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Abstract: 0 < p < 1. Whenp = 0, |ly|lo denotes the® quasi-

. . . norm that counts the number of non-zero elementg.of
We extend recent results regarding the restricted 'SometryEveryWhere in this paper, the notation | should be re-
! P

c_onstants (RIC) an_d sparse recovery usﬁﬁgnln|m|sa-_ placed with|| - [|o whenp — 0. The coefficient vectoy
tion. Here we consider the case of the sparse approxima:

i ¢ ivle rather th f nal is said to bemn-sparse ifl|yllo < m. We will use \V/(®)
lon of compressible rather than exactly Sparse Signais. ¢, e | space ofb. We will also make use of the sub-

We begin by showing that the robust null space proloertyscript notationy, to denote a vector that is equal to some

used in [3] c_hara<_:ter|ses the_ro_bus.tness of the estlmanorg, on the index se2 and zero everywhere else. Denoting
of compressible signals l mimisation for all/? norms,

. . . Q| the cardinality of2, the vecto is |2|]-sparse and
0 < p < 1 and not just/!, in the sense of instance op- € y Ve 1S [2]-Sp

imalitv. Furth h hat this ch -~ we will say that the support of the vectprlies within 2
timality. Furthermore we show that this characterisation whenevery, — y. For matrices the subscript notation

is in fact sharp in a partlc_ular sense. We are the_n able tocI,Q will denote a submatrix composed of the columns of
simply extend the results in [6] to show that matrices that & that are indexed in the st

fail to exhibit good constants for instance optimality can

be found with relatively small RICs. . L
3. Sparserecovery with /» minimisation

1. Introduction Throughout this paper we will consider signal estimates
obtained as a solution of the following optimisation prob-

This paper considers conditions under which the solutionlem (which is non-convex fab < p < 1):

y of minimal ¢ quasi-norm() < p < 1, of an underdeter- . R -

mined linear systenmt = ®y is comparable with the best yp = argmin||y[, st. @y = y. 1)

m-term approximationy.,,. This problem is at the core of Y

compressed sensing, wheeis called a sensing matrix, In the exactn-sparse case it has been shown [11] that if:

x is a collection ofM linear measurements of some data

y that is assumed to be compressible (i.e. well approxi- 1Zelly < llzg- [, @

mated by some sparse vectay,). Most current guaran- o\ ds for all nonzera € A'(®) then any vectoy* whose
tees on the performance of the extimgtassume that the support lies withirt, is recovered as theniquesolution
sensing matrixp possesses a certain Restricted Isometry (1). If (2) holds for allz € A’(®) and all index set§
Constant (RIC)d2,,.. Recently in [6] the authors showed  f gizesn, one says thab satisfies thewll space property
that the current best sufficient conditions [10], in terms (NSP) of ordern, and a consequence is that amysparse

of 93, for guaranteed recovery of exaetsparse signals  yectory is recovered as the unique minimiser of (1). Fur-
were close to optimal by finding a class of sensing ma- hermore the NSP is tight [12, 13].

trix ® with small RIC for which sparse recovery can fail. \yhen dealing with signals that are not exactly sparse one
Here we extend these results by considering the more geng,q.1d like to control the approximation error of (1). To

eral case of good sparse approximations instead of sparsgis end one defines the bestterm approximation error

representations, in the sense of instance optimality. measured in thé quasi-norm as:
. o = inf -y 3
2. Notation m¥)p = inf lly =7l 3)

Following [5] one can ask whether it is possible to bound
the approximation error of (1) in terms of the besterm
approximation error. If for all vectorg we have

Given a vectox € RM and a matrix® € RM*N with
M < N, we are interested in sparse solutions to the equa
tion x = ®y. We will denote by||y||, the 7 sparsity

measure defined asly[, = (3, |y;|?)""” where Iy =¥plla < C - omly)q (4)



then/? minimisation is “instance optimal of ordet with
constantC for the ¢? (quasi)norm” for the matrixp [5].

It has been shown that instance optimality is related to a

robust null space propertfe.g. [3, 5]). The matrix®
satisfies the robust NSP of order with constanty < 1
for the /P norm, or conciselyp € RobustNSPm, p, p), if

(5)

for all nonzeroz € N(®) and all index sets} of
size m. Note that by the results in [13] we havef
® € RobustNSPn, p,p) for some0 < p < 1, then
® € RobustNSEn, p, q) forall 0 < g < p.

If ® € RobustNSPm, p, p) then for all vectorss we have

Izalll; < pllza-|;

—~

1+p)
I—p

ly —¥llp <2 om(y)h (6)

—~
~

whenever|y|l, < |y|,. andin particular for the min-
imum ¢7 solutiony =y, given by (1). The proof for
0 < p < 1 directly follows the lines of the original proof
for p = 1in [3] and is also easily extended from ||b to
general ‘f-norms”|| - || ; as defined in [13]. It is omitted
here. Condition (5) is also tight in the following sense.

Lemma 1 (Sharpness of the robust NSRJonsider) <
p < 1land0 < p < 1 such that
1- p) Y p>p

3p+122-<1—(—

If (5) fails for somez € N(®) and some? of size (at
most)m, then there existg andy with ®y = &y,

(@)

(1+p)
(1-p)

The proof is given in the appendix. It is likely that the
result can be extended o= 0, and it is not known if the
restriction (7) is necessary. Note that when the robust NS
with constantp is not satisfied, the Lemma does not rule
out the fact that the (uniquéy minimisery, might still
always satisfy (6).

Similar conditions for instance optimality of orderwere
given in [5, Theorem 3.2] for general norms, and since
their proof only uses the (quasi)triangle inequality they a
easily extended to quasi-norms, suclifaguasi-norms for

0 < p < 1. However, while the conditions in [5, Theo-
rem 3.2] involve a robust NSP of ordem, with different

91, < llyll, andly — ¥l > 2 om(y)p- (8)

constants for the necessary and the sufficient condition

Lemma 1 only involves the weaker robust NSP of order
m, with matching constants.

Figure 1 illustrates the valuép, p) that satisfy (7). When

p < 1/3, (7) fails for sufficiently smalp, but whenp >
1/3,itholds foranyd < p < 1.

4. Roleof Restricted | sometry Constants

Using (1), particularly whep = 1, has become a popular

P

Letz € RY (||z]2
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Figure 1: Overview of the values @p, p) for which the
robust NSP is known to be sharp according to Lemma 1.

form of (6) is the Restricted Isometry Property (RIP). For
a matrix ® the restricted isometry constant (RIG),, is
defined as the smallest number such that:

[®yel3
lyall3

for every vectory and every index sé® with |Q] < k.

If 32,, < /2 — 1, then by [3, Lemma 2.2] the robust NSP
(5) of orderm holds withp = v/265,, (1 — 82,,) "1 < 1.
The best known results for sparse approximation using (1)
appear in [10].

Here we extend our negative results from [6]: we are inter-
ested in matrice® with “small” RIC for which the robust
NSP (5) for a giver) < p < 1 fails for somez € N (®).

As in [6], we look for such failing matrices amongst the
set of minimally redundant unit spectral norm matrices,
i.e, almost square matrices of siz& — 1) x N with
supy o | ®@y|l3/]lyll3 = 1. We exploit the fact [6, Re-
mark 1] that the minimal squared singular value of any
2m-submatrix of suchb, defined as

[®yal3

0 2
&g’ém llyalls

(1—=6p) <

< (1+61) )

(10)

yields the RICd2, = (1 + A3,,)(1 — A3,,)~! for an
appropriately rescaled matrix, and thg,, can be com-
pletely characterised by the one-dimensional null space.
1) span the spacd/(®), then:

A2 (®) = 1 — ||zq,||3 with 2, the index of thek largest
components of. The problem of finding a matrix that
fails the robust NSP (5) of order while having maximal
A3, (@) can therefore be transformed into a constrained
optimisation problem as in [6]. Similarly the optimal null
vector has a particularly simple form as indicated in the
following lemmatas.

Lemma 2 (Shape of the optimal null vectay). Assume

mean of solving for sparse representations and approximathatp > m/(N — m). Now considek > 2m and denote
tions. Animportant characteristic of a matrix that hasbeenAq := [1,m], A; := [m + 1,k] andAs := [k + 1, N].
used to guarantee good approximation performance in the_et z* € R¥ be a solution to the following optimisation



problem, with0 < p < 1:

. lzag i3 +lza, 113

minimise: J(z) : . (11)
lzas 113
subjectto;  1ZalitlE=asly o 1 (12)
[EXYIH P
z]|3 = 1 (13)
and Zi 2 Zig1l 2 0 (14)
Thenz* is piecewise flat and has the form:
Z*:[Oé,...,06767...7677,07...70]1-‘ (15)
——
m L
for some constanta > 3 > ~ > 0 and somelL such
thatk + 1 < m+ L < N. Furthermore (12) holds with

equality forz*.

This lemma is identical to Lemma 3 in [6], except for the
inclusion ofp in (12) and the assumptign> m /(N —m).
The proof is essentially the same and is omitted here.
Whenp < m/(N — m) we have the following result.

Lemma 3 (Shape of the optimal null vectar trivial case)
Suppose < m/(N — m) then the solution to the optimi-
sation problen(11)- (14)is given byz* = 1/v/N.

Proof. The vector with components: = 1/v/N is the
solution of the optimisation problem if we ignore the in-
equality constraint (12). However then we also have:

Za, 5 + 122117

1z, 15

(16)

by our assumption op, therefore the constraint (12) is
automatically satisfied. O
From Lemma 3 it can be inferred with arguments similar
to those developped in [6] that

sup AZ,,(@)=1— inf |zq,, |3
m,N,® m,N,z

1 .f2m

- 'r}zr,lNN

l—p

= — 17
T+ (17)

where the supremum/infimum is over all integets N
with m/(N — m) > p and all minimally redundant unit
spectral norm matrice® of size(N —1) x N / all vectors

z satisfying (12)-(14). By [6, Remark 1], the smallest RIC
for an appropriately rescaled sensing madixnder these
constraints satisfiesnf,,, v & d2m (®) = p.

If insteadp > m/(N — m) then the analysis directly fol-
lows that of [6] and the following result holds:

Lemma 4 (Calculating the largesi3,,). Considerl >
p>m/(N—m),k=2m< N,0<p<1andletn, be
the unique positive solution to:

2
1—2)p*? =0
P

2
77,2/’”+]—?-p2/”~77p+( (18)
Letz € RY be of the form(15)with e > 3 > v > 0 and
m+1< L < N —m, and assume that satisfieq(12)
with equality and13). Then

21,

|20, 15 > 5 s (19)

RICs for which the |p robust null space property can fail
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Figure 2: Curves demarking pairs of valugs d2,, } for
which there exist matrices that fail the robust null space
property of ordern for different values of the constapt

If 1, is rational, equality is achieved for somg. Other-
wise, the inequality can be replaced with but one can
get arbitrarily close to the lower bound with appropriate
choices oft = 2m < N andz satisfying all the above
conditions.

Althoughn, does not have a nice analytic form for generic
p, it can be computed numerically. Figure 2 displays (as
a function ofp, and for various constantg the values of
02, for which it is possible to find sensing matrices that
do not satisfy the robust NSP of order . We need to

be careful in our interpretation of these results, since by
changingp we also change the quasi-norm in which the
approximation performance is measured, but It is interest-
ing to note that the effect gf is reduced as the value pf

is reduced.

5. Discussion

Instance optimality expresses the robustness? afnin-
imisation when the signal to be estimated from noiseless
incomplete measurements is not exactly sparse but only
“compressible”. Robustness is quantified by the constant
in (4), which should be as small as possible. In extending
previous results on instance optimality&fminimimisa-

tion fromp = 1t0 0 < p < 1, we highlighted the role of

a robust null space property to characterise this constant.
Note that the robust NSP just depends on the null space of
®, and is preserved wheh is replaced withA ® whereA

is any square invertible matrix. To the opposite, restdcte
isometry constants are “metric” properties®fwith re-
spect to Euclidean norms, and it is only natural that the
robust NSP can hold even for some matrices with large
RIC. It should be straightforward to show that the robust
NSP can hold at orden for anyp < 1 even whenjs,, is
arbitrarily close to one, in the spirit of [6, Lemma 1].

Phase transitions for th@ recovery of exact-sparse sig-
nals from incomplete measurements have been charac-
terised for various types of random sensing matrices as
a function of the relative sparsity,/N and the compres-
sion ratioM /N for large N. The proofs involve a sub-



tle analysis of the geometry of random polytopes [9] as- Since|§| = (1*7”)1/? < 1/2 the right-hand-side is pos-
sociated with these matrices, but as we have seen the rative. Therefore, if (20) is satisfied, its left-hand-side
sults are also sharply related with the phase transitions ifmust also be positive and we must have> 1/2, which
terms of the satisfaction of a null space property of orderguarantees thdty] > |5|. The left-hand side is maxi-
m for p = 1. We believe that these results can be extendedmum fora = 1, and the right-hand-side is minimum for
to phase transitions for the robust null space property forg = +(1—;3)1/P and we let the reader check that plugging
p = 1 and various values gf < 1. This should yield these values ok andg in (20) yields the condition (7).
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Without loss of generality we assume tlfaindexes the
m largest components of and that||zo||} = pl|za-[}
(otherwise we obtain a largef by changing eithef2 or
p, yielding a larger consta(1 + p') /(1 — p’)) in (8).
We defineyq := azq, ya- = Bzqc andy := y + z with
la] > |8 and|8P := (1 — p)/2. We have®y = @y, and
the m largest components gf are supported if2 thus
om(Y)h = [lyaelb = 152 - [|zae||5. As a result
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