (10)

We introduce the operators

f =
∑

i

cix
i ∈ F ((x)) 7→ f (k) =

∑

i

c2
k

i x
i ∈ F ((x)),

well defined for all k ∈ Z. Since f(x2) = f (−1)(x)2 for any f ∈ F [[x]], we deduce from (10) the
collection of functional equations

f
(−1−k)
ϑ (x)2(1− ϑ1/2

k

x) = f
(−k)
ϑ (x), k ≥ 0. (11)

For any f ∈ F [[x]] there exist two series f0, f1 ∈ F [[x]], uniquely determined, with the
property that

f = f2
0 + xf2

1 .

We define Ei(f) := fi (i = 0, 1). It is plain that, for f, g ∈ F [[x]],

Ei(f + g) = Ei(f) + Ei(g), (i = 0, 1),

E0(fg) = E0(f)E0(g) + xE1(f)E1(g),

E1(fg) = E0(f)E1(g) + E1(f)E0(g),

E0(f
2) = f,

E1(f
2) = 0.
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Therefore,

Ei(f
2g) = fEi(g), i = 0, 1.

By (11) we get

E0(f
(−k)
ϑ ) = f

(−1−k)
ϑ E0(1 − ϑ1/2

k

x) = f
(−1−k)
ϑ ,

E1(f
(−k)
ϑ ) = E1(1− ϑ1/2

k

x)f
(−1−k)
ϑ = −ϑ1/2

k

f
(−1−k)
ϑ ,

and we see that if V is a F -subvector space of F [[x]] containing fϑ and stable under the action of

the operators E0, E1, then V contains the F -subvector space generated by fϑ, f
(−1)
ϑ , f

(−2)
ϑ , . . ..

By a criterion for algebraicity of Sharif and Woodcock [49, Theorem 5.3] there is a subvector

space V as above, with finite dimension, containing fϑ. The formal series f
(−k)
ϑ are F -linearly

dependent and there exists s > 0 such that fϑ, f
(1)
ϑ , . . . , f

(s−1)
ϑ are F -linearly dependent.

Going back to the explicit x-expansion of fϑ, the latter condition is equivalent to the existence
of c0, . . . , cs−1 ∈ F , not all zero, such that for all n ≥ 0:

s−1∑

i=0

ciϑ
2ibn = 0.

The sequence b : N∪{0} → N∪{0} is known to be surjective, so that the Moore determinant

det((ϑ2
ij))0≤i,j≤s−1

vanishes. But this means that 1, ϑ, ϑ2, . . . , ϑs−1 are F2-linearly dependent (Goss, [23, Lemma
1.3.3]), or in other words, that ϑ is algebraic over F2; a contradiction which completes the proof
that fϑ and in particular fDe are transcendental over F (x) (and the fact that the image of b has
infinitely many elements suffices to achieve the proof).

3.1.2. Heights under a more general point of view. A good framework to generalise
logarithmic heights to other base fields is that described by Lang in [26, Chapter 3] and by Artin
and Whaples [7, Axioms 1, 2]. Let K be any field together with a proper set of non-equivalent
places MK. Let us choose, for every place v ∈ MK an absolute value | · |v ∈ v and assume that
for all x ∈ K×, the following product formula holds (cf. [26] p. 23):

∏

v∈MK

|x|v = 1, x ∈ K×, (12)

with the additional property that if α is in K×, then |α|v = 1 for all but finitely many v ∈MK.
Let us suppose that MK contains at least one absolute value associated to either a discrete, or
an archimedean valuation of K. It is well known that under these circumstances [7], K is either
a number field, or a function field of one variable over a field of constants.

Given a finite extension L of K, there is a proper set ML of absolute values on L, extending
those of MK, again satisfying the product formula

∏

v∈ML

|α|dv
v = 1, (13)

where, if v is the place of K such that w|K = v (one then writes w|v), we have defined dw =
[Lw,Kv], so that

∑
w|v dv = [L : K].
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An analogue of the absolute logarithmic height h is available, by the following definition (see
[26, Chapter 3]). Let (α0 : · · · : αn) be a projective point defined over L. Then we define:

h(α0 : · · · : αn) =
1

[L : K]

∑

w∈ML

dw logmax{|α0|w, . . . , |αn|w}.

Again, we have a certain collection of properties making this function useful in almost every
proof of transcendence over function fields.

First of all, product formula (13) implies that h(α0 : · · · : αn) does not depend on the choice
of the field L and defines a map

h : Pn(K
alg.) → R≥0.

We write h(α) := h(1 : α). If the absolute values of MK are all ultrametric, it is easy to
prove, with the same indications as in 2.1.2, that for α, β ∈ Kalg.×:

h(α+ β), h(αβ) ≤ h(α) + h(β),

h(αn) = |n|h(α), n ∈ Z.

More generally, if P is a polynomial in L[X1, . . . , Xn] and if (α1, . . . , αn) is a point of Ln, we
write h(P ) for the height of the projective point whose coordinates are 1 and its coefficients. We
have:

h(P (α1, . . . , αn)) ≤ h(P ) +

n∑

i=1

(degXi
P )h(αi). (14)

Product formula (13) also provides a Liouville’s type inequality. Let [L : K]sep. be the
separable degree of L over K. Let us choose a distinguished absolute value | · | of L and β ∈ L×.
We have:

log |β| ≥ −[L : K]sep.h(β). (15)

The reason of the presence of the separable degree in (15) is the following. If α ∈ L× is separable
over K then log |α| ≥ −[K(α) : K]h(α) = −[K(α) : K]sep.h(α). Let β be any element of L×.
There exists s ≥ 0 minimal with α = βps

separable and we get ps log |β| ≥ −[K(α) : K]h(α) =
−ps[K(β) : K]sep.h(β).

3.1.3. Transcendence of the values of fDe. We now follow Denis and we take K = K, MK

the set of all the places of K and we choose in each of these places an absolute value normalised
so that product formula (12) holds, with the distinguished absolute value | · | chosen so that
|α| = qdegθ α for α ∈ K×.

As we already did in 2.1.3, we choose for all N ≥ 0, a polynomial PN ∈ K[X,Y ], non-
zero, of degree ≤ N in both X,Y , such that the order of vanishing ν(N) < ∞ of the function
FN (x) := PN (x, fDe(x)) at x = 0 satisfies ν(N) ≥ N2. We know that this is possible by simple
linear algebra arguments as we did before.

Let α ∈ Kalg. be such that 0 < |α| < 1; as in 2.1.3, the sequence (PN )N need not to depend
on it but the choice of N we will do does.

By the identity principle of analytic functions on C, if ǫ is a positive real number, for n big
enough depending on N and α, l, ǫ, we have FN (αqn+1

) 6= 0 and

log |FN (αqn+1

)| ≤ ν(N)qn+1 log |α|+ log |cν(N)|+ ǫ,

where cν(N) is a non-zero element of K depending on N (it is the leading coefficient of the formal
series FN ).
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Let us assume by contradiction that

fDe(α) ∈ Kalg.,

let L be a finite extension of K containing α and fDe(α).
By the variant of Liouville’s inequality (15) and from the basic facts on the height h explained

above

log |FN (αqn+1

)| ≥

≥ −[L : K]sep.

(
degθ PN +Nh(αqn+1

) +Nh

(
fDe(α)

(1− θαq) · · · (1− θαqn+1)

))
.

Dividing by Nqn+1 and using that ν(N) ≥ N2 we get, for all n big enough,

N log |α|+ log |cν(N)|+ ǫ ≥

≥ −[L : K]sep.(degθ PNN
−1q−n−1 + (1 + (q − q−n−1)/(q − 1))h(α) +

q−n−1h(fDe(α)) + (n+ 1)N−1q−n−1h(θ)).

Letting n tend to infinity, we obtain the inequality:

N log |α| ≥ −[L : K]sep.

(
1 +

q

q − 1

)
h(α)

for all N > 0. Just as in the proof of Theorem 2.1, if N is big enough, this is contradictory with
the assumptions showing that fDe(α) is transcendental.

3.1.4. A first application to periods. The transcendence of values of fDe at algebraic series
has interesting applications, especially when one looks at what happens with the base point
α = θ−1. Indeed, let

π̃ = θ(−θ)1/(q−1)
∞∏

i=1

(1− θ1−qi)−1 (16)

be a fundamental period of Carlitz’s module (it is defined up to multiplication by an element of
F×
q ). Then,

π̃ = θ(−θ)1/(q−1)fDe(θ
−1)−1,

so that it is transcendental over K.
If α = θ−1, h(α) = log q so that to show that π̃ is not in K, it suffices to choose N ≥ 4 if

q = 2 and N ≥ 3 if q 6= 2 in the proof above. Let us look, for q 6= 2 given, at a polynomial
(depending on q) P ∈ A[X,Y ] \ {0} with relatively prime coefficients in X of degree ≤ 3 in X
and in Y , such that P (u, fDe(u)) vanishes at u = 0 with the biggest possible order ν > 9 (which
also depends on q).

It is possible to prove that for all q ≥ 4,

P = X3(Y − 1)3 ∈ Fq[X,Y ].

This means that to show that fDe(θ
−1) 6∈ K, it suffices to work with the polynomialQ = Y −1 (5).

Indeed, fDe(u)− 1 = −θuq + · · · . Therefore, for n big enough, if by contradiction fDe(θ
−1) ∈ K,

then log |fDe(α
qn+1

) − 1| ≥ −(1 + q/(q − 1))h(αqn+1

) which is contradictory even taking q = 3,
but not for q = 2, case that we skip.

5Other reasons, related to the theory of Carlitz module, allow to show directly that π̃ 6∈ Fq((θ−1)) for q > 2
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If q = 3, we get a completely different kind of polynomial P of degree ≤ 3 in each indetermi-
nate:

P = 2 + θ2 + θX3 + 2θ3X3 + 2θ2Y + Y 3 + 2θX3Y 3.

It turns out that
P (u, fDe(u)) = (θ6 − θ4)uν + · · ·

with ν = 36 so that the order of vanishing is three times as big as the quantity expected from
the computations with q ≥ 4: 12 = 3 · 3 + 3. How big can ν be? It turns out that this question
is important, notably in the search for quantitative measures of transcendence and algebraic
independence; we will discuss about this problem in Section 4.1.

3.2. A second transcendence result. With essentially the same arguments of Section 3, it
is possible to deal with a more general situation and prove the Theorem below. We first explain
the data we will work with.

Let F be a field and t an indeterminate. We denote by F 〈〈t〉〉 the field of Hahn generalised
series. This is the set of formal series

∑

i∈S

cit
i, ci ∈ F,

with S a well ordered subset of Q (6), endowed with the standard addition and Cauchy’s multi-
plication from which it is plain that every non-zero formal series is invertible.

We have a field Fq〈〈t〉〉-automorphism

τ : C〈〈t〉〉 → C〈〈t〉〉

defined by

α =
∑

i∈S

cit
i 7→ τα =

∑

i∈S

cqi t
i.

Assume that, with the notations of 3.1.2, K = C(t), with t an independent indeterminate.

Let | · | be an absolute value associated to the t-adic valuation and K̂ the completion of K for this

absolute value. Let K be the completion of an algebraic closure of K̂ for the extension of | · |, so
that we have an embedding of Kalg. in K. We have an embedding ι : K → C〈〈t〉〉 (see Kedlaya,
[24, Theorem 1]); there exists a rational number c > 1 such that if α is in K and ι(α) =

∑
i∈S cit

i,
then |α| = c−i0 , where i0 = min(S). We identify K with its image by ι. It can be proved that
τK ⊂ K, τKalg. ⊂ Kalg. and τK ⊂ K.

The definition of τ implies immediately that, for all α ∈ K,

|τα| = |α| (17)

We choose MK a complete set of non-equivalent absolute values of K such that the product
formula (12) holds. On Pn(Kalg.), we have the absolute logarithmic height whose main properties
have been described in 3.1.2.

There is a useful expression for the height h(α) of a non-zero element α in Kalg. of degree
D. If P = a0X

d + a1X
d−1 + · · ·+ ad−1X + ad is a polynomial in C[t][X ] with relatively prime

coefficients such that P (α) = 0, we have:

h(α) =
1

D

(
log |a0|+

∑

σ:Kalg.→K

logmax{1, |σ(α)|}

)
, (18)

6By definition, every nonempty subset of S has a least element for the order ≤.
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where the sum runs over all the K-embeddings of Kalg. in K. The proof of this formula follows
the same ideas as that of [54, Lemma 3.10].

Let α be in Kalg.. From (17) and (18), it follows that:

h(τα) = h(α). (19)

Let us also consider, over the ring of formal series K[[x]], the Fq〈〈t〉〉-linear extension of τ
defined in the following way:

f :=
∑

i

cix
i 7→ τf :=

∑

i

(τci)x
qi.

We can now state the main result of this section.

Theorem 3.3. Let f ∈ K[[x]] be converging for x ∈ K, |x| < 1, let α ∈ K be such that
0 < |α| < 1. Assume that:

(1) f is transcendental over K(x),

(2) τf = af + b, where a, b are elements of K(x).

Then, for all n big enough, (τnf)(α) is transcendental over K.

Proof. We begin with a preliminary discussion about heights. Let r = r0x
n + · · · + rn be a

polynomial in K[x]. We have, for all j ≥ 0, τ jr = (τ jr0)x
qjn + · · ·+(τ jrn). Therefore, if α is an

element of Kalg., we deduce from (14), (19) and from elementary height estimates:

h((τ jr)(α)) ≤ h(1 : τ jr0 : · · · : τ jrn) + qjnh(α),

≤
n∑

i=0

h(τ jri) + qjnh(α)

≤
n∑

i=0

h(ri) + qjnh(α),

where we have applied (19). Therefore, if a is a rational function in K(x) such that (τ ja)(α) is
well defined, we have

h((τ ja)(α)) ≤ c1 + qjc2, (20)

where c1, c2 are two constants depending on a, α only.
The condition on f implies that, for all k ≥ 0,

τkf = f

k−1∏

i=0

(τ ia) +

k−1∑

i=0

(τ ib)

k−1∏

j=i+1

(τ ja) (21)

(where empty sums are equal to zero and empty products are equal to one). Hence, the field

L = K(α, f(α), (τf)(α), (τ2f)(α), . . .)

is equal to K(α, (τnf)(α)) for all n big enough.
The transcendence of f implies that a 6= 0. If α is a zero or a pole of τka and a pole of τkb

for all k, then it is a simple exercise left to the reader to prove that |α| = 1, case that we have
excluded.
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Let us suppose by contradiction that the conclusion of the theorem is false. Then, α is not
a pole or a zero of τna, τnb, (τnf)(α) is algebraic over K for all n big enough, and L is a finite
extension of K.

An estimate for the height of this series can be obtained as follows.
A joint application of (19), (20) and (21) yields:

h((τkf)(α)) ≤ h(f(α)) +
k−1∑

i=0

h((τ ia)(α)) +
k−1∑

i=0

h((τ ib)(α))

≤ c3 + c4k + c5q
k.

Therefore, if P is a polynomial in K[X,Y ] of degree ≤ N in X and Y , writing Fk for the formal

series τkP (x, f(x)) = P τk

(xq
k

, (τkf)(x)) (P τk

is the polynomial obtained from P , replacing the
coefficients by their images under τk), we get:

h(Fk(α)) ≤ h(P τk

) + qk(degX P )h(α) + (degY P )h((τ
kf)(α))

≤ c7(P ) + c6Nq
k, (22)

where c7 is a constant depending on P .
Let N be a positive integer. There exists PN ∈ K[X,Y ] with partial degrees in X,Y not

bigger than N , with the additional property that FN (x) := PN (x, f(x)) = cν(N)x
ν(N)+ · · · , with

ν(N) ≥ N2 and cν(N) 6= 0.
Let us write F (x) =

∑
i≥0 cix

i. In ultrametric analysis, Newton polygons suffice to locate the

absolute values of the zeroes of Taylor series. The Newton polygons of the series
∑

i≥0(τ
kci)x

i ∈

K[[x]] for k ≥ 0 are all equal by (17). By [23, Propositions 2.9, 2.11], we have
∑

i≥0(τ
kci)α

qki 6= 0
for k big enough. Now, since for k ≥ 0,

(τkFN )(x) = (τkcν(N))x
ν(N)qk + · · · ,

we find, when the logarithm is well defined and by (19), that

−∞ < log |(τkFN )(α)| ≤ ν(N)qk log |α|+ log |cν(N)|+ ǫ. (23)

On the other side, by (22),
h((τkFN )(α)) ≤ c8(N) + c9Nq

k, (24)

where c8 is a constant depending on f, α,N and c9 is a constant depending on f, α.
A good choice of N (big) and inequality (15) with k big enough depending on N give a

contradiction (7).

3.2.1. Applications of Theorem 3.3.. We look at solutions f ∈ K[[x]] of

τf = af + b, a, b ∈ K(x). (25)

Theorem 3.3 allows to give some information about the arithmetic properties of their values.

First application. Assume that in (25), a, b ∈ Fq(t). Then, since Fq(t) is contained in the field of
constants of τ , solutions of this difference equation are related to the variant of Mahler’s method
of Section 3.

7It is likely that Nishioka’s proof of Theorem 2.2 can be adapted to strengthen Theorem 3.3, but we did not
enter into the details of this verification.
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If a = (1 − t−1x)−1, b = 0, the equation above has the solution

fDe2(x) =

∞∏

n=1

(1− t−1xq
n

),

which converges for x ∈ K, |x| < 1.
If x = t, Theorem 3.3 yields the transcendence of fDe2(t) =

∏∞
n=1(1 − tq

n−1) ∈ Fq[[t]] over
Fq(t) and we get (again) the transcendence of π̃ over K (we also notice the result of the paper
[2], which allows some other applications). More generally, all the examples of functions in [40,
Section 3.1] have a connection with this example.

Second application. Theorem 3.3 also has some application which does not seem to immediately
follow from results such as Theorem 2.2. Consider equation (25) with b = 0 and a = (1+ϑx)−1,
where ϑ ∈ Fq(t, θ) is non-zero. We have the following solution of (25) in K[[x]]:

φ(x) =

∞∏

n=0

(1 + (τnϑ)xq
n

).

It is easy to show that φ =
∑

j≥0 cjx
j is a formal series of K[[x]] converging for x ∈ K, |x| < 1.

The coefficients cj can be computed in the following way. We have cj = 0 if the q-ary
expansion of j has its set of digits not contained in {0, 1}. Otherwise, if j = j0 + j1q+ · · ·+ jnq

n

with j0, . . . , jn ∈ {0, 1}, we have, writing ϑi for τ ir, cj = ϑj00 ϑ
j1
1 · · ·ϑjnn . Therefore, if ψ(x) =∑∞

k=0 ϑ0ϑ1 · · ·ϑkx
1+q+···+qk , we have φ(x) − 1 =

∑∞
j=0 τ

jψ(x).

For ϑ = −t−1(1 + t/θ)−1, the series φ(x) vanishes at every xn = t1/q
n

(1 + t1/q
n

/θ). The xn’s
are elements of K which are distinct with absolute value < 1 (we recall that we are using the
t-adic valuation). Having thus infinitely many zeros in the domain of convergence and not being
identically zero, φ is transcendental.

The series φ converges at x = t. Theorem 3.3 implies that the formal series φ(t) ∈ C((t))
is transcendental over K. We notice that the arguments of 3.1.1 can be probably extended to
investigate the transcendence of the series φ associated to, say, ϑ = −(1 + t/θ)−1, case in which
we do not have infinitely many zeros. The reason is that, over K((x)), the Fq-linear Frobenius
map F : a 7→ aq (for all a) splits as

F = τχ = χτ

where τ is Anderson’s Fq((t))-linear map and χ is Mahler’s C((x))-linear map, and most of the
arguments of 3.1.1 can be generalised to this setting.

3.2.2. Further examples of difference equations. The arguments of the previous subsec-
tion deal with formal series in K[[x]] = C(t)[[x]]. We have another important ring of formal
series, also embedded in K[[x]], which is C(x)[[t]]. Although the arithmetic of values of these
series seems to be not deducible from Theorem 3.3, we discuss here about some examples because
solutions f ∈ C(x)[[t]] of τ -difference equations such as

τf = af + b, a, b ∈ C(x) (26)

are often related to Anderson-Brownawell-Papanikolas linear independence criterion in [6] (see
the corresponding contribution in this volume and the refinement [15]).

With ζθ a fixed (q − 1)-th root of −θ, the transcendental formal series

Ω(t) := ζ−q
θ

∞∏

i=1

(
1−

t

θqi

)
=

∞∑

i=0

dit
i ∈ Kalg.[[t]] (27)
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is convergent for all t ∈ C, such that Ω(θ) ∈ F×
q π̃

−1 and satisfies the functional equation

Ω(tq) = (tq − θq)Ω(t)q (28)

(see [6]). By a direct inspection it turns out that there is no finite extension of K containing all
the coefficients di of the t-expansion of Ω (8). Hence, there is no available variant of Mahler’s
method which seems to apply to prove the transcendence of Ω at algebraic elements (and a
suitable variant of Theorem 2.5 is not yet available).

The map τ : C((t)) → C((t)) acts on in the following way:

c =
∑

i

cit
i 7→ τc :=

∑

i

cqi t
i.

Let s(t) be the formal series τ−1Ω−1 ∈ C[[t]] (where τ−1 is the reciprocal map of τ). After
(28) this function is solution of the τ -difference equation:

(τs)(t) = (t− θ)s(t), (29)

hence it is a solution of (26) with a = t − θ and b = 0. Transcendence of values of this kind of
function does not seem to follow from Theorem 3.3, but can be obtained with [6, Theorem 1.3.2].

More generally, let Λ be an A-lattice of C of rank r and let

eΛ(z) = z
∏

λ∈Λ\{0}

(
1−

z

λ

)
(30)

be its exponential function, in Weierstrass product form. The function eΛ is an entire, surjective,
Fq-linear function. Let φλ : A → EndFq−lin.(Ga(C)) = C[τ ] (9) be the associated Drinfeld
module. We have, for a ∈ A, φΛ(a)eΛ(z) = eΛ(az).

Let us extend φΛ over K by means of the endomorphism τ (τt = t). After having chosen an
element ω ∈ Λ \ {0}, define the function

sΛ,ω(t) :=
∞∑

n=0

eΛ

( ω

θn+1

)
tn ∈ C[[t]], (31)

convergent for |t| < q. We have, for all a ∈ A,

φΛ(a)sΛ,ω = asΛ,ω, (32)

where, if a = a(θ) ∈ Fq[θ], we have defined a := a(t) ∈ Fq[t]. This means that sΛ,ω, as a formal
series of C[[t]], is an eigenfunction for all the Fq((t))-linear operators φΛ(a), with eigenvalue a,
for all a ∈ A.

If Λ = π̃A, φΛ is Carlitz’s module, and equation (32) implies the τ -difference equation (29).

4. Algebraic independence

In [28], Mahler proved his first result of algebraic independence obtained modifying and gener-
alising the methods of his paper [27]. The result obtained involved m formal series in several
variables but we describe its consequences on the one variable theory only. Let L be a number
field embedded in C and let d > 1 be an integer.

8They generate an infinite tower of Artin-Schreier extensions.
9Polynomial expressions in τ with the product satisfying τc = cqτ , for c ∈ C.
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Theorem 4.1 (Mahler). Given m formal series f1, . . . , fm ∈ L[[x]], satisfying functional equa-
tions

fi(x
d) = aifi(x) + bi(x), 1 ≤ i ≤ m

with ai ∈ L, bi ∈ L(x) for all i, converging in the open unit disk. If α is algebraic such that
0 < |α| < 1, then the transcendence degree over L(x) of the field L(x, f1(x), . . . , fm(x)) is equal
to the transcendence degree over Q of the field Q(f1(α), . . . , fm(α)).

4.1. Criteria of algebraic independence and applications.. Mahler’s result remained
nearly unobserved for several years. It came back to surface notably thanks to the work of
Loxton and van der Poorten in the seventies, and then by Nishioka and several other authors.
At the beginning, these authors developed criteria for algebraic independence tailored for appli-
cation to algebraic independence of Mahler’s values. Later, criteria for algebraic independence
evolved in very general results, especially in the hands of Philippon. Here follows a particular
case of a criterion of algebraic independence by Philippon The statement that follows merges
the results [44, Theorem 2] and [43, Theorem 2.11] and uses the data K,L, | · |,K,A, . . . where
K is a complete algebraically closed field in two cases. We examine only the cases in which K is
either C or C, but it is likely that the principles of the criterion extend to several other fields,
like that of Section 3.2.

In the case K = C, L is a number field embedded in C, | · | is the usual absolute value, h is the
absolute logarithmic height of projective points defined over Qalg., K denotes Q and A denotes
Z.

In the case K = C, L is a finite extension of K = Fq(θ) embedded in C, | · | is an absolute
value associated to the θ−1-adic valuation, h is the absolute logarithmic height of projective
points defined over Kalg., A denotes the ring A = Fq[θ] and we write K = K.

In both cases, if P is a polynomial with coefficients in L, we associate to it a projective point
whose coordinates are 1 and its coefficients, and we write h(P ) for the logarithmic height of this
point (which depends on P up to permutation of the coefficients).

Theorem 4.2 (Philippon). Let (α1, . . . , αm) be an element of Km and k an integer with 1 ≤
k ≤ m. Let us suppose that there exist three increasing functions Z≥1 → R≥1

δ (degree)

σ (height)

λ (magnitude)

and five positive real numbers c2, c3, cδ, cλ, cσ satisfying the following properties.

(1) limn→∞ δ(n) = ∞,

(2) limn→∞
s(n+1)
s(n) = cs for s = δ, σ, λ,

(3) σ(n) ≥ δ(n), for all n big enough,

(4) The sequence n 7→ λ(n)
δ(n)k+1σ(n)

is ultimately increasing,

(5) For all n big enough,

λ(n)k+1 > σ(n)δ(n)k−1(λ(n)k + δ(n)k).
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Let us suppose that there exists a sequence of polynomials (Qn)n≥0 with

Qn ∈ L[X1, . . . , Xm],

with degXi
Qn ≤ δ(n) for all i and n, with h(Qn) ≤ σ(n) for all n, with coefficients integral over

A, such that, for all n big enough,

−c2λ(n) < log |Qn(α1, . . . , αm)| < −c3λ(n).

Then, the transcendence degree over L of the field L(α1, . . . , αm) is ≥ k.

Theorem 4.2 can be applied to prove the following result.

Theorem 4.3. Let us assume that we are again in one of the cases above; K = C or K = C,
let L be as above. Let f1, . . . , fm be formal series of L[[x]] an d > 1 and integer, satisfying the
following properties:

(1) f1, . . . , fm converge for |x| < 1,

(2) f1, . . . , fm are algebraically independent over K(x),

(3) For all i = 1, . . . ,m, there exist ai, bi ∈ L(x) such that

fi(x
d) = ai(x)fi(x) + bi(x), i = 1, . . . ,m.

Let α ∈ L be such that 0 < |α| < 1. Then, for all n big enough, f1(α
dn

), . . . , fm(αdn

) are
algebraically independent over L.

This result is, for K = C, a corollary of Kubota’s result [25, Theorem p. 10]. For K = C, it
is due to Denis [18, Theorem 2]. See also [9, 17].

Sketch of proof of Theorem 4.3 in the case K = C. To simplify the exposition, we assume
that L = K. Let N > 0 be an integer; there exists at least one non-zero polynomial PN ∈
K[x,X1, . . . , Xn] (that we choose) of degree ≤ N in each indeterminate, such that the order
ν(N) of vanishing at x = 0 of the function

FN (x) = PN (x, f1(x), . . . , fm(x))

(not identically zero because of the hypothesis of algebraic independence of the functions fi over
C(x)), satisfies ν(N) ≥ Nm+1.

The choice of the parameter N will be made later. If c(x) ∈ A[x] is a non-zero polynomial
such that cai, cbi ∈ A[x] for i = 1, . . . ,m, then we define, inductively, R0 = PN and

Rn = c(x)NRn−1(x
d, a1X1 + b1, . . . , amXm + bm) ∈ A[x,X1, . . . , Xm].

Elementary inductive computations lead to the following estimates, holding for n big enough
depending on N, f1, . . . , fm, where c4, c5, c6 are integer constants depending on f1, . . . , fm only:

degXi
(Rn) ≤ N, (i = 1, . . . ,m),

degx(Rn) ≤ c4d
nN,

degθ(Rn) ≤ c5d
nN,

h(Rn) ≤ c7 + c6d
nN,

where we wrote c7(N) = h(R0); it is a real number depending on f1, . . . , fm and N .
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Since

Rn(x, f1(x), . . . , fn(x)) = (
n−1∏

i=0

c(xd
i

)N )R0(x
dn

, f1(x
dn

), . . . , fm(xd
n

)),

one verifies the existence of two constants c2 > c3 > 0 such that

−c2d
nν(N) ≤ degθ(Rn(α, f1(α), . . . , fm(α))) ≤ −c3d

nν(N)

for all n big enough, depending on N, f1, . . . , fm and α.
Let us define:

Qn(X1, . . . , Xn) = Dc1d
nNRn(α,X1, . . . , Xm) ∈ A[α][X1, . . . , Xm],

where D ∈ A \ {0} is such that Dα is integral over K. The estimate above implies at once that,
for n big enough:

degXi
Qn ≤ N,

h(Qn) ≤ c8(N) + c9d
nN,

where c8(N) is a constant depending on f1, . . . , fm, N , and α (it can be computed with an explicit
dependence on c7(N)) and c9 is a constant depending on f1, . . . , fm, and α but not on N .

Finally, Theorem 4.2 applies with the choices:

αi = fi(α), i = 1, . . . ,m

k = m

λ(n) = dnν(N)

δ(n) = N

σ(n) = c9d
nν(N),

provided that we choose N large enough depending on the constants c1, . . . introduced so far.
Then, one chooses n big enough (depending on the good choice of N).

4.1.1. An example with Q as a base field.. Theorem 4.3 furnishes algebraic independence
of Mahler’s values if we are able to check algebraic independence of Mahler’s functions but it does
not say anything on the latter problem; this is not an easy task in general. With the following
example, we would like to sensitise the reader to this problem which, the more we get involved
in the subtleties of Mahler’s method, the more it takes a preponderant place.

In the case K = C, we consider the formal series in Z[[x]]:

L0 =

∞∏

i=0

(1− x2
i

)−1, Lr =

∞∑

i=0

x2
ir

∏i−1
j=0(1 − x2j )

, r ≥ 1

converging, on the open unit disk |x| < 1, to functions satisfying :

L0(x
2) = (1− x)L0(x), Lr(x

2) = (1− x)(Lr(x) − xr), r ≥ 1.

By a result of Kubota [25, Theorem 2], (see also Töpfer, [51, Lemma 6]), if L1, . . . are
algebraically dependent, then they also are C-linearly dependent modulo C(x) in the following
sense. There exist c1, . . . , cm ∈ C not all zero, such that:

m∑

i=1

ciLi(x) = f(x)
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with f(x) ∈ C(x). It is easy to see that the reductions modulo 2 of the series L1, . . . , Lm

generate a (2, . . . , 2)-extension of F2(x) of maximal degree 2m. With this property in mind, it
is rather easy to prove that L1, . . . , Lm are C-linearly independent modulo C(x). Therefore, by
Theorem 4.3, for all α ∈ Qalg. with 0 < |α| < 1, the numbers L1(α), . . . , Lm(α) are algebraically
independent. The reduction modulo 2 of the series L0 is a rational series and at the time being,
we do not know if the functions L0, L1, . . . are algebraically independent (10).

4.2. Measuring algebraic independence. Beyond transcendence and algebraic indepen-
dence, the next step in the study of the arithmetic of Mahler’s numbers is that of quantitative
results such as measures of algebraic independence. Very often, such estimates are not mere
technical refinements of well known results but deep information on the diophantine behaviour
of classical constants; everyone knows the important impact that Baker’s theory on quantitative
minorations of linear forms in logarithms on algebraic groups had in arithmetic geometry.

Rather sharp estimates are known for complex Mahler’s values. We quote here a result of
Nishioka [36, 37] and [38, Chapter 12] (it has been generalised by Philippon: [45, Theorem 6]).

Theorem 4.4 (Nishioka). Let us assume that, in the notations previously introduced, K = C.
Let L be a number field embedded in C. Let f1, . . . , fm be formal series of L[[x]], let us write f ∈
Matn×1(L[[x]]) for the column matrix whose entries are the fi’s. Let A ∈ Matn×n(L(x)), b ∈
Matn×1(L(x)) be matrices. Let us assume that:

(1) f1, . . . , fm are algebraically independent over C(x),

(2) For all i, the formal series fi(x) converges for x complex such that |x| < 1,

(3) f(xd) = A(x) · f(x) + b(x).

Let α ∈ L be such that 0 < |α| < 1, not a zero or a pole of A and not a pole of b. Then, there
exists a constant c1 > 0 effectively computable depending on α, f , with the following property.

For any H,N ≥ 1 integers and any non-zero polynomial P ∈ Z[X1, . . . , Xm] whose partial
degrees in every indeterminate do not exceed N and whose coefficients are not greater that H in
absolute value, the number P (f1(α), . . . , fm(α)) is non-zero and the inequality below holds:

log |P (f1(α), . . . , fm(α))| ≥ −c1N
m(logH +Nm+2). (33)

We sketch how Theorem 4.4 implies the algebraic independence of f1(α), . . . , fm(α) and
g(α) with f1, . . . , fm, g ∈ Q[[x]] algebraically independent over Q[[x]] satisfying linear functional
equations as in Theorem 4.3 and g satisfying

g(xd) = a(x)g(x) + b(x),

with a, b ∈ Q(x), A, b with rational coefficients, and α not a pole of all these rational functions. Of
course, this is a simple corollary of Theorem 4.4. However, we believe that the proof is instructive;
it follows closely Philippon’s ideas in [45]. The result is reached because the estimates of Theorem
4.4 are precise enough. In particular, the separation of the quantities H and N in (33) is crucial.

10P. Bundschuh pointed out that L0, L2, L4, . . . are algebraically independent. To obtain this property, he
studies the behaviour of these functions near the the unit circle.
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4.2.1. Algebraic independence from measures of algebraic independence.. For the
purpose indicated at the end of the last subsection, we assume that α ∈ Q×. This hypothesis in
not strictly necessary and is assumed only to simplify the exposition of the proof; by the way,
the reader will remark that several other hypotheses we assume are avoidable.

Step (AP). For all N ≥ 1, we choose a non-zero polynomial PN ∈ Z[x,X1, . . . , Xm, Y ] of partial
degrees ≤ N in each indeterminate, such that, writing

FN (x) := PN (x, f1(x), . . . , fm(x), g(x)) = cν(N)x
ν(N) + · · · ∈ Q[[x]], cν(N) 6= 0,

we have ν(N) ≥ Nm+2 (we have already justified why such a kind of polynomial exists).
Just as in the proof of Theorem 4.3 we construct, for each N ≥ 1, a sequence of polynomials

(PN,k)k≥0 in Z[x,X1, . . . , Xm, Y ] recursively in the following way:

PN,0 := PN ,

PN,k := c(x)NPN,k−1(x
d, a1(x)X1 + b1(x), . . . , am(x)Xm + bm(x), a(x)Y + b(x)),

where c(x) ∈ Z[x] \ {0} is chosen so that cai, cbj , ca, cb belong to Z[x]. The following estimates
are easily obtained:

degZ PN,k ≤ N, for Z = X1, . . . , Xm, Y,

degx PN,k ≤ c2d
kN,

h(PN,k) ≤ c3(N) + c4d
kN,

where c2, c4 are positive real numbers effectively computable depending on α, f and g, and
c3(N) > 0 depends on these data as well as on N (it depends on the choice of the polynomials
PN ).

Let us assume by contradiction that g(α) is algebraic over the field

F := Q(f1(α), . . . , fm(α)),

of transcendence degree m over Q. We observe that, after the identity principle of analytic
functions we have, for k big enough depending on α, f , g and N :

PN,k(α, f1(α), . . . , fm(α), g(α)) ∈ F×. (34)

Let Q̃ ∈ F [X ] \ {0} be the minimal polynomial of g(α), algebraic over F . We can write Q̃ =
a0 + a1X + · · ·+ ar−1X

r−1 +Xr with the ai’s in F . Multiplying by a common denominator, we
obtain a non-zero polynomial Q ∈ Z[X1, . . . , Xm, Y ] such that Q(f1(α), . . . , fm(α), g(α)) = 0,
with the property that the polynomial Q∗ = Q(f1(α), . . . , fm(α), Y ) ∈ F [Y ] is irreducible.

Step (NV). Let us denote by ∆k the resultant ResY (PN,k, Q) ∈ Z[x,X1, . . . , Xm]. If δk :=
∆k(α, f1(α), . . . , fm(α)) ∈ F vanishes for a certain k, then Q∗ and

P ∗
N,k := PN,k(α, f1(α), . . . , fm(α), Y ) ∈ F [Y ]

have a common zero. Since Q∗ is irreducible, we have that Q∗ divides P ∗
N,k in F [Y ] and

PN,k(α, f1(α), . . . , fm(α), g(α)) = 0;

this cannot happen for k big enough by the identity principle of analytic functions (34) so that we
can assume that for k big enough, δk 6= 0, ensuring that ∆k is not identically zero; the estimates
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of the height and the degree of ∆k quoted below are simple exercises and we do not give details
of their proofs:

degZ ∆k ≤ c5N, Z = X1, . . . , Xm,

degx ∆k ≤ c6d
kN,

h(∆k) ≤ c7(N) + c8d
kN,

where c5, c6, c8 are positive numbers effectively computable depending on α, f and g, while the
constant c7(N) depends on these data and on N .

Let D be a non-zero positive integer such that Dα ∈ Z. Then, writing

∆∗
k := DNdk

∆k(α,X1, . . . , Xm),

we have ∆∗
k ∈ Z[X1, . . . , Xm] \ {0} and

degXi
∆∗

k ≤ c5N,

h(∆∗
k) ≤ c7(N) + c8d

kN.

Step (LB). By Nishioka’s Theorem 4.4, we have the inequality (for k big enough):

log |∆∗
k(f1(α), . . . , fm(α))| ≥ c1N

m(dkN + c9(N)), (35)

where c9(N) is a constant depending on N .
To finish our proof, we need to find an upper bound contradictory with (35); it will be

obtained by analytic estimates as usual.

Step (UB). Looking at the proof of Lemma 5.3.1 of [53], and using in particular inequality (1.2.7)
of loc. cit., we verify the existence of constants c12, c15 depending on α, f , g, c14(α, ǫ) depending
on α and ǫ, and c13(N) depending on α, f , g and N , such that:

log |∆∗
k(f1(α), . . . , fm(α))| ≤ log(N + c10) + c11h(P

∗
N,k) + (N + 1)h(Q) +

log |cνN |+ ν(N)dk log |α|+ ǫ

≤ c12(logN + dkN) + c13(N)− c14(α, ǫ)d
kν(N)

≤ c15d
kN + c13(N)− c14(α, ǫ)d

kNm+2. (36)

Finally, it is easy to choose N big enough, depending on c1, c15, c14 but not on c9, c13 so that,
for k big enough, the estimates (35) and (36) are not compatible: this is due to the particular
shape of (33), with the linear dependence in logH .

4.2.2. Further remarks, comparisons with Nesterenko’s Theorem.. In the sketch of
proof of the previous subsection, the reader probably observed a kind of induction structure; a
measure of algebraic independence form numbers delivers algebraic independence form+1 num-
bers. The question is then natural: is it possible to obtain a measure of algebraic independence
for m+ 1 numbers allowing continue the process and consider m+ 2 numbers?

In fact yes, there always is an inductive structure of proof, but no, it is not just a measure for
m numbers which alone implies a measure form+1 numbers. Things are more difficult than they
look at first sight and the inductive process one has to follow concerns other parameters as well.
For instance, the reader can verify that it is unclear how to generalise the arguments of 4.2.1 and
work directly with a polynomial Q which has a very small value at ω = (f1(α), . . . , fm(α), g(α)).

Algebraic independence theory usually appeals to transfer techniques, as an alternative to
direct estimates at ω. A detour on a theorem of Nesterenko might be useful to understand what
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is going on so our discussion now temporarily leaves Mahler’s values, that will be reconsidered
in a little while.

Precise multiplicity estimates in differential rings generated by Eisenstein’s series obtained
by Nesterenko, the criteria for algebraic independence by Philippon already mentioned in this
paper and a trick of the stephanese team (cf. 2.2.1) allowed Nesterenko, in 1996, to prove the
following theorem (see [33, 34]):

Theorem 4.5 (Nesterenko). Let E2, E4, E6 the classical Eisenstein’s series of weights 2, 4, 6 re-
spectively, normalised so that limℑ(z)→∞ E2i(z) = 1 (for ℜ(z) bounded), let z be a complex num-
ber of strictly positive imaginary part. Then, three of the four complex numbers e2πiz, E2, E4, E6

are algebraically independent.

Although Eisenstein’s series are not directly related to Mahler’s functions there is a hidden
link and the ideas introduced to prove Theorem 4.5 influenced Nishioka in her proof of Theorem
33 as well as other results by Philippon that we will mention below. This is why we cannot keep
silent on this aspect.

First of all, we recall that in [45], Philippon showed how to deduce the algebraic independence
of π, eπ,Γ(1/4) (11), a well known corollary of Nesterenko’s Theorem 4.5, from a measure of
algebraic independence of π,Γ(1/4) by Philibert in [42]. This implication was possible because
Philibert’s result was sharp enough. It is however virtually impossible to deduce Theorem 4.5 or
the quantitative result in [33] which can also be deduced from corollary of [45, Theorem 3] (12)
just by using Philibert’s result.

In the proof of Theorem 33, Nishioka proves (just as Nesterenko does in [33]) a more general
measure of the smallness of the values that a polynomial with rational integer coefficients as-
sumes at (1, f1(α), . . . , fm(α), g(α)), restricting the choice of that polynomial in a given unmixed
homogeneous ideal I. The proof of such a kind of result (cf. [38, Lemma 2.3]) involves induction
on the dimension of I.

Assuming the existence of an ideal I with minimal dimension with “very small” values at
ω, it is possible, looking at its reduced primary decomposition, to concentrate our attention to
I = p prime. The “closest point principle” of [46, p. 89] allows to show the existence, in the
projective variety V associated to p, of a point β which is at a very short distance from ω (see
also [34, Proposition 1.5]). This shows that in this problem, to measure a polynomial or an ideal
at ω it is more advantageous to do it at β; indeed, all the polynomials of p vanish at β.

At this point, it remains to construct an unmixed homogeneous ideal J of dimension dim p−1,
contradicting our assumptions. To do so, it is necessary to proceed as we did in 4.2.1 to construct
PN,k etc., with the important difference that now, all the estimate depend very much on the
choice, that must then use Siegel’s Lemma. Another important tool that has to be used is a
multiplicity estimate, that belongs to step (NV), proved by Nishioka [37, Theorem 4.3], that we
reproduce here.

Theorem 4.6 (Nishioka). Let f1, . . . , fm be satisfying the hypotheses of Theorem 4.4, so that for
all P ∈ C[x,X1, . . . , Xm] \ {0}, the function F (x) := P (x, f1(x), . . . , fm(x)) has the expansion

F (x) = cνx
ν + · · · ,

11Philippon’s result is in fact more general than the algebraic independence of these three numbers, but less
general than Nesterenko’s theorem 4.5, although it historically followed it. Our arguments in 4.2.1 are strongly
influenced by it. In [45], Philippon proposes alternative, simpler proofs for Nesterenko’s theorem.

12A result asserting that, for a polynomial P ∈ Z[X0, . . . ,X4] \ {0} whose partial degrees in every inde-
terminate do not exceed N > 0 and whose coefficients are not greater that H > 0 in absolute value, then
log |P (eπ, π,Γ(1/4))| ≥ −c1(ǫ)(N + logH)4+ǫ, where c1 is an absolute constant depending on ǫ only. The depen-
dence in ǫ is completely explicit.
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with cν 6= 0. There exists a constant c1 > 0, depending on f1, . . . , fm only, with the following
property. If P is as above and N1 := max{1, degx P} and N2 := max{1, degX1

P, . . . , degXm
P},

then

ν ≤ c1N1N
m
2 .

This result is very similar to Nesterenko’s multiplicity estimate [34, Chapter 10, Theorem
1.1] and again, its proof essentially follows Nesterenko’s ideas.

The ideal J previously mentioned is defined as the ideal generated by p and a polynomial
obtained from PN,k by homogenisation, substitution x = α, and a good choice of N, k taking
into account the magnitude of the coefficients of the series fi, g. Indeed, one proves that such a
polynomial cannot belong to p. The closest point principle is necessary in this kind of proof.

The arguments of the above discussion can be modified to obtain the analog of Theorem 4.5
for values of Mahler’s functions at general complex numbers, obtained by Philippon (cf. [45,
Theorem 4]). Here, L is again a number field embedded in C and d > 1 is an integer.

Theorem 4.7 (Philippon). Under the same hypotheses and notations of Theorem 4.4, if α is a
complex number with 0 < |α| < 1, then, for n big enough, the complex numbers

α, f1(α
dn

), . . . , fm(αdn

) ∈ C

generate a subfield of C of transcendence degree ≥ m.

This result is a corollary of a more general quantitative result [45, Theorem 6] which follows
from Philippon’s algebraic independence criterionPhilippon’s criterion for measures of algebraic
independence (loc. cit. p. 5).

4.2.3. Commentaries on the case of positive characteristic. Similar, although simpler
arguments are in fact commonly used to obtain measures of transcendence. Several authors
deduce them from measures of linear algebraic approximation; see for example Amou, Galochkin
and Miller [3, 21, 32] (13). These results often imply that Mahler’s values are Mahler’s S-numbers.

In positive characteristic, it is well known that separability difficulties occur preventing to
deduce good measures of transcendence from measures of linear algebraic approximation (14).
In [20], Denis proves the following result, where d > 1 is an integer.

Theorem 4.8 (Denis). Let us consider a finite extension L of K = Fq(θ), f ∈ L[[x]], α ∈ L
such that 0 < |α| < 1. Let us assume that f is transcendental over C(x), convergent for x ∈ C
such that |x| < 1, and satisfying the linear functional equation

f(xq) = a(x)f(x) + b(x),

with a, b ∈ L(x).
For all n big enough, we have the following property. Let β = αdn

. Then, there exists an
effectively computable constant c1 > 0 depending on β, f only, such that, given any non-constant
polynomial P ∈ A[X ],

log |P (f(β))| ≥ − degX(P )4(degX(P ) + degθ(P )). (37)

13Some results hold for series which satisfy functional equations which are not necessarily linear.
14As first remarked by Lang, for complex numbers, there is equivalence between measures of transcendence and

measures of linear algebraic approximation in the sense that, from a measure of linear algebraic approximation
one can get a measure of transcendence and then again, a measure of linear algebraic approximation which is
essentially that of the beginning, with a controllable degradation of the constants.
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This result yields completely explicit measures of transcendence of π̃, of Carlitz’s logarithms
of elements of K, and of certain Carlitz-Goss’s zeta values (see Section 4.3 for definitions).

To prove Theorem 4.8, Denis uses the following multiplicity estimate.

Theorem 4.9. Let K be any (commutative) field and f ∈ K((x)) be transcendental satisfying
the functional equation f(xd) = R(x, f(x)) with R ∈ K(X,Y ) and hY (R) < d. Then, if P is a
polynomial in K[X,Y ] \ {0} such that degX P ≤ N and degY P ≤M , we have

ordx=0P (x, f(x)) ≤ N(2Md+NhX(Q)).

It would be interesting to generalise such a multiplicity estimate for several algebraically
independent formal series and obtain a variant of Töpfer’s [52, Theorem 1] (see [11, 12, 41] to
check the difficulty involved in the research of an analogue of Nesterenko’s multiplicity estimate
for Drinfeld quasi-modular forms). This could be helpful to obtain analogues of Theorem 4.4 for
Mahler’s values in fields of positive characteristic.

4.3. Algebraic independence of Carlitz’s logarithms. For the rest of this chapter, we will
give some application of Mahler’s method and of Anderson-Brownawell-Papanikolas method to
algebraic independence of Carlitz’s logarithms of algebraic elements of C and of some special
values of Carlitz-Goss zeta function at rational integers. Results of this part are not original
since they are all contained in the papers [39] by Papanikolas and [14] by Chieh-Yu Chang and
Jing Yu. But the methods we use here are slightly different and self-contained.

Both proofs of the main results in [39, 14] make use of a general statement [39, Theorem 5.2.2]
which can be considered as a variant of Grothendieck period conjecture for a certain generalisation
of Anderson’s t-motives, also due Papanikolas. To apply this result, the computation of motivic
Galois groups associated to certain t-motives is required.

Particular cases of these results are also contained in Denis work [19], where he applies
Mahler’s method and without appealing to Galois theory. Hence, we follow the ideas of the
example in 4.1.1 and the main worry here is to develop analogous proofs in the Drinfeldian
framework. In 4.1.1 the explicit computation of the transcendence degree of the field generated
by L0, L1, . . . was pointed out as a problem. But we have already remarked there, that if
L0, L1, . . . are algebraic dependent, then they also are C-linearly dependent modulo C(x). This
property, consequence of a result by Kubota, is easy to obtain because the matrix of the linear
difference system of equations satisfied by the Li’s has the matrix of its associated homogeneous
system which is diagonal.

For Λ = π̃A with π̃ as in (16), the exponential function eCar := eΛ (30) can be explicitly
written as follows:

eCar(z) =
∑

i≥0

zq
i

[i][i− 1]q · · · [1]qi−1 ,

where [i] := θq
i

− θ (i ≥ 1). This series converges uniformly on every open ball with center in 0
to an Fq-linear surjective function eCar : C → C. The formal series logCar, reciprocal of eCar in
0, converges for |z| < qq/(q−1) = |π̃|. Its series expansion can be computed explicitly:

logCar(z) =
∑

i≥0

(−1)izq
i

[i][i− 1] · · · [1]
.

The first Theorem we shall prove in a simpler way is the following (cf. [39, Theorem 1.2.6]):

Theorem 4.10 (Papanikolas). Let ℓ1, . . . , ℓm ∈ C be such that eCar(ℓi) ∈ Kalg. (i = 1, . . . ,m).
If ℓ1, . . . , ℓm are linearly independent over K, then they also are algebraically independent over
K.
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4.3.1. Carlitz-Goss polylogarithms and zeta functions.. Let us writeA+ = {a ∈ A, a monic}.
In [22], Goss introduced a function ζ, defined over C × Zp with values in C, such that for n ≥ 1
integer,

ζ(θn, n) =
∑

a∈A+

1

an
∈ K∞.

In the following, we will write ζ(n) for ζ(θn, n). For n ∈ N, let us also write Γ(n) :=
∏s

i=0D
ni

i ∈
K, n0 + n1q + · · · + nsq

s being the expansion of n − 1 in base q and Di being the polynomial
[i][i− 1]q · · · [1]q

i−1

. It can be proved that z/eCar(z) =
∑∞

n=0Bn
zn

Γ(n+1) for certain Bn ∈ K. The

so-called Bernoulli-Carlitz relations can be obtained by a computation involving the logarithmic
derivative of eCar(z): for all m ≥ 1,

ζ(m(q − 1))

π̃m(q−1)
=

Bm

Γ(m(q − 1) + 1)
∈ K. (38)

In particular, one sees that

π̃q−1 = (θq − θ)ζ(q − 1) ∈ K∞.

We also have the obvious relations:

ζ(mpk) = ζ(m)p
k

, m, k ≥ 1. (39)

The second theorem we are going to prove directly is:

Theorem 4.11 (Chang, Yu). The algebraic dependence relations over K between the numbers

ζ(1), ζ(2), . . .

are generated by Bernoulli-Carlitz’s relations (38) and the relations (39).

4.3.2. Two propositions.. In this subsection we develop an analogue of [51, Lemma 6], for
the same purpose we needed it in 4.1.1.

We consider here a perfect field U of characteristic p > 0 containing Fq and a Fq-auto-
morphism τ : U → U . Let U0 be the subfield of constants of τ , namely, the subset of U whose
elements s are such that τs = s.

For example, we can consider U =
⋃

n≥0 C(x
1/pn

) with τ defined as the identity over C, with

τx = xq. Another choice is to consider U =
⋃

n≥0 C(t
1/pn

), with τ defined by τc = c1/q for all c ∈

C and τt = t. In the first example we have U0 = C while in the second, U0 =
⋃

n≥0 Fq((t
1/pn

)).
More generally, after 3.2, we can take either

U =
⋃

n≥0

K(x1/p
n

)

or the field ⋃

n,m≥0

C(x1/p
n

, t1/p
m

)

(which is contained in the previous field) with the corresponding automorphism τ (these settings
will essentially include the two examples above). In the first case, we have U0 = Fq〈〈t〉〉, and in
the second case, we have U0 =

⋃
n≥0 Fq((t

1/pn

)).



Mahler’s method for algebraic independence 29

Let us also consider the ring R = U [X1, . . . , XN ] and write, for a polynomial P =
∑

λ cλX
λ ∈

R, P τ as the polynomial
∑

λ(τcλ)X
λ. Let D1, . . . , DN be elements of U×, B1, . . . , BN be

elements of U and, for a polynomial P ∈ R, let us write

P̃ = P τ (D1X1 +B1, . . . , DNXN +BN ).

We prove the following two Propositions, which provide together the analogue in positive
characteristic of Kubota [25, Theorem 2].

Proposition 4.12. Let P ∈ R be a non-constant polynomial such that P̃ /P ∈ R. Then,

there exists a polynomial G ∈ R of the form G =
∑

i ciXi + Bp such that G̃/G ∈ R, where
c1, . . . , cN ∈ U are not all vanishing and B ∈ R. If W is the subfield generated by Fq and the

coefficients of P , then there exists M ≥ 1 such that for each coefficient c of G, cp
M

∈W .

Proof. If P ∈ R is such that P̃ = QP for Q ∈ R one sees, comparing the degrees of P̃ and P ,
that Q ∈ U and if P is non-zero, Q 6= 0. The subset of R of these polynomials is a semigroup S
containing U . If P ∈ S satisfies P̃ = QP , then F := ∂P/∂Xi belongs to S since F̃ = D−1

i QF .

Similarly, if P = F p ∈ S with F ∈ S then F ∈ S as one sees easily that in this case, F̃ = Q1/pF .
By hypothesis, S contains a non-constant polynomial P . We now show that the polynomial

G ∈ S as in the Proposition can be constructed by iterated applications of partial derivatives
∂1 = ∂/∂X1, . . . , ∂N = ∂/∂XN and p-root extrations starting from P .

Let P be as in the hypotheses. We can assume that P is not a p-th power. We can write:

P =
∑

λ=(λ1,...,λN )∈{0,...,p−1}N

cλX
λ, cλ ∈ Rp.

Let M := max{λ1 + · · ·+ λN , cλ 6= 0}. We can write P = P1 + P2 with

P1 :=
∑

λ1+···+λN=M

cλX
λ.

There exists (β1, . . . , βN) ∈ {0, . . . , p− 1}N with β1 + · · ·+ βN =M − 1 and

P ′ := ∂β1

1 · · · ∂βN

N P =

N∑

i=1

c′iXi + c′0 ∈ S \ {0}, c′0, c
′
1, . . . , c

′
N ∈ Rp,

where

∂β1

1 · · ·∂βN

N P1 =

N∑

i=1

c′iXi, ∂β1

1 · · · ∂βN

N P2 = c′0.

If (case 1) the polynomials c′1, . . . , c
′
N are all in U , then we are done. Otherwise, (case 2),

there exists i such that c′i is non-constant (its degree in Xj is then ≥ p for some j). Now,
c′i = ∂iP

′ belongs to (Rp ∩ S) \ {0} and there exists s > 0 with c′i = P ′′ps

with P ′′ ∈ S which
is not a p-th power. We have constructed an element P ′′ of S which is not a p-th power, whose
degrees in Xj are all strictly smaller than those of P for all j (if the polynomial depends on Xj).

We can repeat this process with P ′′ at the place of P and so on. Since at each stage we get
a polynomial P ′′ with partial degrees in the Xj strictly smaller than those of P for all j (if P ′′

depends on Xj), we eventually terminate with a polynomial P which has all the partial degrees
< p in the indeterminates on which it depends, for which the case 1 holds.

As for the statement on the field W , we remark that we have applied to P an algorithm
which constructs G from P applying finitely many partial derivatives and p-th roots extractions
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successively, the only operations bringing out of the field W being p-root extractions. Hence, the
existence of the integer M is guaranteed.

We recall that U0 is the subfield of U whose elements are the s ∈ U such that τs = s. Let V
be a subgroup of U× such that V \ V p 6= ∅.

Proposition 4.13. Under the hypotheses of Proposition 4.12, let us assume that for all D ∈
V \ {1}, the only solution s ∈ U of τs = Ds is zero and that D1, . . . , DN ∈ V \ V p. Then, the
polynomial G ∈ R given by this Proposition is of the form G =

∑
i ciXi+c0 with c1, . . . , cN ∈ U0

and c0 ∈ U . Moreover, if ci, cj 6= 0 for 1 ≤ i < j ≤ N , then Di = Dj. Let I be the non-empty
subset of {1, . . . , N} whose elements i are such that ci 6= 0, let Di = D for all i ∈ I. Then,

c0 =
τ(c0)

D
+

1

D

∑

i∈I

ciBi.

Proof. Proposition 4.12 gives us a polynomial G with G̃/G ∈ R, of the form
∑

i ciXi + Bp

with ci ∈ U not all vanishing and B ∈ R. Let sXpλ be a monomial of maximal degree in Bp.
Since G̃ = QG with Q ∈ U×, we have τs = (Dλ1

1 · · ·DλN

N )−pQs. Moreover, τ(ci) = D−1
i Qci

for all i. Hence, if i is such that ci 6= 0, r := s/ci satisfies τr = Di(D
λ1
1 · · ·DλN

N )−pr. Now,

Di(D
λ1
1 · · ·DλN

N )−p 6= 1 (because Di ∈ V \V p) and r = 0, that is s = 0. This shows that B ∈ U .
Let us suppose that 1 ≤ i, j ≤ N are such that i 6= j and ci, cj 6= 0. Let us write r = ci/cj ; we
have τr = Dj/Dir, from which we deduce r ∈ U0 in case Dj/Di = 1 and r = 0 otherwise. The
Proposition is proved dividing

∑
i ciXi + Bp by cj with j 6= 0 and by considering the relation

P̃ = QP , once observed that Q = D.

We proceed, in the next two subsections, to prove Theorems 4.10 and 4.11. We will prove
the first theorem applying Propositions 4.12 and 4.13 to the field U =

⋃
n≥0 C(t

1/pn

) and then
by using the criterion [6, Theorem 1.3.2] and we will prove the second theorem applying these
propositions to the field U =

⋃
n≥0K

alg.(x1/p
n

) and then by using Theorem 4.3.

4.3.3. Direct proof of Theorem 4.10.. For β ∈ Kalg. such that |β| < qq/(q−1), we will use
the formal series in Kalg.((t))

Lβ(t) = β +
∞∑

i=1

(−1)iβqi

(θq − t) · · · (θqi − t)
,

defining holomorphic functions for |t| < qq with Lβ(θ) = logCar β (15).
We denote by W one of the following fields: Kalg.,Kalg.

∞ , C. For f =
∑

i cit
i ∈ W ((t)) and

n ∈ Z we write f (n) :=
∑

i c
qn

i ti ∈ W ((t)), so that f (−1) =
∑

i c
1/q
i ti. We have the functional

equation L
(−1)
β (t) = β1/q+

Lβ(t)
t−θ . The function Lβ allows meromorphic continuation to the whole

C, with simple poles at the points θq, θq
2

, . . . , θq
n

, . . . of residue

(logCar β)
q,

(logCar β)
q2

Dq
1

, . . . ,
(logCar β)

qn

Dq
n−1

. . . . (40)

15Papanikolas uses these series in [39]. It is also possible to work with the series
∑

∞

i=0
eCar((logCar β)/θ

i+1)ti.
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Let β1, . . . , βm be algebraic numbers with |β| < qq/(q−1), let us write Li = Lβi
for i =

1, . . . ,m. Let us also consider the infinite product Ω in (27), converging everywhere to an

entire holomorphic function with zeros at θq, θq
2

, . . ., and write L0 = −Ω−1, which satisfies the
functional equation

L
(−1)
0 (t) =

L0(t)

t− θ
,

with L0(θ) = π̃, meromorphic with simple poles at the points θq, θq
2

, . . . , θq
n

, . . ., with residues

π̃q,
π̃q2

Dq
1

, . . . ,
π̃qn

Dq
n−1

, . . . (41)

We now prove the following Proposition.

Proposition 4.14. If the functions L0, L1, . . . , Lm are algebraically dependent over Kalg.(t),
then π̃, logCar β1, . . . , logCar βm are linearly dependent over K.

Proof. The functions Li are transcendental, since they have infinitely many poles. Without loss of
generality, we may assume thatm ≥ 1 is minimal so that for all 0 ≤ n ≤ m the functions obtained
from the family (L0, L1, . . . , Lm) discarding Ln are algebraically independent over Kalg.(t).

We now apply Propositions 4.12 and 4.13. We take U :=
⋃

n≥0 C(t
1/pn

), which is perfect,
and τ : U → U the q-th root map on C (inverse of the Frobenius map), such that τ(t) = t; this
is an Fq-automorphism. Moreover, we take N = m+ 1, D1 = · · · = DN = (t− θ)−1,

(B1, . . . , BN ) = (0, β
1/q
1 , . . . , β1/q

m ),

and V = (t− θ)Z.
Let T ⊂ C[[t]] be the subring of formal series converging for all t ∈ C with |t| ≤ 1, let L be

its fraction field. Let f ∈ L be non-zero. A variant of Weierstrass preparation theorem (see [4,
Lemma 2.9.1]) yields a unique factorisation:

f = λ

( ∏

|a|∞≤1

(t− a)orda(f)

)(
1 +

∞∑

i=1

bit
i

)
, (42)

where 0 6= λ ∈ C, supi |bi| < 1, and |bi| → 0, the product being over a finite index set. Taking into

account (42), it is a little exercise to show that U0 =
⋃

i≥0 Fq(t
1/pi

) and that for D ∈ V \{1}, the

solutions in U of f (−1) = Df are identically zero (for this last statement, use the transcendence
over U of Ω).

Let P ∈ R be an irreducible polynomial such that P (L0, L1, . . . , Lm) = 0; we clearly have

P̃ = QP with Q ∈ U and Propositions 4.12 and 4.13 apply to give c1(t), . . . , cm(t) ∈ U0 not all
zero and c(t) ∈ U such that

c(t) = (t− θ)c(−1)(t) + (t− θ)
m∑

i=1

ci(t)β
1/q
i . (43)

We get, for all k ≥ 0:

c(t) = −
m∑

i=1

ci(t)

(
βi +

k∑

h=1

(−1)hβqh

i

(θq − t)(θq2 − t) · · · (θqh − t)

)
(44)

+
c(k+1)(t)

(θq − t)(θq2 − t) · · · (θqk+1 − t)
.
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We endow L with a norm ‖ · ‖ in the following way: if f ∈ L× factorises as in (42), then
‖f‖ := |λ|. Let g be a positive integer. Then ‖ · ‖ extends in a unique way to the subfield
Lg := {f : fpg

∈ L}. If (fi)i∈N is a uniformly convergent sequence in Lg (on a certain closed ball
centered at 0) such that ‖fi‖ → 0, then fi → 0 uniformly.

We observe that there exists g ≥ 0 such that c(t), c1(t), . . . , cm(t) ∈ Lg. Hence c1(t), . . . , cm(t) ∈
Fq(t

1/pg

) and ‖ci‖ = 1 if ci 6= 0. This implies that

∥∥∥∥∥

m∑

i=1

ciβ
1/q
i

∥∥∥∥∥ ≤ max
i

{|β
1/q
i |} < q1/(q−1).

By (43), ‖c‖ ≤ qq/(q−1). Indeed, two cases occur. The first case when ‖c(−1)‖ ≤ maxi{|β
1/q
i |};

here we have ‖c‖ < qq/(q−1) because ‖c(−1)‖ = ‖c‖1/q by (42) and maxi{|βi|} < qq/(q−1) by

hypothesis. The second case occurs when the inequality ‖c(−1)‖ > max{|β
1/q
1 |, . . . , |β

1/q
m |} holds.

In this case, max{‖c(−1)(t − θ)‖, ‖(t − θ)
∑m

i=1 ci(t)β
1/q
i ‖} = ‖c(−1)(t − θ)‖ which yields ‖c‖ =

qq/(q−1) by (43).
Going back to (44) we see that the sequence of functions

Eh(t) =
c(h+1)(t)

(θq − t)(θq2 − t) · · · (θqh+1 − t)

converges uniformly in every closed ball included in {t : |t| < qq}, as the series defining the
functions Li (i = 1, . . . ,m) do. We want to compute the limit of this sequence: we have two
cases.

First case. If ‖c‖ < qq/(q−1), then, there exists ǫ > 0 such that ‖c‖ = q(q−ǫ)/(q−1). Then, for all

h ≥ 0, ‖c(h+1)‖ = ‖c‖q
h+1

= q(q
h+2−ǫqh+1)/(q−1). On the other side:

‖(θq − t)(θq
2

− t) · · · (θq
h+1

− t)‖ = |θ|q+···+qh+1

= qq(q
h+1−1)/(q−1).

Hence,

‖Eh‖ = q
qh+2

−ǫqh+1

q−1 − qh+2
−q

q−1 = q
q−ǫqh+1

q−1 → 0,

which implies Eh → 0 (uniformly on every ball as above).
This means that

∑m
i=1 ci(t)Li(t) + c(t) = 0. Let g be minimal such that there exists a non-

trivial linear relation as above, with c1, . . . , cm ∈ U0 ∩ Lg; we claim that g = 0. Indeed, if
g > 0, c1, . . . , cm 6∈ Fq and there exists a non-trivial relation

∑m
i=1 di(t)Li(t)

pg

+ d(t) = 0 with
d1, . . . , dm ∈ Fq[t] not all zero, d(t) ∈ C(t) and maxi{degt di} minimal, non-zero. But letting the
operator d/dt act on this relation we get a non-trivial relation with strictly lower degree because
dF p/dt = 0, leading to a contradiction.

Hence, g = 0 and c1, . . . , cm ∈ Fq(t). This also implies that c ∈ C; multiplying by a common
denominator, we get a non-trivial relation

∑m
i=1 ci(t)Li(t) + c(t) = 0 with c1, . . . , cm ∈ Fq[t] and

c ∈ C(t). The function c being algebraic, it has finitely many poles. This means that

m∑

i=1

ci(t)Li(t)

has finitely many poles but for all i, Li has poles at θq, θq
2

, . . . with residues as in (40), which

implies that
∑m

i=1 ci(t)Li(t) has poles in θq, θq
2

, . . .. Since the functions ci belong to Fq[t],
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they vanish only at points of absolute value 1, and the residues of the poles are multiples of∑m
i=0 ci(θ)

qk (logCar βi)
qk (k ≥ 1) by non-zero factors in A. They all must vanish: this happens

if and only if
m∑

i=1

ci(θ) logCar βi = 0,

where we also observe that ci(θ) ∈ K; the Proposition follows in this case.

Second case. Here we know that the sequence Eh converges, but not to 0 and we must compute
its limit. Let ν be in C with |ν| = 1. Then, there exists µ ∈ Falg.

q
×, unique such that |ν−µ| < 1.

Hence, if λ ∈ C is such that |λ| = qq/(q−1), there exists µ ∈ Falg.
q

× unique with

|λ− µ(−θ)q/(q−1)| < qq/(q−1). (45)

We have:

c(t) = λ
∏

|a|≤1

(
t1/p

g

− a
)ordac


1 +

∑

i≥1

bit
i/pg


 ,

with λ ∈ C×, the product being finite and |bi| < 1 for all i so that ‖c‖ = |λ|.
Let µ ∈ Falg.

q
× be such that (45) holds, and write:

c1(t) = (λ− µ(−θ)q/(q−1))
∏

|a|≤1

(
t1/p

g

− a
)ordac


1 +

∑

i≥1

bit
i/pg


 ,

c2(t) = µ(−θ)q/(q−1)
∏

|a|≤1

(
t1/p

g

− a
)ordac


1 +

∑

i≥1

bit
i/pg


 , (46)

so that c(t) = c1(t) + c2(t), ‖c1‖ < qq/(q−1) and ‖c2‖ = qq/(q−1). For all h, we also write:

E1,h(t) =
c
(h+1)
1 (t)

(θq − t)(θq2 − t) · · · (θqh+1 − t)
, E2,h(t) =

c
(h+1)
2 (t)

(θq − t)(θq2 − t) · · · (θqh+1 − t)
.

Following the first case, we easily check that E1,h(t) → 0 on every closed ball of center 0 included
in {t : |t| < qq}. It remains to compute the limit of E2,h(t).

We look at the asymptotic behaviour of the images of the factors in (46) under the operators
f 7→ f (n), n → ∞. The sequence of functions (1 +

∑
i≥1 bit

i/pg

)(n) converges to 1 for n → ∞
uniformly on every closed ball as above. Let E be the finite set of the a’s involved in the finite
product (46), take a ∈ E . If |a| < 1, then a(n) → 0 and (t1/p

g

− a)(n) → t1/p
g

. If |a| = 1,
there exists µa ∈ Falg.

q
× such that |a − µa| < 1 and we can find na > 0 integer such that

lims→∞ a(sna) = µa, whence lims→∞(t1/p
g

− a)(sna) = t1/p
g

− µa.

Let us also denote by ñ > 0 the smallest positive integer such that µqñ = µ. Let N be the
lowest common multiple of ñ and the na’s with a varying in E . Then the sequence of functions:




 ∏

|a|≤1

(
t1/p

g

− a
)ordac




1 +

∑

i≥1

bit
i/pg






(Ns)

, s ∈ N

converges to a non-zero element Z ∈ Falg.
q (t1/p

g

).



34 F. Pellarin

For n ∈ N, let us write:

Vn(t) := µqn (−θ)q
n+1/(q−1)

(θq − t)(θq2 − t) · · · (θqn+1 − t)
.

We have:

(−θ)q/(q−1)
n+1∏

i=1

(
1−

t

θqi

)−1

= (−1)q/(q−1)θq/(q−1)θ(q+···+qn+1)
n+1∏

i=1

(θq
i

− t)−1

= (−1)q/(q−1)θq
n+2/(q−1)

n+1∏

i=1

(θq
i

− t)−1.

Hence, limn→∞ θq/(q−1)/((θq − t)(θq
2

− t) · · · (θq
n+1

− t))−1 = Ω(t)−1 from which we deduce
that lims→∞ E2,sN (t) = c0(t)L0(t) with c0 ∈ Falg.

q
×(t1/p

g

). We have proved that for some

c1, . . . , cm ∈ Fq(t
1/pg

), c0 ∈ Fq(t
1/pg

)× and c ∈ Kalg.(t1/p
g

),
∑m

i=0 ciLi + c = 0. Applying the
same tool used in the first case we can further prove that in fact, g = 0. If c0 is not defined over
Fq, then applying the operator f 7→ f (−1) we get another non-trivial relation c′0+

∑m
i=1 ciLi = c′

with c′ ∈ Kalg.(t) and c′0 ∈ F×
q (t) not equal to c0; subtracting it from the former relation yields

L0 ∈ Kalg.(t) which is impossible since Ω is transcendental over C(t). Hence c0 belongs to Fq(t)
too. Multiplying by a common denominator in Fq[t] and applying arguments of the first case

again (by using the explicit computation of the residues of the poles of L0 at θq, θq
2

, . . .), we find
a non-trivial relation c0(θ)π̃ +

∑m
i=1 ci(θ) logCar βi = 0.

Proof of Theorem 4.10. If ℓ ∈ C is such that eCar(ℓ) ∈ Kalg., then there exist a, b ∈ A, β ∈ Kalg.

with |β| < qq/(q−1) such that ℓ = a logCar β + bπ̃. This well known property (also used in [39],
see Lemma 7.4.1), together with Theorem 3.1.1 of [6], implies Theorem 4.10.

4.3.4. Direct proof of Theorem 4.11.. Let s ≥ 1 be an integer and let Lin denote the s-th
Carlitz’s polylogarithm by:

Lis(z) =

∞∑

k=0

(−1)kszq
k

([k][k − 1] · · · [1])s
,

so that Li1(z) = logCar(z) (the series Lis(z) converges for |z| < qsq/(q−1)).
For β ∈ Kalg. ∩K∞ such that |β| < qsq/(q−1) (a discussion about this hypothesis follows in

4.3.5), we will use as in [19] the series

Fs,β(x) = β̃(x) +

∞∑

i=1

(−1)isβ̃(x)q
i

(xq − θ)s · · · (xqi − θ)s
,

where β̃(x) is the formal series in Fq((1/x)) obtained from the formal series of β ∈ Fq((1/θ)) by
replacing θ with x, an independent indeterminate.

Let us assume that x ∈ C, with |x| > 1. We have, for i big enough,
∣∣∣∣∣

β̃(x)q
i

(xq − θ)s · · · (xqi − θ)s

∣∣∣∣∣ = |x|q
i degθ β−q qi−1

q−1 ,

so that the series Fs,β(x) converges for |x| > 1 provided that |β| < q
q

q−1 and x is not of the form

θ1/q
i

.
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We have the functional equations:

Fs,β(x
q) = (xq − θ)s(Fs,β(x)− β̃(x)),

moreover,

Fs,β(θ) = βj +

∞∑

i=1

(−1)iβqi

(θq − θ)s · · · (θqi − θ)s
= Lis(β).

Therefore, these series define holomorphic functions for |x| > q1/q an allow meromorphic contin-

uations to the open set {x ∈ C, |x| > 1}, with poles at the points θ1/q
i

. We have “deformed”
certain Carlitz’s logarithms and got in this way Mahler’s functions (except that the open unit
disk is replaced with the complementary of the closed unit disk, but changing x to x−1 allows
us to work in the neightbourhood of the origin).

Let J be a finite non-empty subset of {1, 2, . . .} such that if n ∈ J , p does not divide n.
Let us consider, for all s ∈ J , an integer ls ≥ 1 and elements βs,1, . . . , βs,ls ∈ Kalg. ∩K∞ with
|βs,i| < qqs/(q−1) (i = 1, . . . , ls). We remark that if s is divisible by q − 1 then, for all r > q1/q

the product:

(−x)sq/(q−1)
∞∏

i=1

(
1−

θ

xqi

)−s

converges uniformly in the region {x ∈ C, |x| ≥ r} to a holomorphic function Fs,0(x), which is
the (q − 1)-th power of a formal series in K((1/(−x)1/(q−1))), hence in K((1/x)) (compare with
the function of 3). Moreover, Fs,0(θ) = π̃s.

Proposition 4.15. If the functions (Fs,βs,1 , . . . , Fs,βs,ls
)s∈J are algebraically dependent over

Kalg.(x), there exists s ∈ J and a non-trivial relation

ls∑

i=1

ciFs,βs,i
(x) = f(x) ∈ Kalg.(x)

with c1, . . . , cls ∈ Kalg. if q − 1 does not divide s, or a non-trivial relation:

ls∑

i=1

ciFs,βs,i
(x) + λFs,0(x) = f(x) ∈ Kalg.(x)

with c1, . . . , cls , λ ∈ Kalg. if q− 1 divides s. In both cases, non-trivial relations can be found with
c1, . . . , cls , λ ∈ A.

Proof. Without loss of generality, we may assume that J is minimal so that for all n ∈ J and
i ∈ {1, . . . , ln} the functions obtained from the family (Fs,βs,1 , . . . , Fs,βs,ls

)s∈J discarding Fn,βn,1

are algebraically independent over Kalg.(x).
We want to apply Propositions 4.12 and 4.13. We take U :=

⋃
n≥0K

alg.(x1/p
n

), and τ : U →

U the identity map on Kalg. extended to U so that τ(x) = xq. We also take:

(X1, . . . , XN) = (Ys,1, . . . , Ys,ls)s∈J ,

(D1, . . . , DN) = ((xq − θ)s, . . . , (xq − θ)s︸ ︷︷ ︸
lstimes

)s∈J ,

(B1, . . . , BN ) = (β̃s,1(x), . . . , β̃s,ls(x))s∈J .
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We take V = (xq−θ)Z. We have U0 = Kalg. and for D ∈ V \{1}, the solutions of f(xq) = Df(x)
are identically zero as one sees easily writing down a formal power series for a solution f ∈ U .

Let P ∈ R be an irreducible polynomial such that P ((Fs,βs,1 , . . . , Fs,βs,ls
)s∈J ) = 0; we

clearly have P̃ = QP with Q ∈ U and Propositions 4.12 and 4.13 apply. They give s ∈ J ,
c1, . . . , cls ∈ Kalg. not all zero and c0 ∈ U such that

c0(x) =
c0(x

q)

(xq − θ)s
−

1

(xq − θ)s

ls∑

i=1

ciβ̃s,i(x). (47)

We now inspect this relation in more detail. To ease the notations, we write ls = m and
Fi(x) := Fs,βs,i

(i = 1, . . . ,m). Since β̃(x)q = β̃(xq) for all β ∈ K, from (47) we get, for all
k ≥ 0:

c0(x) = −
m∑

i=1

ci

(
β̃i(x) +

k∑

h=1

(−1)hsβ̃i(x)
qh

((xq − θ)(xq2 − θ) · · · (xqh+1 − θ))s

)
(48)

+
c0(x

qk+1

)

((xq − θ)(xq2 − θ) · · · (xqk+1 − θ))s
.

By Proposition 4.12, there exists M > 0 such that c0(x)
qM ∈ Kalg.(x), which implies that

c0(x
qM ) ∈ Kalg.(x). By equation (48) we see that c0(x) ∈ Kalg.(x).
We write c0(x) =

∑
i≥i0

dix
−i with di ∈ Kalg.. The sequence (|di|)i is bounded; let κ

be an upper bound. If x ∈ C is such that |x| ≥ r > q1/q with r independent on x, then
|c0(x)| = supi |di||x|

−i ≤ κ supi |x|
−i ≤ κ|x|degx c0 . Moreover, for |x| > r with r as above,

|x|q
s

> |θ| = q for all s ≥ 1 so that |xq
s

− θ| = max{|x|q
s

, |θ|} = |x|q
s

. Hence we get:

|(xq − θ)(xq
2

− θ) · · · (xq
k+1

− θ)| = |x|q+q2+···+qh+1

= |x|
q(qk+1

−1)
q−1 .

Let us write:

Rk(x) :=
c0(x

qk+1

)

((xq − θ)(xq2 − θ) · · · (xqk+1 − θ))s
.

We have, for |x| ≥ r > q1/q and for all k:

|Rk(x)| ≤ κ|x|q
k+1 degx c0−

sq(qk+1
−1)

q−1 . (49)

Since |βi| < qsq/(q−1), degx β̃i(x) < sq/(q − 1) for all i. In (47) we have two cases: one if

degx(c0(x
q)/(θ − xq)s) ≤ maxi{degx β̃i}, one if degx(c0(x

q)/(θ − xq)s) > maxi{degx β̃i}. In the
first case we easily see that degx c0 < sq/(q − 1) (notice that degx c0(x

q) = q degx c0). In the
second case, degx c0 = q degx c0 − sq which implies degx c0 = sq/(q − 1).

First case. Here, there exists ǫ > 0 such that degx c0 = (sq − ǫ)/(q − 1). We easily check
(assuming that |x| ≥ r > q1/q):

|Rk(x)| ≤ κ|x|
sq−ǫ
q−1 qk+1− sq(qk+1

−1)
q−1

≤ κ|x|
sq−ǫqk+1

q−1

and the sequence of functions (Rk(x))k converges uniformly to zero in the domain {x, |x| ≥ r}
for all r > q1/q. Letting k tend to infinity in (48), we find

∑
i ciFi(x) + c0(x) = 0; that is what

we expected.
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Second case. In this case, the sequence |Rk(x)| is bounded but does not tend to 0. Notice that
this case does not occur if q − 1 does not divide s, because c0 ∈ Kalg.(x) and its degree is a
rational integer. Hence we suppose that q − 1 divides s.

Let us write:
c0(x) = λxsq/(q−1) +

∑

i>sq/(q−1)

dix
i,

with λ ∈ Kalg.×. We have

lim
k→∞

∑
i>sq/(q−1) dix

qki

((xq − θ)(xq2 − θ) · · · (xqk+1 − θ))s
= 0

(uniformly on |x| > r > q1/q), as one verifies following the first case.
For all k ≥ 0 we have:

(−x)sq/(q−1)
k+1∏

i=1

(
1−

θ

xqi

)−s

= (−1)sq/(q−1)xsq/(q−1)xs(q+···+qk+1)
k+1∏

i=1

(xq
i

− θ)−s

= (−1)sq/(q−1)xsq
k+2/(q−1)

k+1∏

i=1

(xq
i

− θ)−s.

Hence we have limk→∞ λxsq/(q−1)/((xq−θ)(xq
2

−θ) · · · (xq
k+1

−θ))s = λFs,0(x) and
∑

i ciFi(x)+
λFs,0(x) + c0(x) = 0.

We now prove the last statement of the Proposition: this follows from an idea of Denis. The
proof is the same in both cases and we work with the first only. There exists a ≥ 0 minimal such
that the pa-th powers of c1, . . . , cls are defined over the separable closure Ksep of K. The trace
Ksep → K can be extended to formal series Ksep((1/x)) → K((1/x)); its image does not vanish.
We easily get, multiplying by a denominator in A, a non-trivial relation

∑

i

biFi(x)
qa + b0(x) = 0

with bi ∈ A and b0(x) ∈ Kalg.(x). If the coefficients bi are all in Fq, this relation is the pa-th
power of a linear relation as we are looking for. If every relation has at least one of the coefficients
bi not belonging to Fq, the one with maxi{degθ bi} and a minimal has in fact a = 0 (otherwise,
we apply the operator d/dθ to find one with smaller degree, because dgp

a

/dθ = 0 if a > 0).

The following proposition reproduces Denis’ criterion of algebraic independence in [17, 18].
It follows immediately from Theorem 4.3.

Proposition 4.16. Let L ⊂ Kalg. be a finite extension of K. We consider f1, . . . , fm holomor-
phic functions in a domain |x| > r ≥ 1 with Taylor’s expansions in L((1/x)). Let us assume that
there exist elements ai, bi ∈ L(x) (i = 1, . . . ,m) such that

fi(x) = ai(x)fi(x
q) + bi(x), 1 ≤ i ≤ m.

Let α be in L, |α| > r, such that for all n, αqn is not a zero nor a pole of any of the functions
ai, bj.

If the series f1, . . . , fm are algebraically independent over Kalg.(x), then the values

f1(α), . . . , fm(α)

are algebraically independent over K.
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The next step is the following Proposition.

Proposition 4.17. If the numbers (Lis(βs,1), . . . ,Lis(βs,ls))s∈J are algebraically dependent over
Kalg., there exists s ∈ J and a non-trivial linear relation

ls∑

i=1

ciLis(βs,i) = 0

with c1, . . . , cls ∈ A. If q − 1 does not divide s, or a non-trivial relation:

ls∑

i=1

ciLis(βs,i) + λπ̃s = 0

with c1, . . . , cls , λ ∈ A if q − 1 divides s.

Proof. By Proposition 4.16, the functions Fs,i (s ∈ J , 1 ≤ i ≤ ls) are algebraically dependent
over Kalg.(t). Proposition 4.15 applies and gives s ∈ J as well as a non-trivial linear dependence
relation. If q − 1 does not divide s, by Proposition 4.15 there exists a non-trivial relation

ls∑

i=1

ciFs,βs,i
(x) = f(x) ∈ Kalg.(x)

with c1, . . . , cls ∈ A. We substitute x = θ in this relation:

ls∑

i=1

ciLis(βs,i) = f ∈ Kalg..

After [5] pp.172-176, for all x ∈ C such that |x| < qqs/(q−1), there exist

v1(x), . . . , vs−1(x) ∈ C

such that 


0
...
0
x


 = exps




v1(x)
...

vs−1(x)
Lis(x)


 ,

exps being the exponential function associated to the s-th tensor power of Carlitz’s module.
Moreover:

exps




cjv1(βs,j)
...

cjvs−1(βs,j)
cjLis(βs,j)


 = φ⊗s

Car(cj)




0
...
0
βs,j


 ∈ (Kalg.)s, j = 1, . . . , ns,

where φ⊗s
Car(cj) denotes the action of the s-th tensor power of Carlitz’s module. By Fq-linearity,

there exist numbers w1, . . . , ws−1 ∈ C such that

exps




w1

...
ws−1

c


 ∈ (Kalg.)s.
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Yu’s sub-t-module Theorem (in [55]) implies the following analogue of Hermite-Lindemann’s
Theorem. Let G = (Gs

a, φ) be a regular t-module with exponential function eφ, with φ(g) =
a0(g)τ

0 + · · · , for all g ∈ A. Let u ∈ Cs be such that eφ(u) ∈ Gs
a(K

alg.). Let V the smallest
vector subspace of Cs containing u, defined over Kalg., stable by multiplication by a0(g) for all
g ∈ A. Then the Fq-subspace eφ(V ) of Cs equals H(C) with H sub-t-module of G.

This result with G the s-th twist of Carlitz’s module and eφ = exps implies the vanishing of
c and the K-linear dependence of the numbers

Lis(βs,1), . . . ,Lis(βs,ls).

If q − 1 divides s then by Proposition 4.15 there exists a non-trivial relation

ls∑

i=1

ciFs,βs,i
(x) + λFs,0(x) = f(x) ∈ Kalg.(x)

with c1, . . . , cls , λ ∈ K. We substitute x = θ in this relation:

ls∑

i=1

ciLis(βs,i) + λπ̃s = f ∈ Kalg..

The Proposition follows easily remarking that, after [5] again, there exist

v1, . . . , vs−1 ∈ C

such that 


0
...
0
0


 = exps




v1
...

vs−1

π̃s


 .

Proof of Theorem 4.11. To deduce Theorem 4.11 from Proposition 4.17 we quote Theorem 3.8.3
p. 187 of Anderson-Thakur in [5] and proceed as in [14]. For all i ≤ nq/(q − 1) there exists
hn,i ∈ A such that if we set

Pn :=
∑

i

φ⊗n
Car(hn,i)




0
...
0
θi


 ,

then the last coordinate Pn is equal to Γ(n)ζ(n) (where Γ(n) denotes Carlitz’s arithmetic Gamma
function). Moreover, there exists a ∈ A \ {0} with φ⊗n

Car(a)Pn = 0 if and only if q − 1 divides n.
This implies that

Γ(n)ζ(n) =

[nq/(q−1)]∑

i=0

hn,iLin(θ
i).

The numbers hn,i are explicitly determined in [5]. In particular, one has

ζ(s) = Lis(1), s = 1, . . . , q − 1.
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We apply Proposition 4.16 and Proposition 4.17 with J = J ♯ ∪ {q − 1}, J ♯ being the set of
all the integers n ≥ 1 with p, q − 1 not dividing n, lq−1 = 1, βq−1,1 = 1, and for s ∈ J ♯,

(β1, . . . , βls) = (θi0 , . . . , θims ),

where the exponents 0 ≤ i0 < · · · < ims
≤ sq/(q − 1) are chosen so that

ζ(s) ∈ KLis(1) + · · ·+KLis(θ
[sq/(q−1)]) = KLis(θ

i0)⊕ · · · ⊕KLis(θ
ims ).

Remark 4.18. With β ∈ K as above, we can identify, replacing θ with t−1, the formal series
Fβ ∈ C((x)) with a formal series F ∗

β ∈ Fq[t][[x]] ⊂ K[[x]] (as in 3.2), over which the operator

τ defined there acts. Carlitz’s module φCar : θ 7→ θτ0 + τ1 acts on Fq[t][[x]] and it is easy to
compute the image of F ∗

β under this action. from this we get:

FΦCar(θ)β(x) = θFβ(x) + (x− θ)β(x),

which implies that, for all a ∈ A, FΦCar(a)β(x) ∈ aFβ(x) + Fq(θ, x). In some sense, the functions
Fβ are “eigenfunctions” of the Carlitz module (a similar property holds for the functions Lβ and
the functions (31), which also have Mahler’s functions as counterparts.

4.3.5. Final remarks. The fact that we could obtain Theorems 4.10 and 4.11 in a direct
way should not induce a false optimism about Mahler’s approach to algebraic independence; the
matrices of the linear τ -difference equation systems involved are diagonal and we benefitted of this
very special situation. In the general case, it seems more difficult to compute the transcendence
degree of the field generated by solutions f = t(f1, . . . , fm) ∈ K((x)) of a system like:

f(xd) = A(x) · f(x) + b(x)

(see for example, the difficulties encountered in [37, Section 5.2]). One of the reasons is that
tannakian approach to this kind of equation is, the time being, not yet explored.

This point of view should be considered since it has been very successful in the context of
t-motives as in Papanikolas work [39], which is fully compatible with Galois’ approach. We could
expect, once the tannakian theory of Mahler’s functions is developed enough, to reach more
general results by computing dimensions of motivic Galois groups (noticing the advantageous
fact that the field of constants is here algebraically closed).

However, there is an important question we shall deal with: is any “period” of a trivially
analytic t-motive (in the sense of Papanikolas in [39]) a Mahler’s value? For example, in 4.3.4,
we made strong restrictions on the β ∈ Kalg. so that finally, Denis Theorem in [19] is weaker
than Papanikolas Theorem 4.10. Is it possible to avoid these restrictions in some way?

We presently do not have a completely satisfactory answer to this question, but there seem
to be some elements in favour of a positive answer. We will explain this in the next few lines.

The method in 4.3.4 of deforming Carlitz logarithms logCar(β) into Mahler’s functions requires
that the β’s in Kalg. correspond to analytic functions at infinity. If β =

∑
i ciθ

−i lies in K∞ =

Fq((1/θ)), the series β̃(x) :=
∑

i cix
−i converges for x ∈ C such that |x| > 1 and β = β̃(θ).

This construction still works in the perfect closure of the maximal tamely ramified extension
F of Fq((x

−1)) but cannot be followed easily for general β ∈ Kalg. \ K∞. Artin-Schreier’s
polynomial Xp −X − θ does not split over F . Hence, if ξ ∈ Kalg. is a root of this polynomial (it
has absolute value |ξ| = q1/p), the construction fails with the presence of divergent series.
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Let us consider ℓ1 = logCar(ξ) and ℓ2 = logCar(θ) = logCar(ξ
p) − ℓ1. It is easy to show that

ℓ1, ℓ2 are K-linearly independent. By Theorem 4.10, ℓ1, ℓ2 are algebraically independent over
K. The discussion above shows that it is virtually impossible to apply Proposition 4.16 with the
base point α = θ.

We now show that it is possible to modify the arguments of 4.3.4 and apply Proposition 4.16
with the base point α = ξ.

To do so, let us consider, for β ∈ K, the formal series

F̃β(x) = β̃(x) +
∞∑

n=1

(−1)n
β̃(xq

n

)∏n
j=1(x

qj+1 − xqj − θ)
.

If |β| < q
q2

q−1 and if |x| > 1, x 6∈ {ξ1/q
j

+ λ, j ≥ 1, λ ∈ Fq}, these series converge. In particular,
under the condition on |β| above, they all converge at x = ξ since they define holomorphic
functions on the domain {x ∈ C, |x| > q1/pq}, which contains ξ. More precisely, the value at
x = ξ is:

F̃β(ξ) = logCar(β(ξ)).

We have the functional equations

F̃β(x
q) = (θ − xq

2

+ xq)(F̃β(x)− β(x))

which tells us that the functions F̃β define meromorphic functions in the open set {x ∈ C, |x| > 1}.
With all these observations, it is a simple exercise to apply Proposition 4.16 with α = ξ and
show the algebraic independence of ℓ1, ℓ2.

The reader can extend these computations and show the algebraic independence of other
logarithms of elements of Kalg.. However, the choice of the base point α has to be made cleverly,
and there is no general recipe yet. Here, the occurrence of Artin-Schreier extensions is particularly
meaningful since it is commonly observed that every finite normal extension of Fq((1/θ)) is
contained in a finite tower of Artin-Schreier extensions of Fq((1/θ

1/n)) for some n [24, Lemma
3].

Remark 4.19. Just as in Remark 4.18, the action of Carlitz’s module yields the following
formula

F̃(θq−θ)β+βq(x) = θF̃β(x) + (xq − x− θ)β̃(x).

Since there are natural ring isomorphismsK[X ]/(Xp−X−θ) ∼= Fq[ξ] ∼= A, it could be interesting

to see if there is some Fq-algebra homomorphism A → C[[τ ]] of which the functions F̃β are
“eigenfunctions”.
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