
HAL Id: hal-00481894
https://hal.science/hal-00481894v1

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Lp minimisation, instance optimality, and restricted
isometry constants for sparse approximation

Michael Davies, Rémi Gribonval

To cite this version:
Michael Davies, Rémi Gribonval. On Lp minimisation, instance optimality, and restricted isometry
constants for sparse approximation. SAMPTA, May 2009, Marseille, France. proc. �hal-00481894�

https://hal.science/hal-00481894v1
https://hal.archives-ouvertes.fr


On Lp minimisation, instance optimality, and
restricted isometry constants for sparse

approximation
Michael Davies(1), Rémi Gribonval(2)
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Abstract:

We extend recent results regarding the restricted isometry
constants (RIC) and sparse recovery usingℓp minimisa-
tion. Here we consider the case of the sparse approxima-
tion of compressible rather than exactly sparse signals.
We begin by showing that the robust null space property
used in [3] characterises the robustness of the estimation
of compressible signals byℓp mimisation for allℓp norms,
0 < p ≤ 1 and not justℓ1, in the sense of instance op-
timality. Furthermore we show that this characterisation
is in fact sharp in a particular sense. We are then able to
simply extend the results in [6] to show that matrices that
fail to exhibit good constants for instance optimality can
be found with relatively small RICs.

1. Introduction

This paper considers conditions under which the solution
ŷ of minimalℓp quasi-norm,0 < p ≤ 1, of an underdeter-
mined linear systemx = Φy is comparable with the best
m-term approximation,ym. This problem is at the core of
compressed sensing, whereΦ is called a sensing matrix,
x is a collection ofM linear measurements of some data
y that is assumed to be compressible (i.e. well approxi-
mated by some sparse vectorym). Most current guaran-
tees on the performance of the extimateŷ assume that the
sensing matrixΦ possesses a certain Restricted Isometry
Constant (RIC),δ2m. Recently in [6] the authors showed
that the current best sufficient conditions [10], in terms
of δ2m for guaranteed recovery of exactm-sparse signals
were close to optimal by finding a class of sensing ma-
trix Φ with small RIC for which sparse recovery can fail.
Here we extend these results by considering the more gen-
eral case of good sparse approximations instead of sparse
representations, in the sense of instance optimality.

2. Notation

Given a vectorx ∈ R
M and a matrixΦ ∈ R

M×N with
M < N , we are interested in sparse solutions to the equa-
tion x = Φy. We will denote by‖y‖p the ℓp sparsity

measure defined as:‖y‖p :=
(∑N

j=1 |yj |p
)1/p

where

0 < p ≤ 1. Whenp = 0, ‖y‖0 denotes theℓ0 quasi-
norm that counts the number of non-zero elements ofy.
Everywhere in this paper, the notation‖ · ‖p

p should be re-
placed with‖ · ‖0 whenp = 0. The coefficient vectory
is said to bem-sparse if‖y‖0 ≤ m. We will useN (Φ)
for the null space ofΦ. We will also make use of the sub-
script notationyΩ to denote a vector that is equal to some
y on the index setΩ and zero everywhere else. Denoting
|Ω| the cardinality ofΩ, the vectoryΩ is |Ω|-sparse and
we will say that the support of the vectory lies within Ω
wheneveryΩ = y. For matrices the subscript notation
ΦΩ will denote a submatrix composed of the columns of
Φ that are indexed in the setΩ.

3. Sparse recovery with ℓp minimisation

Throughout this paper we will consider signal estimates
obtained as a solution of the following optimisation prob-
lem (which is non-convex for0 ≤ p < 1):

y⋆
p = argmin

ỹ

‖ỹ‖p s.t.Φỹ = Φy. (1)

In the exactm-sparse case it has been shown [11] that if:

‖zΩ‖p < ‖zΩc‖p (2)

holds for all nonzeroz ∈ N (Φ) then any vectory⋆ whose
support lies withinΩ, is recovered as theuniquesolution
of (1). If (2) holds for allz ∈ N (Φ) and all index setsΩ
of sizem, one says thatΦ satisfies thenull space property
(NSP) of orderm, and a consequence is that anym-sparse
vectory is recovered as the unique minimiser of (1). Fur-
thermore the NSP is tight [12, 13].
When dealing with signals that are not exactly sparse one
would like to control the approximation error of (1). To
this end one defines the bestm-term approximation error
measured in theℓp quasi-norm as:

σm(y)p := inf
‖ỹ‖0≤m

‖y − ỹ‖p (3)

Following [5] one can ask whether it is possible to bound
the approximation error of (1) in terms of the bestm-term
approximation error. If for all vectorsy we have

‖y − y⋆
p‖q ≤ C · σm(y)q (4)



thenℓp minimisation is “instance optimal of orderm with
constantC for theℓq (quasi)norm” for the matrixΦ [5].
It has been shown that instance optimality is related to a
robust null space property(e.g. [3, 5]). The matrixΦ
satisfies the robust NSP of orderm with constantρ < 1
for theℓp norm, or conciselyΦ ∈ RobustNSP(m, ρ, p), if

‖zΩ‖p
p < ρ‖zΩc‖p

p (5)

for all nonzeroz ∈ N (Φ) and all index setsΩ of
size m. Note that by the results in [13] we have:if
Φ ∈ RobustNSP(m, ρ, p) for some0 < p ≤ 1, then
Φ ∈ RobustNSP(m, ρ, q) for all 0 ≤ q ≤ p.
If Φ ∈ RobustNSP(m, ρ, p) then for all vectorsy we have

‖y − ŷ‖p
p ≤ 2

(1 + ρ)

(1 − ρ)
σm(y)p

p (6)

whenever‖ŷ‖p ≤ ‖y‖p, and in particular for the min-
imum ℓp solution ŷ = y⋆

p given by (1). The proof for
0 ≤ p ≤ 1 directly follows the lines of the original proof
for p = 1 in [3] and is also easily extended from‖ · ‖p

p to
general “f -norms”‖ · ‖f as defined in [13]. It is omitted
here. Condition (5) is also tight in the following sense.

Lemma 1 (Sharpness of the robust NSP). Consider0 <
p ≤ 1 and0 < ρ < 1 such that

3ρ + 1 ≥ 2 ·
(

1 −
(

1 − ρ

2

)1/p
)p

. (7)

If (5) fails for somez ∈ N (Φ) and someΩ of size (at
most)m, then there existsy andŷ with Φy = Φŷ,

‖ŷ‖p ≤ ‖y‖p and‖y − ŷ‖p
p ≥ 2

(1 + ρ)

(1 − ρ)
σm(y)p

p. (8)

The proof is given in the appendix. It is likely that the
result can be extended top = 0, and it is not known if the
restriction (7) is necessary. Note that when the robust NSP
with constantρ is not satisfied, the Lemma does not rule
out the fact that the (unique)ℓp minimisery⋆

p might still
always satisfy (6).
Similar conditions for instance optimality of orderm were
given in [5, Theorem 3.2] for general norms, and since
their proof only uses the (quasi)triangle inequality they are
easily extended to quasi-norms, such asℓp quasi-norms for
0 ≤ p ≤ 1. However, while the conditions in [5, Theo-
rem 3.2] involve a robust NSP of order2m, with different
constants for the necessary and the sufficient condition,
Lemma 1 only involves the weaker robust NSP of order
m, with matching constants.
Figure 1 illustrates the values(p, ρ) that satisfy (7). When
ρ < 1/3, (7) fails for sufficiently smallp, but whenρ ≥
1/3 , it holds for any0 < p ≤ 1.

4. Role of Restricted Isometry Constants

Using (1), particularly whenp = 1, has become a popular
mean of solving for sparse representations and approxima-
tions. An important characteristic of a matrix that has been
used to guarantee good approximation performance in the
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Figure 1: Overview of the values of(p, ρ) for which the
robust NSP is known to be sharp according to Lemma 1.

form of (6) is the Restricted Isometry Property (RIP). For
a matrixΦ the restricted isometry constant (RIC),δk, is
defined as the smallest number such that:

(1 − δk) ≤ ‖ΦyΩ‖2
2

‖yΩ‖2
2

≤ (1 + δk) (9)

for every vectory and every index setΩ with |Ω| ≤ k.
If δ2m <

√
2 − 1, then by [3, Lemma 2.2] the robust NSP

(5) of orderm holds withρ =
√

2δ2m(1 − δ2m)−1 < 1.
The best known results for sparse approximation using (1)
appear in [10].
Here we extend our negative results from [6]: we are inter-
ested in matricesΦ with “small” RIC for which the robust
NSP (5) for a given0 < ρ < 1 fails for somez ∈ N (Φ).
As in [6], we look for such failing matrices amongst the
set of minimally redundant unit spectral norm matrices,
i.e., almost square matrices of size(N − 1) × N with
supy 6=0 ‖Φy‖2

2/‖y‖2
2 = 1. We exploit the fact [6, Re-

mark 1] that the minimal squared singular value of any
2m-submatrix of suchΦ, defined as

λ2
2m(Φ) := min

yΩ 6=0
|Ω|≤2m

‖ΦyΩ‖2
2

‖yΩ‖2
2

, (10)

yields the RICδ2m = (1 + λ2
2m)(1 − λ2

2m)−1 for an
appropriately rescaled matrix, and thatλ2

2m can be com-
pletely characterised by the one-dimensional null space.
Let z ∈ R

N (‖z‖2 = 1) span the spaceN (Φ), then:
λ2

k(Φ) = 1 − ‖zΩk
‖2
2 with Ωk the index of thek largest

components ofz. The problem of finding a matrix that
fails the robust NSP (5) of orderm while having maximal
λ2

2m(Φ) can therefore be transformed into a constrained
optimisation problem as in [6]. Similarly the optimal null
vector has a particularly simple form as indicated in the
following lemmatas.

Lemma 2 (Shape of the optimal null vectorz). Assume
thatρ > m/(N − m). Now considerk ≥ 2m and denote
Λ0 := J1, mK, Λ1 := Jm + 1, kK andΛ2 := Jk + 1, NK.
Let z⋆ ∈ R

N be a solution to the following optimisation



problem, with0 ≤ p ≤ 1:

minimise: J(z) :=
‖zΛ0

‖2

2
+‖zΛ1

‖2

2

‖zΛ2
‖2
2

(11)

subject to:
‖zΛ1

‖p
p+‖zΛ2

‖p
p

‖zΛ0
‖p

p
≤ 1

ρ (12)

‖z‖2
2 = 1 (13)

and zi ≥ zi+1 ≥ 0 (14)

Thenz⋆ is piecewise flat and has the form:

z⋆ = [α, . . . , α
︸ ︷︷ ︸

m

, β, . . . , β
︸ ︷︷ ︸

L

, γ, 0, . . . , 0]T (15)

for some constantsα ≥ β > γ ≥ 0 and someL such
that k + 1 ≤ m + L ≤ N . Furthermore (12) holds with
equality forz⋆.

This lemma is identical to Lemma 3 in [6], except for the
inclusion ofρ in (12) and the assumptionρ > m/(N−m).
The proof is essentially the same and is omitted here.
Whenρ ≤ m/(N − m) we have the following result.

Lemma 3 (Shape of the optimal null vectorz, trivial case).
Supposeρ ≤ m/(N − m) then the solution to the optimi-
sation problem(11) - (14) is given byz⋆

i = 1/
√

N .

Proof. The vector with componentsz⋆
i = 1/

√
N is the

solution of the optimisation problem if we ignore the in-
equality constraint (12). However then we also have:

‖zΛ1
‖p

p + ‖zΛ2
‖p

p

‖zΛ0
‖p

p
=

N − m

m
≤ 1

ρ
(16)

by our assumption onρ, therefore the constraint (12) is
automatically satisfied.
From Lemma 3 it can be inferred with arguments similar
to those developped in [6] that

sup
m,N,Φ

λ2
2m(Φ) = 1 − inf

m,N,z
‖zΩ2m

‖2
2

= 1 − inf
m,N

2m

N

=
1 − ρ

1 + ρ
(17)

where the supremum/infimum is over all integersm, N
with m/(N − m) ≥ ρ and all minimally redundant unit
spectral norm matrices,Φ of size(N−1)×N / all vectors
z satisfying (12)-(14). By [6, Remark 1], the smallest RIC
for an appropriately rescaled sensing matrixΦ under these
constraints satisfies:infm,N,Φ δ2m(Φ) = ρ.
If insteadρ > m/(N − m) then the analysis directly fol-
lows that of [6] and the following result holds:

Lemma 4 (Calculating the largestλ2
2m). Consider1 >

ρ ≥ m/(N − m), k = 2m < N , 0 < p ≤ 1 and letηp be
the unique positive solution to:

η2/p
p +

2

p
· ρ2/p · ηp + (1 − 2

p
)ρ2/p = 0 (18)

Letz ∈ R
N be of the form(15)with α ≥ β > γ ≥ 0 and

m + 1 ≤ L ≤ N − m, and assume thatz satisfies(12)
with equality and(13). Then

‖zΩ2m
‖2
2 ≥ 2ηp

2 − p
(19)
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Figure 2: Curves demarking pairs of values{p, δ2m} for
which there exist matrices that fail the robust null space
property of orderm for different values of the constantρ.

If ηp is rational, equality is achieved for somez⋆
p. Other-

wise, the inequality can be replaced with>, but one can
get arbitrarily close to the lower bound with appropriate
choices ofk = 2m < N and z satisfying all the above
conditions.

Althoughηp does not have a nice analytic form for generic
p, it can be computed numerically. Figure 2 displays (as
a function ofp, and for various constantsρ) the values of
δ2m for which it is possible to find sensing matrices that
do not satisfy the robust NSP of orderm . We need to
be careful in our interpretation of these results, since by
changingp we also change the quasi-norm in which the
approximation performance is measured, but It is interest-
ing to note that the effect ofp is reduced as the value ofρ
is reduced.

5. Discussion

Instance optimality expresses the robustness ofℓp min-
imisation when the signal to be estimated from noiseless
incomplete measurements is not exactly sparse but only
“compressible”. Robustness is quantified by the constant
in (4), which should be as small as possible. In extending
previous results on instance optimality ofℓp minimimisa-
tion fromp = 1 to 0 ≤ p ≤ 1, we highlighted the role of
a robust null space property to characterise this constant.
Note that the robust NSP just depends on the null space of
Φ, and is preserved whenΦ is replaced withAΦ whereA
is any square invertible matrix. To the opposite, restricted
isometry constants are “metric” properties ofΦ with re-
spect to Euclidean norms, and it is only natural that the
robust NSP can hold even for some matrices with large
RIC. It should be straightforward to show that the robust
NSP can hold at orderm for anyρ < 1 even whenδ2m is
arbitrarily close to one, in the spirit of [6, Lemma 1].
Phase transitions for theℓ1 recovery of exact-sparse sig-
nals from incomplete measurements have been charac-
terised for various types of random sensing matrices as
a function of the relative sparsitym/N and the compres-
sion ratioM/N for largeN . The proofs involve a sub-



tle analysis of the geometry of random polytopes [9] as-
sociated with these matrices, but as we have seen the re-
sults are also sharply related with the phase transitions in
terms of the satisfaction of a null space property of order
m for ρ = 1. We believe that these results can be extended
to phase transitions for the robust null space property for
p = 1 and various values ofρ < 1. This should yield
phase transitions associated with the robust estimation of
compressible (rather than just exact-sparse) signals from
incomplete measurements withℓ1 minimisation. It would
be particularly interesting to see how the strong thresh-
old for phase transitions [9] depends onρ, and a related
question is how the threshold associated to possible phase
transitions forℓp minimisation varies withp.
To conclude, let us note that while the results presented
here rather highlight the limits of the RIC to predict the
recovery of noiseless compressible signals, an important
practical issue is robustness to noise,i.e., whenx = Φy+
e. In this case, robust recovery is guaranteed for small RIC
[3], and this condition is likely to be necessary too. This
will be the object of further investigations.

6. Acknowledgments

This work was supported in part by the European Union
through the project SMALL (Sparse Models, Algorithms
and Learning for Large-Scale data). The project SMALL
acknowledges the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under FET-Open grant number: 225913.
MED acknowledges support of his position from the Scot-
tish Funding Council and their support of the Joint Re-
search Institute with the Heriot-Watt University as a com-
ponent part of the Edinburgh Research Partnership.

A Proof of Lemma 1

Without loss of generality we assume thatΩ indexes the
m largest components ofz and that‖zΩ‖p

p = ρ‖zΩc‖p
p

(otherwise we obtain a largerρ′ by changing eitherΩ or
ρ, yielding a larger constant2(1 + ρ′)/(1 − ρ′)) in (8).
We defineyΩ := αzΩ, yΩc = βzΩc andŷ := y + z with
|α| ≥ |β| and|β|p := (1− ρ)/2. We haveΦy = Φŷ, and
the m largest components ofy are supported inΩ thus
σm(y)p

p = ‖yΩc‖p
p = 1−ρ

2 · ‖zΩc‖p
p. As a result

‖y − ŷ‖p
p = ‖z‖p

p = ‖zΩ‖p
p + ‖zΩc‖p

p

= (ρ + 1)‖zΩc‖p
p = 2

(1 + ρ)

(1 − ρ)
σm(y)p

p

To conclude we need to chooseα so that‖ŷ‖p
p ≤ ‖y‖p

p.
SinceŷΩ = (α − 1)zΩ andŷΩc = (β − 1)zΩc we have

‖ŷ‖p
p = |α − 1|p · ‖zΩ‖p

p + |β − 1|p · ‖zΩc‖p
p

= (ρ · |α − 1|p + |β − 1|p) · ‖zΩc‖p
p;

‖y‖p
p = |α|p · ‖zΩ‖p

p + |β|p · ‖zΩc‖p
p

= (ρ · |α|p + |β|p) · ‖zΩc‖p
p

and the constraint is

ρ · (|α|p − |α − 1|p) ≥ |β − 1|p − |β|p. (20)

Since|β| = (1−ρ
2 )1/p < 1/2 the right-hand-side is pos-

itive. Therefore, if (20) is satisfied, its left-hand-side
must also be positive and we must haveα ≥ 1/2, which
guarantees that|α| ≥ |β|. The left-hand side is maxi-
mum forα = 1, and the right-hand-side is minimum for
β = +(1−ρ

2 )1/p and we let the reader check that plugging
these values ofα andβ in (20) yields the condition (7).
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