
HAL Id: hal-00481796
https://hal.science/hal-00481796

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Wcomp: a Multi-Design Approach for Prototyping
Applications using Heterogeneous Resources

Daniel Cheung-Foo-Wo, Jean-Yves Tigli, Stéphane Lavirotte, Michel Riveill

To cite this version:
Daniel Cheung-Foo-Wo, Jean-Yves Tigli, Stéphane Lavirotte, Michel Riveill. Wcomp: a Multi-Design
Approach for Prototyping Applications using Heterogeneous Resources. 17th IEEE International
Workshop on Rapid System Prototyping, IEEE Computer Society, Jun 2006, Chania, Greece. �hal-
00481796�

https://hal.science/hal-00481796
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Wcomp: a Multi-Design Approach for

Prototyping Applications using Heterogeneous Resources

Daniel Cheung

CSTB

290, route des Lucioles, BP209

06904 Sophia-Antipolis, France.

daniel.cheung@cstb.fr

Jean-Yves Tigli, Stéphane Lavirotte, Michel Riveill

I3S Laboratory – (UNSA / CNRS)

Bât. ESSI - 930 route des Colles, BP 145

06903 Sophia-Antipolis cedex, France.

tigli@essi.fr, lavirott@unice.fr, riveill@essi.fr

Abstract

This paper presents Wcomp which is a framework for

rapid application prototyping. This framework has been

developed for targeting wearable computing applications

but can also be used in the field of pervasive and context-

aware computing. In the first part of the paper, we investi-

gate the possibility of taking into consideration the rela-

tions between software components and resources of the

“operating context” in our Wcomp platform. Secondly, we

investigate the opportunity of taking a multi-designer ap-

proach in order to adapt the application to multiple well-

suited representations. Then we introduce in the platform a

new design approach based on patterns of interactions

called ISL4Wcomp.

1 Introduction

Computing environments are not composed of standard-

ized entities such as standard PC computers or the standard

WIMP (standing for “Window, Icon, Menu, Pointing de-

vice”) human-computer interaction anymore. WIMP is

based on an encapsulated graphical runtime and the tradi-

tional trio: display, keyboard and mouse. It is a standardized

multi-task operating system often reinforced by a standard

virtual machine layer and its associated framework. For

pervasive and ad-hoc computing, we cannot in fact design

applications if neglecting the various operating contexts.

We need to explicitly and clearly manage the dependencies

between components and subsystems.

For Operating and Embedded systems, in [1], [2] and

[3], the authors studied hardware system resources and their

limitations. We gather this work under the label “Software

and Hardware System resources and context”.

For Multi User Devices, in [4] and [5], the authors focus

on various I/O physical devices and their management. This

could be labeled “Human-Machine Interaction resources

and context”.

Finally, for Multi Networked Devices System, in [6], we

refer to the work of Cervantes and Hall on the dynamic re-

configuration of networked devices and associated services

(or drivers).

Most of these approaches highlight domain specific de-

pendencies between components and software subsystems.

But none considers all the subsystems included in the over-

all operating context. According to the kind of resources

they deal with, these systems might be qualified as embed-

ded, embodied or situated. An embedded computer has con-

strains about memory, speed and so on. The purpose of an

embodied computer interacts continuously with its envi-

ronment. A situated computer belongs to the environment.

So, in order to define a mobile and ubiquitous computing

application, we need to deal with different formalisms. The

main challenge is that these tools must share data in order to

support consistency checking and reuse. The Wcomp plat-

form was first designed to implement prototypes of this kind

of applications using a components-based approach. And as

soon as a new component appears and the operating context

changes, the component assembly should be rebuilt. It can

be complex to analyse the global graph of an application.

Not only have we needed to ensure the separation of con-

cerns but also the validity of the final result.

1.1 A component-based framework

There exist several definitions for the term component.

One is given by Clemens Szyperski in [8]: “A software

component is a unit of composition with contractually

specified interfaces and explicit context dependencies only.

A software component can be deployed independently and

is subject to composition by third parties.” We study in this

part how current approaches demonstrate these context de-

pendencies.

In Wcomp approach, we consider that such relations be-

tween components and resources are characteristics of the

operating context of the application. In component-based

approaches, this level can create, add and remove compo-

nents as well as connectors in order to modify the applica-

tion at the programming level. We can distinguish various

useful design approaches. Each approach is based on a dif-

ferent representation and manipulation of the components,

connectors and their assembly. The main influences of the

design level on the executive level can be structured on

three levels of capabilities:

• designing the program (creating components)

• modifying the program (changing components)

• modifying control flows between components

At the same time, we can classify the representations and

the manipulations of the components assembly according to

their user interface: visual or textual, programming oriented

or rendering oriented.

1.2 Integrated Development Environments (IDE)

Today, many integrated development environments

adopt various hybrid approaches. For example, as far as

software industry is concerned, with Visual Studio IDE,

Microsoft mixes both design tools from the visual pro-

gramming approach as it represents the rendering of the

graphical application, and the textual programming ap-

proach as it modifies some parts of the source code of the

application. Meanwhile, the JavaBeans approach of Sun is a

self-sufficient visual design approach because it allows the

user to manipulate data and to control flows. It uses an

event-based graph in order to design interactions between

components [9].

However, those approaches are not without limits; this is

mainly the consequence of the heterogeneity of resources

which should be considered when writing programs for per-

vasive or context-aware computers. Consequently, the ex-

pected design environment needs to provide various

adapted representations and design tools to develop the

application.

In this paper, we present Wcomp as a framework for pro-

totyping pervasive, context-aware and wearable computing

applications. The first section describes the overall system.

We present the component-based approach and its ability to

manage heterogeneous operating contexts, the diversity of

their designs and programming approaches. In the second

and third section, we present the Wcomp approach and the

recent improvements to deal with a changing operating con-

text, and developing designers which we have implemented

to address the issues linked with the programming and ad-

aptation of the application. Then, we present an example of

the Wcomp application in the field of home automation

taking advantage of these recent contributions and present-

ing the technologies we used. Finally, we conclude with

discussing on the limits of our approach and suggest direc-

tions for future research.

2 Our rapid prototyping environment: Wcomp

With Wcomp [7], we explore an overall approach con-

sisting of three levels: context level, design level and execu-

tive level. The first level is composed of three contextual

elements: software components, resources (software subsys-

tems) and specific devices. The second level (the design

level) provides various representations and design tools to

create, configure and adapt the application based on com-

ponents. The third level (the executive level) controls the

discovery of new contextual elements and adapts the com-

ponents assembly so that it can deal with the new context.

2.1 Description of the Wcomp framework

First of all, we have to define what we consider as a

component in Wcomp. The Wcomp component model is

inspired from the JavaBeans model. But it has been slightly

modified. A component in Wcomp is still an instance of a

class. But it is not necessarily serializable. A component

has a unique name. We consider C the set of components. A

component has an interface which has two sets composed of

events and of methods. We call E the set of events charac-

terized by their unique name and M, the set of methods. Let

us gather the definitions of events and method definitions in

the term “port”. We consider a set of links L. A link is a list

composed of an event and of a list of methods. An assembly

consists of a subset of C and L. The container component

implements an API to control programmatically this assem-

bly. It implements consequently the addition and removal of

elements in C and L.

The context level represents the resources and the com-

ponents we have to deal with during the design of the appli-

cation. Such resources are often directly and exclusively

managed by the operating system in most component-

oriented approaches. In Wcomp, we have not yet an explicit

model of the resources of the context. Nevertheless, we

classify our components according to their implicit interac-

tions with particular resources. For example, we distinguish

active or passive components according to their being cou-

pled with a system thread resource or not. In the same way,

we distinguish mixed (hardware and software) or purely

software components according to their being dependent on

a physical device or not.

In this way, we increment the Wcomp model via the in-

troduction of the set of resources R. Thus, we introduce in

our model implicit interactions which are interactions be-

tween resources and components and/or resources. Such a

representation of resources allows consequently our com-

ponent model to strictly respect the Szyperski’s concept of

explicit context dependencies.

2.2 Design models

As we mentioned in the introduction, we believe that a

design environment should provide various representations

and design tools for programmers to work on an applica-

tion. We present a multi-designer approach which allows to

modify and then adapt applications thanks to the use of dif-

ferent design views.

2.2.1 Source-code designer

Figure 1: Source-code designer

We consider as source-code designer (Figure 1) one par-

ticular case (only one target system and one language): the

compiled-on-the-fly C# .NET code. This source code repre-

sents the application based on components assembly. When

the programmer modifies this source code, the source de-

signer communicates the modifications to the container.

Those modifications consist in the replacement of compo-

nent instances if their source code has been changed. They

modify links between components as well.

2.2.2 Visual rendering designer

Figure 2: Visual rendering designer

A graphical application has a visual screen rendering.

This rendering is manipulated by the programmer via the

visual rendering designer. As an example, we propose the

design of a graphical application composed of a button, a

text field and a checkbox gathered in a window (Figure 2).

2.2.3 Console designer

A console designer (Figure 3) stands for a special de-

signer where we can see an example of sending two

add_component commands by typing “AddWNBean Type

Name”).

Figure 3: The Console designer

This designer allows to send commands to the container

thanks to a simple command language. Each command has

a name followed by parameters. There are four intercessive

commands listed in Table 1. They modify the container

contents by respectively adding, linking, removing and

unlinking components.

Command

add_component Type (Name) (X Y)

link Source Event Target Method (Params)

remove_component Name

unlink Source Event Target Method

Table 1: Intercessive commands

There are introspective commands gathered in Table 2.

Command Description

list_component_types Give all available types.
list_components List all instanciated components.
list_links List the links.
list_methods Name Give the signature of each method of a comp.

list_events Name Give the signature of each event of a comp.

Table 2: Introspective commands

2.2.4 Graphical component assembly designer

Figure 4: Component assembly designer

The application assembly can be graphically manipulated

by the graphical component designer. As an example, we

propose the creation of a link. The process of creating a link

between two components is shown in Figure 4. To complete

this multi-design approach, we propose the study of a new

smart designer ISL4Wcomp.

3 A new Wcomp designer: ISL4Wcomp

We explain in this section how we use our previous work on

software interactions to build a new particular designer for

Wcomp framework.

3.1 What is ISL?

The Rainbow team proposes the use of a dedicated In-

teraction Specification Language (see [10] and [11]) to ex-

press interactions between software components in a com-

ponent-based application. This approach brings out three

major benefits:

• It allows component interactions to be expressed ex-

plicitly as first-class entities.

• It enables the expression of interactions independently

of any specific language or component model.

• It authorizes the dynamic adaptation of applications as

it defines and removes interaction at runtime.

To achieve this, interaction patterns (or simply interac-

tions) are specified in ISL. Interactions represent a set of

connections between some component instances. An inter-

action server is in charge of managing the life cycle of in-

teractions such as their registration, their instantiation, their

destruction and their merging. Noah Interaction Server [12]

is the name given to the implementation of the interaction

server.

3.2 What is ISL4Wcomp?

To integrate this work into Wcomp model and meet

Rapid Application Development purposes, we have adapted

ISL language through the definition of a new grammar. The

evolution of programming languages sets up new implemen-

tations of interactions such as event and delegation concepts

in C# language.

Originally ISL language permits to redefine method calls

via the relocation of this call at runtime in order to point at a

new piece of code which calculates how and when the real

method is going to be executed. Meanwhile, Wcomp model

uses method calls as inputs of components which can be

rewritten by ISL. But it also uses new event constructions as

outputs. As a consequence ISL language should have been

modified to be able to rewrite those ports.

Secondly, ISL language has been created so that two de-

scriptions written in ISL could be composed automatically

by the machine. Thus, for the machine to take a decision for

all cases it may encounter, the definition of particular opera-

tors that we may qualify as compositional-specific has been

written. In ISL, those operators are known as call and dele-

gate. They control the way some parts of patterns are to be

composed when in conflict.

More specifically, the keyword call is used inside a re-

definition of a port (it is true for delegate as well). It tells

that the actions defined by other patterns may appear when

a conflict occurs (see the following subsection about con-

flicts). On the contrary, the keyword delegate means that

the actions that it suggests replace what the other patterns

define.

The syntax and the expression of interaction patterns

have been homogenized and mimic current high level lan-

guages such as C# or Java. This new ISL language con-

struction is called ISL4Wcomp.

3.3 ISL4Wcomp architecture

TO
O
L 1

TO
O
L 2

TO
O
L 3

^output

input

c

^output

input

c

^output

input

c

^output

input

c

^output

input

c

^output

input

c

^output

input

c

^output

input

c

C
om
po
si
tio
n

S
el
ec
tio
n

Tr
an
sl
at
io
n

Figure 5: ISL4Wcomp architecture

The architecture of ISL4Wcomp (Figure 5) is different

from ISL. We do not reuse the interaction server to manage

the life cycle of interactions because the language has

changed. Instead, we developed a set of separate tools to:

• compose interactions

• apply interactions to component instances

• translate interaction into reassembly commands

3.3.1 Composition

Components can be involved in different interactions

that must be composed. A first tool, called ISLComposer,

achieves this task and takes as inputs interaction patterns

and gives, as a result, a single pattern as output. A second

tool, called ApplyISL, takes a pattern and rewrite it in order

its variables to map component instances. Finally, the last

tool translates an applied pattern into a set of reassembly

commands. It is called the ISLTranslator.

ISL4Wcomp enables rapid assembly of component-

based applications because it gathers hand-made connec-

tions between components into an interaction pattern. Fur-

thermore, it adds logic to those connections according to the

usage of ISL behavioral keywords such as sequence, paral-

lelism, condition, waiting and signaling. Hence, the pro-

grammer builds applications once and translates them into

interaction patterns. He can then reuse those patterns as part

of another application later. He may also build new applica-

tions by instantiating several patterns.

The definition of a pattern library is generally a means

to simplify software development. We might go further

through the automation of their selection and of their com-

position. The composition of patterns is calculated by ISL-

Composer.

The calculation of the composition of interactions re-

quires the definition of (only) twenty-seven rules for com-

bining eight operators : sequence, parallelism, conditional,

waiting, signaling, message, call and delegation (see [12]

for further details). Those rules tell how each operator com-

bines with one another.

3.3.2 Conflict and merging

We have seen that an interaction pattern is structured as

a set of twofold rules:

• The first category of rules rewrites method calls.

• The second redefines event emissions.

Those redefinitions are written as if they were bodies of

methods. And in these bodies, we describe the behavior

replacing the method call or the event emission.

Conflicts occur when two patterns redefine the same

method call or event emission. When a conflict occurs, the

bodies of conflicting interaction rules are merged.

To illustrate our purposes, we propose the study of a

practical example where Wcomp is used to instantiate com-

ponents and manage relationship between them.

4 Application

The aim of this application is to manage home appli-

ances. We want to illustrate the technologies used to im-

plement this prototype and the advantages to use Wcomp in

such a case.

4.1 Operating context and UPnP devices

The component-based application has been designed on

the basis of the Universal Plug and Play (UPnP) technology.

UPnP is a set of computer network protocols which allow

devices to connect seamlessly and to simplify the imple-

mentation of networks. The application makes use of a

presence detector, a light, a switch and a shutter. UPnP ar-

chitecture offers pervasive peer-to-peer network connec-

tivity of PCs, home appliances and wireless devices. The

devices can be virtual (software simulation) or hardware.

We did not code the explicit integration of the detector

in this application. But to do so, the programmer has only to

develop the Wcomp component representing the UPnP de-

tector (with the help of a wizard tool) and the interactions

describing the functionality.

4.2 ISL4Wcomp and house automation application

We study in this section the integration of the detector.

First, we see how interactions are composed. Then we study

the particular case of merging of rules. And finally, we ana-

lyze how the result is integrated into Wcomp.

4.2.1 Pattern composition

Here is the example of the composition of interaction

patterns. It consists in modifying a component assembly so

that it considers a new functionality such as “opening a

shutter rather than turning light on, according to outside

luminosity”. This assembly was simply defined as such: a

detector d turns on a light l when somebody enters the room

and a switch s opens a shutter v when activated.

Figure 6: Component assembly in its initial state.

The assembly is translated into the following interaction

pattern called p1:

pattern p1(switch s, light l, shutter v,
 detector d, indicator i) {

 lum.^intensity() { call || i.set() }
 s.^on() { call || v.open() }
 d.^somebody() { call || l.on() }
}

We may notice that each connector is systematically

translated into an ISL code “source { call || target }”. This

is the first naive algorithm from the moment to translate

assembly to interaction pattern.

Then we would like to consider a new component into

the assembly that is component lum which is a detector

emitting regularly a value indicating the luminosity outside

the house. The new functionality we integrate into the ap-

plication is summarized into the following interaction pat-

tern:

pattern p2(switch s, luminosity lum,
 shutter v, comparator c) {

 lum.^intensity(int value) {

 call || comp.set(value);
 }

 l.on() {

 if(c.isEnough())
 delegate { v.open() }
 else
 call
 }

}

This interaction pattern describes the two following

functionalities. On the one hand, as soon as the luminosity

sensor lum throws a value describing the intensity, the indi-

cator i displays it on a screen. On the other hand, as soon as

the switch s is activated, the shutter v is opened. And as

soon as the detector d detects that there is somebody in its

field, the light l in turned on.

Moreover, as soon as the luminosity sensor lum throws

the light intensity, we should tell the comparator comp to

memorize this value. And instead of turning the light l on,

we should also check if the luminosity is adequate outside.

If it is adequate, nothing has to be done except that the shut-

ter has to be opened. If it is not, we do what other interac-

tions have defined or just turn the light on.

The application of a pattern to a set of components con-

sists only in renaming variables used inside an interaction

pattern so that they correspond to component instances

names defined in the container.

The composition of two patterns implies the homogeni-

zation of the parameters of each pattern. The result of the

composition of the two sets of parameters is their union.

Let’s call the resulting pattern p3=p1+p2. We have:

pattern p3(switch s, luminosity lum,
 shutter v, comparator c, light l,

 detector d, indicator i)

The rules that are not conflicting are simply copied to the

new interaction. This is the case of the rule l.on.

4.2.2 Merging process to solve conflict

When two interaction rules are in conflict, they are

merged two by two. We may notice that the merging proc-

ess is commutative. Consequently the order in which the

rules are merged does not matter. Rules are composed of a

body that can be represented through a tree syntax. Each

node of this tree represents a keyword. The merging process

takes two trees T1 and T2. It computes first the root of T1 and

T2. A rule tells the machine what is the result of the merging

of two nodes. Then the merging is called recursively on

each leaf of the tree. When the process holds, the remaining

tree stands for the behavioral merging of the behaviors of

each tree.

We have formalized the process in terms of logical re-

writing-rules. And for the experimentation, we implement

those rules using Prolog language, which has resulted into a

shared library.

4.2.3 Translation into command list

We have also written the translator in Prolog. But the lat-

ter was rather formalized into set of syntactic analyses of

ISL programs which leads to the generation of an adequate

list of commands. The analysis requires only one parsing of

the ISL code.

unlink s ^on v open
add_component IF if0
link s ^on if0 do
add_component COMPARATOR c
link l ^intensity c intensity
link if0 ^cond c greater
link if0 ^then l on
link if0 ^else v open

Figure 7: Component assembly in its final state.

4.2.4 Reassembling the application

Each behavioral operator in an ISL program is repre-

sented by a component in the container. For instance, the

conditional operator if has a corresponding component in

Wcomp which is also called if and has one input void do()

and three outputs void ^cond(), void ^then() and

void ^else().

Those components representing ISL behavioral operators

differ from common Wcomp because their inputs and out-

puts can be connected to any other outputs, respectively

inputs. And normally, inputs and outputs are typed and can

only be connected with corresponding signature. We call

those components generic components.

A component is qualified as generic when its events

(outputs) and its method definitions (inputs) can be con-

nected to any other methods or events. Those ports are char-

acterized by their signature. We have creating generic ports

by imposing the following signature for a port p

object p(object[] data).

The connector linking this port to another port p’ is respon-

sible for adapting the signature of p’, say r p’(a1,…,an) to p.

Thanks to the anonymous method construction introduced

in the C# language, we created on-the-fly for each connec-

tion a first category of methods which saves the argu-

ments a1,…,an into a table of objects called data and a sec-

ond category of methods which transfers those arguments.

The recognition of signatures is done by the reflection

mechanism (done only at design time not at execution time

to meet performances).

4.2.5 Undo modifications by removing a pattern

Removal of patterns consists in reversing the semantics

and the order following which the commands have been

sent to the Wcomp container.

unlink if0 ^else v open
unlink if0 ^then l on
unlink if0 ^cond c greater
unlink l ^intensity c intensity
remove_component COMPARATOR c
unlink s ^on if0 do
remove_component IF if0
link s ^on v open

Finally, the application retrieves its original states. But

this algorithm has a main drawback: the last state of the

application in terms of components and links should be re-

corded to reconstruct links that have been removed after the

application of the pattern.

5 Conclusions

Component-based frameworks are generally coupled

with specific design approaches. In our Wcomp platform,

we have studied the possibility of using a multi-designer

approach in order to adapt the application to multiple well-

suited representations. We presented a new ISL4Wcomp

design approach based on interaction patterns. ISL4Wcomp

enables rapid application prototyping for applications based

on the assembly of components.

Our approach will scale as the size and the complexity of

the component-based system grows. We are currently study-

ing the scalability of the techniques and the tools as the

complexity of the rules and their number increase. Further-

more, we are working on different evolutions of our plat-

form towards a distributed environment enabling the design

of the distributed application to take into account the diver-

sity of the heterogeneous operating context.

Acknowledgments

We would like to thank our colleagues at Rainbow I3S

research team (M. Blay-Fornarino, A.-M. Dery-Pinna and

D. Emsellem), E. Pascual of CSTB, A. Bourcet and C. An-

dral students of Polytech’ Nice - Sophia Antipolis.

References

[1] Ford B., Back G., Benson G., Lepreau J., Lin A., and Shivers

O. The Flux OSKit: a substrate for kernel and language re-

search. In SIGOPS Oper. Syst. Rev., ACM Press, 1997.

[2] Gay D., Levis P., Behren R. V., Welsh M., Brewer E., and

Culler D. The nesC Language: A Holistic Approach to Net-

worked Embedded Systems. In Proceedings of Programming

Language Design and Implementation, 2003.

[3] Müller P., Stich C., Zeidler C. Components @ Work: Com-

ponent Technology for Embedded Systems. In 27th Interna-

tional Workshop on Component-Based Software Engineer-

ing, EUROMICRO, 2001.

[4] Dragicevic P. and Fekete J.-D. ICON: Input Device Selection

and Interaction Configuration. In Companion proceedings of

the 15th ACM symposium on User Interface Software &

Technology (UIST'02), Paris, France, p. 27-30, 2002.

[5] Greenberg S. and Fitchett C. Phidgets: Easy development of

physical interfaces through physical widgets. In Proceedings

of the ACM UIST, 2001.

[6] Cervantes H. and Hall R. S. Beanome: A Component Model

for the OSGi Framework. In Software Infrastructures for

Component-Based Applications on Consumer Devices,

Lausanne, Switzerland, 2002.

[7] Cheung D., Fuchet J, Grillon F., Joulie G. and Tigli J.-Y.

Wcomp: Rapid Application Development Toolkit for Wear-

able computer based on Java. In Proceedings of IEEE Int.

Conference on Systems, Man and Cybernetics, 2003.

[8] Szyperski C. Component Software - Beyond Object-Oriented

Programming, Addison-Wesley, 1999.

[9] Sun Microsystems. JavaBeans.

http://java.sun.com/products/javabeans

[10] Blay-Fornarino M., Charfi A., Emsellem D., Pinna-Dery A.-

M. and Riveill M. Software Interactions, in Journal of Object

Technology, vol. 3, no. 10, p. 161-180, 2004.

[11] Berger L. Mise en Oeuvre des Interactions en Environne-

ments Distribues, Compiles et Fortement Types : le Modele

MICADO. Ph. D. Thesis, UNSA - Faculté des sciences et

techniques, Ecole doctorale STIC – Informatique, 2001.

[12] Charfi A., Emsellem D., Riveill M. Dynamic component

composition in .NET, in Journal of Object Technology,

vol. 3, no. 2, p. 37-46, Special issue: .NET: The Program-

mer’s Perspective: ECOOP Workshop 2003.

