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Abstract

Polarization analysis in Raman spectroscopy provides a powerful tool
in chemical physics to identify the symmetry of the vibration modes of
the crystals, according to their crystallographic structure and local spa-
tial orientation. In this paper we propose two new approaches in polar-
ized Raman spectroscopy for data with rotational and spatial diversity,
respectively. We show that the joint use of parallel and crossed polariza-
tion data yields more accurate source separation results and improves the
unicity properties of the solution in blind nonnegative source separation
algorithms. The proposed approaches are validated on two real polarized
Raman data sets.

Keywords : Raman spectroscopy, polarization, Raman imaging, nonnegative
mixture identifiability, admissible solutions, uniqueness, MCR, NMF, PARAFAC

1 Introduction

Raman scattering is a light-matter interaction process which reflects the molec-
ular vibration properties of the material, thus characterizing the chemical com-
position of the analyzed sample [1, 2]. When coupled with a confocal microscope
having motorized stages, Raman spectra can be recorded at each (x,y) point
on a sample grid, yielding Raman mapping [3]. For materials presenting a reg-
ular molecular structure, a more accurate characterization of the sample can
be achieved by using polarizers. In particular, this is the case for crystals as
their response to the polarized light excitation will reflect the crystallographic
structure of the sample, motivating the development of polarized Raman spec-
troscopy and mapping.

In most cases the incident laser beam is linearly polarized and the Raman
scattered light can be recorded in parallel or perpendicular directions by a
polarized analyzer. In this paper two polarized data acquisition schemes are
considered. They are respectively referred to as rotational diversity and spatial



diversity data acquisition. The multidimensional signals recorded this way must
be processed in order to get insights into the physico-chemical properties of the
analyzed sample. Information about the local orientation of the sample under
the microscope objective, through the retrieval of the local components of the
Raman polarizability tensor [4], can thus be obtained.

Due to the multivariate nature of the data, a model which is now widely
spread in spectroscopy consists in considering the data as a mixture of pure
components referred to as sources, whose concentrations are varying with re-
spect to some physical parameter referred to as diversity. The data processing
consists in the retrieval of these sources and their concentrations. This problem
is called multivariate curve resolution (MCR) [5] in chemometrics while in the
literature of signal processing it is called nonnegative source separation or non-
negative matriz factorization [6]. The nonnegative prefix is used to stipulate the
fact that source spectra and concentrations are positive by nature.

As mentioned earlier, one can record the scattered light polarized parallel
or perpendicular to the incident laser polarization. Both polarizations are gen-
erally recorded but they are often processed separately. Presently, in chemical
physics, for the separation of the different components from the observed mix-
ture, the multivariate curve resolution- alternating least squares (MCR-ALS)
method [5] is extensively used. SIMPLISMA -like techniques [7], based on the
strong pure-variable assumption are employed to initialize the MCR-~ALS algo-
rithm. However, even if in practice the method gives generally good results,
there is no guarantee that the algorithm converges to the ”true” solution. In
this paper we show that the joint processing of both polarizations can overcome
this drawback under mild conditions and improve the estimation accuracy. We
propose two signal processing models for the Raman polarized spectra acquired
with angular and spatial diversity. Algorithmic solutions for the fitting of this
data are given based on nonnegative matrix factorization and multilinear CAN-
DECOMP /PARAFAC decomposition.

The rest of the paper is organized as follows : in section 2 the principles of
polarized Raman data acquisition are briefly illustrated, in section 3 we present
the model and the fitting algorithms for the rotational diversity polarized data
and in section 4 the same thing is done for the Raman imaging data. Section 5
presents results of the proposed approaches on real spectra and some concluding
remarks are given in section 6.

2 Polarized data acquisition

The Raman measurements were carried out with a Jobin-Yvon spectrometer and
the Raman excitation source was a Spectra-Physics ionized argon laser fixed at
wavelength A = 514.5 nm. The analyzed crystal sample is fixed on a rotating
stage as shown in Fig. 1. Two coordinate systems are used, one associated
with the laboratory space-fixed coordinates (0, X,Y, Z) and another attached
to the analyzed sample (0,x,y,z). The incident light is polarized such that
the electric field arriving on the sample is oriented along the Y direction. The
scattered light is analyzed by positioning an analyzer in front of the entrance slit
of the spectrometer. The analyzer is oriented either along the Y-axis (parallel
polarization) or the X-axis (crossed polarization). Thus, the acquisition in one
point of the sample yields a pair of spectra, one for the parallel polarization,



indexed by Y and another for the crossed polarization, indexed by X.

Depending on the application, two acquisition schemes can be envisaged.
The rotational diversity scheme consists in rotating the sample around the Z-
axis (Fig.1) with a fixed angular step (typically 10°) and acquiring two polarized
spectra for each step of the rotation. This type of acquisition is mainly used
to characterize the polarizability tensor (see. subsection 2.1) of the analyzed
crystal sample system. Another acquisition scheme, used in Raman microscopy
mapping, is the spatial diversity. It consists in recording polarized spectra with
point-by-point scanning mode over a chosen sample area with a fixed step. This
procedure permits to obtain maps of the spatial distribution of a particular
component within mixture, of the analyzed sample.

2.1 Physical considerations

To develop the mathematical models for the polarized Raman data, it is nec-
essary to briefly remind the physical phenomenon related to Raman scattering
of polarized light. A useful quantity in this context is the polarizability tensor.
The polarizability tensor is a 3 x 3 real-valued matrix a, relating the induced
electric dipole moment p in the crystal to the electric field vector e of the in-
cident light. In the crystal-fixed coordinate system (0, z,y, z) the polarizability
tensor can be written as:

Qg OQgy Oy
a = Qyz  Qyy  Qyz . (1)
Qzy  Qzy Oy

A Raman polarizability tensor is associated to a particular vibrational mode for
a given crystal orientation [1]. The vibrational modes will be thought of as
sources in the source separation problems presented in this paper. As the mea-
surements are performed in the laboratory coordinates system (0, X,Y, Z), a ro-
tation matrix R(¢, 8, x) [1], accounts for the coordinate system change between
the sample and the laboratory frames. Denoting the Euler angles describing

. . . A
the sample rotations in the coordinate system (0, X,Y, Z) by 6 = (¢, 6, x), the
electric vector induced in the crystal can be expressed as:

p(®) =R7(®) aR(O) e . (2)

If we denote by px,py,pz, the three components of p along X,Y and Z
axis, the intensity of the scattered light, measured by the spectrometer, is given
by the following proportionality relationship:

i0)=(ix iv iz ) o (2% p¥ #})". (3)

In practical applications only ¢x and ¢y are measured, corresponding to the
crossed and parallel polarizations, respectively.

We will suppose in the following that the recorded scattered light is a mixture
of N sources (vibrational modes) and K wavelengths/wavenumbers are acquired
for each spectrum in one point on the crystal surface.



3 Rotational diversity data

In this section we focus on the angular diversity data whose model is based on
the physicochemical knowledge on the analyzed crystal sample, expressed by
the non-zero components of the polarizability tensor.
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Figure 1: Polarized Raman spectroscopy principle

3.1 The bilinear model

For the rotational diversity acquisition scheme, M polarized spectra are acquired
for M different rotation angles (01, ...,0,7) of the analyzed sample. Under the
generally accepted assumption of instantaneous linear mixture, the acquired
data can be structured as two M x K matrices, corresponding to the two po-
larization orientations X and Y:

D,=A,S] +E, with p=X)Y . (4)

In (4), matrix E, € RM*X accounts for the additive noise on the sensors
and the model errors and

i1p(01) oo ingp(0h)
Ap: : - : GRIWXN , (5>

i1p@n) - inp(On)
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are two matrices containing on their columns the angular and the spectral evo-
lution of the scattered light for each one of the N sources, respectively, and
for the two polarization orientations. Thus, equation (4) illustrates two bilinear
models for the two polarization types, leading a prioi to two independent source
separation problems.

However, if we further analyze the underlying physico-chemical phenomenon
generating the two data sets, it can be observed that the spectra of pure com-
pounds are the same for the crossed and the parallel polarization [1, 2], since
the vibrational modes are imposed by the structure of the crystal. This implies
Sx =Sy =S, which is quite intuitive if we consider a geometrical point of view
in which the crossed and parallel polarized spectra are projections of the same
signal on two orthogonal axis. By injecting this information into (4), one gets:

(o )=(ay )+ (=) - "

Eq. (7) points out a bilinear model for the polarized spectra with rotational di-
versity considering both polarized spectra families jointly. Besides the fact that
this is a more natural and compact representation of the data, the sample size
is doubled in (9) compared to (4) which should normally improve the accuracy
of the estimated source parameters.

In order to simplify the presentation we use the following notations:

po(py ) A (h) = (B) @

Equation (7) can thus be re-written in a more concise manner as :

D=AS"+E . (9)

Given the nature of the data, the sources and the mixing coefficients are
positive-valued, meaning that (9) expresses a NMF (Nonnegative Matrix Fac-
torization) model [6].

3.2 Identifiability of the NMF mixture model

A source mixture model is identifiable if the sources can be uniquely estimated
(up to permutation and scaling indeterminacies) from the observations. In order
to discuss the the identifiability of the NMF model (9) the notion of simplicial
cone needs to be introduced.

DEFINITION 1(Simplicial cone)
The simplicial cone generated by a family of vectors {s,})_, is

C({sn}) = {x tX = Zansn,an > 0} .



The order of a simplicial cone is the dimension of the subspace span({s,}2_,).
Based on the simplicial cone, a necessary and sufficient condition for NMF
identifiability has been provided by Chen in [8]:

THEOREM 1(Necessary and sufficient unicity condition)

Denoting IKC the convex hull of the data matriz X, the decomposition of X
according to X = AST, A > 0, S > 0 is unique if and only if the simplicial
cone C(S), such as KK C C(8S), is unique.

However, Theorem 1 does not provide any numerical conditions to determine
if a NMF is unique or not. This motivated the work of [9, 10] from which it
appears that uniqueness relies on the number of zero entries in both matrices
A and S. Moreover, nonnegativity alone is not enough to guarantee the iden-
tifiability of the NMF model. When uniqueness is not achieved, there is a set
of possible solutions, referred to as admissible solutions. The set of admissible
solutions can be determined analytically [11] for the special case of two sources
while for higher size NMF it can only be solved numerically [12]. In this section
we provide a geometrical interpretation of the set of admissible solutions which
is used to explain why the joint use of parallel and crossed polarization data
is expected to improve the NMF problem in the sense of reducing the set of
admissible solutions.

For simplicity and without loss of generality, we restrain our explanations to
the case of three sources, as illustrated in section 5 on real data. Consider the
NMF noiseless model :

D = AST with A eR™*® and SecRE*3, (10)

Each raw of data matrix D can be seen as a point in a K-dimensional
space. The fact that the data are nonnegative means that every such point
lies in the positive orthant REX of R¥. The factorization (10) implies that all
the raws of D lie in the simplicial cone generated by the columns of S, namely
C(s1,82,83). Thus, the admissible solutions for (si,s2,s3) are confined in the
three-dimensional subspace obtained as the intersection of RY with span(S).
Let {e1,es,e3} be a canonical unitary basis of RX N span(S) (the vectors
ej, e, ez are contained in the canonical planes of R¥), then all the data lie
inside C(sy, s2,s3) (Fig. 2).

In Fig. 3 we consider a mapping of the three-dimensional space to the plane
(1,1,1). By this mapping a plane in R? is mapped to a line and a simplicial
cone is mapped to a triangle. Let us suppose first that there are enough data
to fully cover the triangle (si,s2,s3). Then any third order simplicial cone in-
cluding C(s1,s2,s3) (the hatched area in Fig.3) is an admissible solution for
NMEF (10). This means that the problem is intrinsically ill-posed and the only
sources that can be uniquely recovered are those overlapping with one of the ba-
sis vectors (e1, €2, e3). The regularization of the problem by imposing sparseness
constraints on the sources [13] reduces the solution space by dragging (s1, s2, S3)
towards the basis vectors.

Suppose now that C(sy, sz, s3) is the same as C(eq, 2, e3), meaning that the
hatched area on Fig. 3 vanishes. Suppose also that the data points do not fill
completely C(s1,s2,s3) (Fig. 4). Then, any third order simplicial cone con-
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Figure 2: Geometrical illustration of RX Nspan(S). The vectors eq, 2, e3 form
a canonical unitary basis and si, s, s3 are the sources.
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Figure 3: Mapping to the plane (1,1,1) of the three-dimensional space. The
hatched area corresponds to the admissible solutions domain.
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Figure 4: Illustration of the indeterminacy due to the mixing coefficients. The
dotted area and the dashed area represent the crossed and parallel polariza-
tion data sets, and C(d1, d2, ds) is the simplicial cone containing the maximum
number of data points on its facets.

taining all the data is an admissible solution to problem. A sufficient condition
for uniqueness presented in [9] is to have at least two data points on each of
the three edges of the triangle (s1,s2,s3). In this case there is only one third
order simplicial cone, namely C(s1, 82, s3), that includes all the observations. In
general, the size of the admissible solutions set depends on the coverage degree
of the triangle (s1,s2,s3) by the data points. The better the data covers the
triangle the smaller the solution set. This explains the improvements in the
NMF admissible solutions obtained in section 5 by the joint use of crossed and
parallel polarization data sets. Because different sources (vibrational modes)
are characterized by different polarizability tensors it means that the sources
present distinct behaviors in at least one polarized data set. Thus, it is highly
probable that the observed mixtures for the crossed and parallel polarizations
cover distinct areas of the simplicial cone C(s1,S2,83). An intuitive geometrical
interpretation is given in Fig. 4, where convex hulls of the two data sets (crossed
and parallel) are represented by a dashed and a dotted line, respectively. It is
obvious that by using both data sets jointly the incertitude on the sources (the
shadowed area) is reduced compared to one set only. This result is illustrated
in section 5 where NMF is applied on real data in several runs with different
initial values.

By imposing sparseness on the mixing coefficients, the solution given by the
smallest simplicial cone C(d1, d2, ds) is favored. Sparseness on both sources and
mixing coefficients would give an intermediate soulution between C(d;,ds2,d3)
and C(eq, ez, €3).



3.3 Fitting the rotational diversity data

For the direct model expressed by (7), the inverse problem consists in estimating
Ax,Ay and S knowing Dy and Dy. Note that once the matrix A in (9) is
estimated, it is straightforward to obtain A x and Ay.

Alternating Least Squares (ALS) algorithms with nonnegativity constraints
are generally used to estimate the matrices A and S. A basic approach to invert
the NMF model (9) is given in Algorithm 1. A large number of methods

Algorithm 1 Basic approach to estimate NMF model parameters
htb

1: INPUT: the observation matrix D and the number of the sources NV
Initialize the matrix A randomly, or by using a deterministic strategy
Fix € to a small positive value (typically, 10716)
repeat

Estimate S : S = max{e, DTA(AAT)"1},

where (-)7 denotes the transposed of a matrix

Update A : A = max{e, DS(STS)"!},
7: until convergence

8: OUTPUT: estimates of A and S.

AR I >

improving the performances of this basic approach have been proposed lately
in the literature. One of the most popular is the NMF algorithm by Lee and
Seung [14], using a multiplicative updating rule.

Also, a Bayesian Positive Source Separation (BPSS) method was developed
by Moussaoui et al. [15]. The separation is performed in a Bayesian framework
by encoding non-negativity through the assignment of Gamma priors on the
distributions of both the source signals and the mixing coefficients. Thus, the
unicity of the bilinear factorization is ensured for most practical cases, at the
expense of an important computational cost. However, there is no guarantee
that BPSS give the true source vectors, but only an admissible solution satisfying
the Gamma priors constraints. This method will be also used in section 5 for
illustration purposes.

For more details about these techniques see [16] and the references therein.

4 Spatial diversity data

We propose in this section a model for Raman imaging data using both crossed
and parallel polarized light. The details of the Raman imaging acquisition were
presented in section 2.

4.1 The trilinear model

For the spatial diversity scheme, two polarized spectra are acquired in L different
points denoted by: di,...,dr, on a regular spatial grid. Define the following
matrices:

p— < i, x .. INX ) e RN (11)

i17y . iN,y



bi(dr) ... bn(dy)

B = e RLXN (12)

bi(d) .. ba(dr)

The B matrix contains on its columns the spatial evolution of the source con-
centrations and P characterizes the behavior of the N sources for the two po-
larization orientations. The acquired data can thus be expressed as two L x K
matrices:

W, =BD,(P)S" +E,, p=X,Y | (13)

where D, (P) = diag (¢1,p,...,inp) is a diagonal matrix which takes the first or
the second row of P as its diagonal, and E,, € RLXK the noise matrix. Relation
(13) clearly expresses a three-way CANDECOMP /PARAFAC (CP) model [17]
for the polarized data with spatial diversity.

4.2 Identifiability issues for the trilinear model

Before presenting the algorithms for fitting the spatial diversity data, identi-
fiability conditions for the trilinear mixture model expressed by (13) must be
discussed. The spatial acquisition scheme yields a trilinear CP model as one can
see in (13). The inverse problem for this model is the estimation of B, S and
P from the observations W,,. Unlike bilinear mixtures, the identifiability of a
CP model is ensured under mild constraints given by Kruskal’s condition [18].
Before stating the identifiability condition for the presented trilinear model, the
Kruskal-rank of a matrix must be defined.

DEFINITION 2(Kruskal-rank )

The Kruskal-rank of a matriz B equals v (kg = r), if every r columns of B
are linearly independent but this does not hold for r + 1 columns.

Applied to our case, Kruskal’s condition states that one can uniquely estimate
the matrices B, S and P in (13) if:

kg +ks +kp > 2(N+1) . (14)

We shall only consider next, the case where S is a tall matrix, meaning that
there are more spectral points than sources (very common in practice). Given
the spiky nature of Raman spectra, S is full column rank with high probability,
implying kg = N. Kruskal’s condition can thus be re-written as:

kg +kp > N+2 . (15)

Given the size of matrices B and P, and knowing that the Kruskal-rank of a
matrix is upper bounded by its classical rank, the only possible solution to in-
equality (15) is kp = 2 and kg = N. This means that, in order to have an
unique factorization, every two sources must have different polarization behav-
iors and B (with L > N) has to be full column rank. Thus, in practice, the CP
(13) model is identifiable in most cases, provided that more acquisition points
than sources are used.

10



4.3 Fitting the spatial diversity data

Most methods for fitting the three-way CP model are derived from the Alter-
nating Least Squares (ALS) regression which consists in estimating iteratively
one matrix by fixing the two others [17, 19]. As shown in the previous sub-
section this factorization is unique provided that some mild conditions are sat-
isfied. However, the direct use of ALS can be impractical and problematic,
since it usually suffers from linear convergence, and is occasionally sensitive
to local minima. To avoid these problems, several algorithms have been pro-
posed lately. In [20] an enhanced line search (ELS) is proposed to accelerate the
convergence of ALS. The COMFAC algorithm introduced in [21] uses more so-
phisticated initializations to achieve fast, accurate convergence for factorization
of trilinear arrays. Given the nature of the data, it is also natural to impose
non-negativity constraints on the matrices to estimate and thereby facilitate the
interpretation of the results. This can be done similarly to the bilinear case (see
Algorithm 1). An optimized nonnegative algorithm for three-way factorization,
used in this paper to illustrate the proposed approach, can be found in the
MATLAB N-way toolbox developed by Bro and Anderson and freely available at:
http://www.models.life.ku.dk/source/nwaytoolbox.

In order to estimate the matrices of this trilinear model one could also use
one of the algorithms for nonnegative bilinear factorization mentioned in sub-
section 3.3 and apply it on an unfolded version of the data. This implies that,
to ensure unicity on the decomposition, additional constraints on the sources
and/or mixing coefficients must be made, not always physically justified. In
this context, the main advantage of the trilinear algorithms over the bilinear
ones is the conservation of the intrinsic structure of the data as generated by
the underlying phenomena.

5 Results

In this section we illustrate the proposed approaches on polarized Raman spec-
tra. The rotational diversity was explored using 77O rutile sample and the
spatial diversity Raman spectra were collected using a mixture of CaCOs3 poly-
morphs (aragonite and calcite).

5.1 Results for rotational diversity data

The approach presented in section 3 was applied to a rutile T¢Os crystal, as
shown in Fig.1. The crystallographic face [001] (Hermann-Mauguin interna-
tional crystallographic symbols) is analyzed. The sample is rotated with respect
to Z axis only, meaning = (0,0, x). Fig.5 presents the acquired polarized data
for the parallel and crossed polarizations (matrices Dy and Dy in (4)). The
data was acquired in a spectral range of 100 cm~! — 800 ¢m~! with an angular
rotation step of 10 degrees between 0° and 190°.

First we illustrate the effect of the joint use of the crossed and parallel
polarization data sets on the size reduction of the NMF admissible solutions
set, as emphasized in subsection 3.2. For the same data described earlier, the
NMF algorithm [14] was used to estimate the three source vectors and the
corresponding mixing coefficients. The two data sets were processed separately
and jointly and the results are presented on Fig. 6 for the source spectra and on

11
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Figure 5: Polarized data for rutile T¢O4

Fig. 7 and 8 for the mixing coefficients. To evaluate the size of the admissible
solutions set we used 15 independent runs for each plot, with different random
initial values for the matrices A and S. As one can see, by processing both
polarization data sets jointly (Fig. 6 (c) and Fig. 8) the admissible solution
domain is largely reduced as compared to the case when only one polarization
is used (Fig. 6 (a),(b) and Fig. 7). These results validate the theoretical
considerations presented in subsection 3.2 and emphasize the utility of using
both polarizations in Raman acquisitions.

Next, to illustrate the effect of the joint data processing on the estimation
accuracy, the BPSS algorithm [15] is used, for the reasons presented in section
3.3.

First, BPSS was applied on the concatenated data as in (7) and then on
each of the polarized data sets independently, (according to eq. (4)). The
results for the joint processing of the polarizations are given on Fig.9 (c) for the
source spectra and on Fig.11 for the mixing coefficients. Fig.9 (a) and (b) and
Fig.10 plots the estimated spectra and mixing coefficients, respectively using
only the parallel or the crossed polarization data. Three sources are identified:
one (#1) with the main peak at 440 cm~! corresponding physically to the
vibrational mode E,; (Mulliken symbols for symmetry groups [1]), another (#2)
at 610 cm™! corresponding to the mode A;, and a third one (#3) representing,
most likely, combined modes and harmonics. One can see that the use of the
two polarizations jointly improves the results of the bilinear factorization. This
is especially visible on the source spectra, where the polarization information
allows a more accurate separation of source contributions. For example, on Fig.9
(c), source #1 is clearly concentrated at a single wavenumber (440 em™1), while

12
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Figure 6: Source spectra estimation by NMF (15 runs)

on Fig.9 (b) it presents an additional peak at the wavenumber corresponding
to source #2. Similar remarks can be made for the two other sources in Fig. 9
(a).

The advantage of using the polarized data jointly is also visible on the mixing
coefficients. For example, if we look at the crossed polarization data in Fig. 5,
one can see that the F, mode, i.e. source #1, presents an offset for reasons
that will be explained latter. If both datasets are used, the aforementioned
characteristic is successfully recovered (Fig. 11 (a)) while this is not the case if
the crossed polarization data is processed independently (Fig. 10 (a)). Similar
remarks can be made for the other mixing coefficients and polarization dataset.
In theory, the mixing coefficients (Fig.11) for the two data sets should pass by
zero periodically, as they are theoretically proportional to cos? y and sin®y,
respectively. This is not the case for our data and a possible explanation to
this fact is the electronic resonance phenomena which adds a baseline to the
observed sources.

5.2 Results for spatial diversity data

For the illustration of the trilinear data model, we used a calcite crystal of several
micrometers in diameter grown on an aragonite substrate, two polymorphs of
CaCOs. A number of 72 x 2 polarized spectra was recorded on a spatial grid
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Figure 9: Source spectra estimation

8 x 9 with a spatial step of about 1 um. The spectral range was 0 — 900 cm~".
The two families of spectra acquired in parallel and crossed polarization are
presented on Fig. 12. In this case a source is no longer assimilated with one
vibrational mode but rather with the totality of spectral peaks characterizing
the calcite or the aragonite.

The data was processed using the PARAFAC decomposition algorithm with
nonnegativity constraints described in subsection 4.3. The estimated spectral
signatures and mixing coeflicients for the two crystalline varieties of CaCOs3
are presented on Fig.13 and Fig.14, respectively. As one can see in Fig.13 the
spectral signatures of the two sources are well recovered even for the overlapping
peaks around 700 e¢m~!. The fact that there are a lot of zero-values in the
estimated spectra is due to negative values present in the analyzed data (see
Fig. 12) as a side effect of the baseline removal in the preprocessing steps.
The estimation of the mixing coefficients is also accurate, allowing to plot low
rezolution maps of the aragonite and calcite concentrations (Fig.14 (a) and (b)),
matching perfectly the optical image of the sample (not shown because of its
poor graphical quality).
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6 Conclusions

We proposed in this paper two approaches for dealing jointly with the crossed
and parallel polarization data in Raman spectroscopy. A bilinear and a trilinear
model were introduced for polarized Raman spectroscopy data with rotational
and spatial diversity, respectively. We showed that, beside improving source
estimation accuracy, the joint use of polarization information reduces the size
of the admissible solutions set for rotational diversity data and ensures mixture
identifiability in Raman imaging. The proposed approaches were validated on
real 7102 and CaCOs spectra. These first results highlight the importance of
using both crossed and parallel polarizations in Raman acquisitions and should
serve as basis for future experimental protocols allowing further developments
in Raman imaging and the estimation of the polarizability tensor components.
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