
HAL Id: hal-00481793
https://hal.science/hal-00481793

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Self-adaptation of event-driven component-oriented
Middleware using Aspects of Assembly

Daniel Cheung-Foo-Wo, Jean-Yves Tigli, Stéphane Lavirotte, Michel Riveill

To cite this version:
Daniel Cheung-Foo-Wo, Jean-Yves Tigli, Stéphane Lavirotte, Michel Riveill. Self-adaptation of event-
driven component-oriented Middleware using Aspects of Assembly. 5th International Workshop on
Middleware for Pervasive and Ad-Hoc Computing, ACM, Nov 2007, Newport Beach, United States.
�hal-00481793�

https://hal.science/hal-00481793
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Self-adaptation of event-driven component-oriented
middleware using Aspects of Assembly

Daniel Cheung-Foo-Wo
∗

I3S (UNSA - CNRS)
930 Route des Colles - BP 145
06903 Sophia-Antipolis France
cheung@polytech.unice.fr

Jean-Yves Tigli
I3S (UNSA - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

tigli@polytech.unice.fr

Stéphane Lavirotte
∗∗

I3S (UNSA - CNRS)
930 Route des Colles - BP 145
06903 Sophia-Antipolis France

stephane.lavirotte@unice.fr

Michel Riveill
I3S (UNSA - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France
riveill@polytech.unice.fr

ABSTRACT
Pervasive devices are becoming popular and smaller. Those
mobile systems should be able to adapt to changing require-
ments and execution environments. But it requires the abil-
ity to reconfigure deployed codes, which is considerably sim-
plified if applications are component-oriented rather than
monolithic blocks of codes. So, we propose a middleware
approach called WComp which federates an event-driven
component-oriented approach to compose services for de-
vices. This approach is coupled with adaptation mechanisms
dealing with separation of concerns. In such mechanisms, as-
pects (called Aspects of Assembly) are selected either by the
user or by a self-adaptive process and composed by a weaver
with logical merging of high-level specifications. The result
of the weaver is then projected in terms of pure elemen-
tary modifications of components assemblies with respect to
blackbox properties of COTS components. Our approach is
validated by analyzing the results of different experiments
drawn from sets of application configurations randomly gen-
erated and by showing its advantages while evaluating the
additional costs on the reaction time to context changing.

Categories and Subject Descriptors
D.2.13 [Soft. Eng.]: Reusable —Adaptive software

Keywords
Dynamic self-adaptive CBSE, aspect-oriented, context awar-
ness

∗also CSTB 290, Route des Lucioles, BP 209 06904 Sophia
Antipolis, France
∗∗also IUFM Célestin Freinet - Académie de Nice 89, Avenue
George V - 06046 Nice Cedex 1, France

1. INTRODUCTION
Though well acquainted with personal computers, we are less
aware of the invisible computers at use in our homes; they
help us communicate and entertain ourselves. Weiser [14]
introduced a “ubiquitous” computer science and stated that
IT1 was not ready to be part of that environment. Although
systems become smaller and more numerous and participate
in new software applications [12], they still raise complex
scientific problems requiring an autonomic-evolving struc-
ture to react to the movement of devices and devices them-
selves. By autonomic structures, we mean structures manag-
ing themselves along with high-level objectives. Kephart [9]
highlighted the main scientific challenges of autonomic com-
puting. We address two of those challenges in this paper:
device and network heterogeneity and dynamicity. A part of
this dynamic world is modeled into an environmental and
an operating context which are partially unknown. More-
over, dynamic adaptation requires the ability to reconfigure
executing codes. Therefore, such reconfiguration is consid-
erably simplified if adaptive and pervasive applications are
component-oriented rather than monolithic blocks of codes.
The scope of this paper can now be outlined briefly. (Sec. 2)
We will first draw a state of the art on self-adaptive perva-
sive systems according to the following criteria: event-driven

model which permits responding to the required reactivity
of pervasive computing, service-oriented architecture which
allows responding to the required dynamicity, and aspect-

oriented methodology which allows responding to the re-
quired modularization and heterogeneity. (Sec. 3) In our ar-
chitecture, the behavior of the pervasive system is controlled
by a set of schemas. We will start with the characteris-
tics of the event-driven software component model, will then
present the schema-based self-adaptive architecture and the
self-adaptation algorithm which control self-adaptive perva-
sive systems. (Sec. 4) Finally, we will validate our approach
by commenting the results of diverse experiments.

2. SELF-ADAPTIVE MIDDLEWARE

APPROACHES

1
Information Technology

Designing software architectures for a self-adaptive perva-
sive system (SAPS) is an ongoing research problem which
can be resolved only after numerous systems have been de-
signed and tested in situation. Although this research has
not yet reached maturity, we can list a set of desired prin-
ciples of a SAPS. We have divided those principles into two
groups: principles which describe the design principles and
principles which determine the sensitivity of the program to
its surrounding context.

Design principles. Some specific design principles are
required for SAPS. Unlike most conventional software en-
gineering projects which begin from a set of requirements,
SAPS projects must constantly reevaluate their requirements.
Therefore, systems which can easily be modified are highly
wanted. We have identified the following principles:
• Modularity. Following a general requirement of complex
systems, a SAPS should be divided into smaller subsystems
that can be designed and debugged separately.
• Expandability. Because it takes time to design and test
individual components, an expandable architecture is desir-
able as it facilitates incremental implementation of the di-
verse situations that pervasive systems need to cope with.
• Separation of concerns. Pervasive applications can be
modified according to a particular concern which can be du-
plicated at several places in the code.
• End-user programming. End-user programming supposes
well defined borders in the system usage. The development
of customized pervasive systems must be constituted of pro-
cess cycles where programmers can develop functionalities
that can be used by others [13].
• Multiple-task resolution. For SAPS, situations requiring
conflicting concurrent actions are inevitable, and the sys-
tem should provide the means to fulfill multiple objectives.

Context-awareness principles. Context-awareness is im-
portant in the design of SAPS. Context is traditionally as-
sociated to the localization in space where mobile systems
are expected to evolve [11], but can also be largely extended.
We have identified context-awareness principles:
• Robustness. A system’s robustness is its ability to han-
dle imperfect inputs, unexpected events, uncertainties, and
sudden malfunctions. Moreover, devices in the pervasive en-
vironment can be restricted with regards to processor power,
energy, memory, display functionality, and so on.
• Multi-device integration. This ability is crucial to reliable
SAPS behavior. The system architecture must compensate
for the limited accuracy, reliability, and applicability of indi-
vidual devices by integrating several complementary devices.
• Reactivity. Because the real-world environment is unstruc-
tured, SAPS should make few assumptions about its dy-
namics and react to environmental changes. In our system,
adaptation schemas are reactive modification specifications.

Existing systems. Adaptation requires the ability to re-
configure the deployed code, which is considerably simpli-
fied when applications are component-oriented rather than
monolithic blocks of codes. Numerous component-oriented
systems have been designed in order to partially respond
to SAPS’ problems. We distinguish event-driven, service-
oriented, and aspect-oriented systems. By event-driven we
mean systems notified by significant change, by service-oriented

we refer to the architecture based on service descriptions and

interactions, and by aspect-oriented we refer to the method-
ology enabling separation of concerns. Table 1 shows their
relative strengths and weaknesses. We see that none can
be used alone, but only a combination can meet our event,
service, and aspect specifications.

Event-driven systems. Event-driven architectures have been
used for SAPS and reconfigurable systems for many years.
Their common distinctive feature is the weak-coupling of
components meaning individual components do not know
the components realizing their required functionalities at de-
sign time. The information is set at runtime either by the
component itself or another one. The first case is illustrated
by the reflective component model OpenCOMv2 where new
types of components can be added and function calls can be
altered by modifying a process vtable [4]. The second case is
known as the principle of Inversion of Control that has been
experimented in a lightweight container in [1, 6] as an inter-
active adaptive system. Weak-coupling offers a high degree
of expandability but its relatively low level of abstraction
does not allow complex software design.

Event-driven systems are not suitable for very complex de-

sign, but adequate for reactivity and dynamicity.

Service-oriented systems. The appealing features of service-
oriented systems are their flexibility in handling dynamicity
and their suitability to the integration of new devices. [15]
provided logical primitives to transfer codes so as to reconfig-
ure software systems and enhance robustness. [8] suppressed
a level of complexity by introducing the self-adaptive compo-
nent model K-Component which enables individual compo-
nents to adapt to changing environments through a complex
decentralized coordination model which simplified the inte-
gration of multiple objectives and allowed groups of com-
ponents to collectively adapt their behavior. [10] focused
on the configuration and integration of devices in pervasive
computing scenarios which include self-organizing configura-
tion for pervasive computing environments supporting un-
skilled installation. They coupled a domain specific language
(DSL) and middleware but with a centralized approach.

Service-oriented systems allow robustness, coordinating ser-

vices in a programmatic decentralized collaboration.

Aspect-oriented systems. Aspect-oriented systems consist of
a set of join points, pointcuts, advice, and weaving loops,
which operate at runtime or design-time to construct an ex-
ecutable program. Their dominant characteristics consist in
considering adaptations as cross-cutting components and in
weaving them as classical AOP aspects. [7] designed a DSL
and expressed adaptation concerns as aspectual components
in order to monitor self-adaptive systems. He also proposed
to express pointcuts in terms of binding scripts. However,
this approach does not provide a collaborative combination
and does not avoid semantic conflicts by the bindings dec-
laration.

Aspect-oriented systems provide an enhanced modularity as

they include separation of concerns, but are not intended to

achieve service collaboration.

Table 1 reflects the need to integrate all the introduced prin-
ciples to build SAPS. We propose our middleware approach
called WComp taking into account, at best, all the previ-

Table 1: Comparison of self-adaptive approaches
Event Service Aspect

Modularity Medium Medium High
Expandability Yes Yes Yes
Sep. of concerns No No Yes
End-user prog. Medium Yes No
Multiple-task Difficult Yes Medium
Robustness Yes Yes No
Multi-device Yes Yes No
Reactivity High Medium Medium

ously explained principles for pervasive application design.
Firstly, it federates an event driven, component based ap-
proach to compose web services for devices. Secondly, it in-
troduces a self-adaptation approach dealing with separation
of concerns, using the aspect of assembly concept, logically
mergeable in case of conflicts.

3. OUR SELF-ADAPTIVE MODEL
With the ambition of building an expandable multi-device
system capable of multiple-task conflict resolution, we have
developed an extended component-based model (Sec. 3.1)
composed of adaptation mechanisms as aspects selected ei-
ther by the user or by a self-adaptive process and composed
by a weaver with logical merging of high-level specifications
(Sec. 3.2). The result of the weaver is projected in terms
of pure elementary modifications (PEMs) – add, remove
components, link, unlink ports – with respect to blackbox
properties of COTS components. We call those adaptation
mechanisms, Aspects of Assembly (AAs) which rely on the
event-driven model of the lightweight component framework
in our middleware platform called WComp [6].

3.1 Event-driven composition

for services for devices
The WComp component model is a slightly modified Jav-
aBeans model adapted to other programming languages with
the concepts of input and output ports, properties, and hier-
archy. Still a class instance, but not necessarily serializable,
a component has a unique name and an interface which has
two sets composed of events2 and methods. We consider C

the set of components, E the set of events characterized by
their unique name, and M , the set of methods. We gather
the declaration of events and methods in the term ‘port’.
We consider a set of links L which are lists composed of an
event and of a list of methods. An assembly consists of a
subset of C and L. The container component implements
an API to dynamically control this assembly, and conse-
quently the addition and removal of elements in C and L.
Roughly speaking, we must use event – also known as late-
bindings, “push” mechanism, or Inversion of Control – in
lightweight containers which is now shared characteristics
of adaptive component models [3]. The assembly can be
modified by using an assembly designer as shown in the top
window in Fig. 1. And finally, the model is hierarchical.
Composite components can then be constructed by decorat-
ing a lightweight container with adequate ports and popu-
lating the container with composite components and links.

2
event’s name are prefixed by ‘ˆ’

This way, the interior of components can be addressed and
reconfigured using common existing designers.

Figure 1: Screen capture of designers

3.2 Aspects of assembly
We propose a component-oriented integration which takes
into account the adaptation characteristics in Sec. 2. Our
architecture is twofold: it consists of an extended model of
AOP for adaptation schemas and of a weaving process with
logical merging. We implemented a toolkit (Fig. 1) which
includes AAs as the central concepts. We introduce here
concepts used in the rest of the paper:

Base assembly: an assembly of components.

Join point : components and ports of the base assembly.

Pointcut : a description of a set of join points for a particular

adaptation advice.

Adaptation advice:adaptation schema describing architectural re-

configurations.

Weaver : mechanism integrating advice according to specified

pointcuts selecting join points from a base assembly. It is also

responsible for the merging of conflicting advice.

An AA is structured as an aspect with a pointcut and advice
(adaptation schema) which is specified in a DSL using inter-
action specification firstly defined in [5]. This DSL has been
then enhanced in [6] to integrate event-driven declarations.
With our approach, self-adaptive pervasive software devel-
opers can reason, plan, and validate AA-based assemblies at
all stage of the development phase. Using logical predefined

validation rules, logical configurations’ incompatibilities can
be detected at runtime.

Advice. We present an example of advice which is used
in a practical situation for response-time on observed com-
ponents. The schema called ‘Ex’ redefines an input and an
output port and is applied to a set of components symboli-
cally represented by the observed and timeout variables:

1 SCHEMA Ex (observed, timeout):
2 observed.^Out ->
3 (IF (timeout.Check) CALL)
4 timeout.Check ->
5 (timeout.Start ; CALL)

Description. Firstly, it redefines the ˆOut output of the
observed component, which specifies that actions possibly
defined in the base assembly are executed only if the time-

out component gives its authorization. Secondly, it redefines
the Check input of timeout, which specifies that before the
execution of the input possibly required by other compo-
nents, timeout must be started, i.e. the Start input must be
executed.

We defend a minimalistic approach in order to be able to
cope with scalability. And for this reason, those specifi-
cations are translated into a set of PEM. Any modification
can be regarded as an assembly-to-assembly transformation.
Thus, the AA designer depicted in the bottom window in
Fig. 1 communicates its PEM to a container (Sec. 3.1).

Pointcut. We define pointcut descriptions as sets of fil-
ters on base assembly meta data – component ID, their
types, etc. Those filters construct a list of parameters satis-
fying the list of variables of a schema for the latter to be
integrated in the base assembly. If only one list is con-
structed, the schema is integrated only once in the base
assembly and the symbolic variables are syntactically re-
placed in the schema to match the base assembly join points.
If several lists are constructed, the schema is duplicated
and each set of variables are respectively replaced. For
our experiments, we choose for convenience to express fil-
ters in the AWK language [2] and define a simple grammar
to make AWK responses correspond to schema variables:
‘<variable>:=<AWK filters>;...’. Example:

1 observed := /t*/ ;
2 timeout :=
3 /ct*/ { a[substr($1,3)]=$1 }
4 END { for(i=1;i<=NR;i++){print a[i]} } ;

Description. The observed variable is matched against com-
ponent ID starting with ‘t’ and timeout, against those start-
ing with ‘ct’. The second filter (lines 3-4) consists in two
matchings: component ID beginning with ‘ct’ and the ‘END’
of the component ID list. Both matchings are completed
with a program between braces. The first program assigns
a unidimensional table ‘a’ with a matched component ID –
represented by ‘$1’ – at an index specified by the numer-
ical part of the matched string ‘ct*’ which corresponds to
the substring starting at position 3 (ex: the index of ct42
is 42). Then, in the second program (line 4), the sequence

of components ID beginning by ‘ct’ is returned to the AA
designer orderly from 1 to NR3. The order of the compo-
nents is not specified and can be random when a specific
program in AWK is not written (line 1). In this example,
the first pointcut is unordered and the second is ordered.
We consider a base assembly composed of five components:
ct1, ct2, ct3, t1, and t2. The schema is duplicated into two
applicable schemas (Ex1, Ex2). The global result is a two
dimensional table whose duplicated schemas’ parameters the
columns represent:

Consequently, in the two duplicated schemas Ex1 and Ex2,
the parameters of Ex1 and Ex2 are not associated with the
parameter with respectively the same ID: t2 is rather asso-
ciated with ct1 and t1 is associated with ct2.

1 SCHEMA Ex1(t2,ct1):
2 t2.^Out ->
3 (IF(ct1.Check) CALL)
4 ct1.Check ->
5 (ct1.Start ; CALL)

1 SCHEMA Ex2(t1,ct2):
2 t1.^Out ->
3 (IF(ct2.Check) CALL)
4 ct2.Check ->
5 (ct2.Start ; CALL)

The decision to integrate adaptation advice according to
specified pointcut follows the following rules: (1) only the
first complete columns of the table become parameters of
the duplicated schemas (in this example, only the two first
columns became parameters). (2) the order of the ID in the
first line {t2, t1} can change. Therefore, to apply a schema
deterministically, lines must be sorted.

Weaver with logical merging. The logical integration
rules can be represented by a matrix representing the two-
by-two merging of the operators introduced in the beginning
of Sec. 3.2. We give few examples of logical rules in Fig. 2.
We present an example of weaving two schemas called ‘Ex’
and ‘AA0’ (see line 1 and 6 for their code). Hypothesis: two
pointcuts respectively specifying the ‘observed ’ variable and
the ‘worker ’ variable are in conflict (they produce the same
join points):

1 SCHEMA Ex (observed,timeout):
2 observed.^Out ->
3 (IF (timeout.Check) CALL)
4 timeout.Check -> (timeout.Start ; CALL)

5 SCHEMA AA0 (producer,worker,consumer):
6 producer.^Out -> (worker.In)
7 worker.^Out -> (consumer.In)

Merging example. The specification rules (SR) at line 4
and 6 are not conflicting. Thus, they are copied in the result-
ing schema (line 5 and 6). However, the SR at line 2 and 7

3
number of component ID given at the input of the pointcut

Figure 2: Operator merging matrix

are conflicting because they redefine the same output ˆOut

of the confounded observed/worker component. Therefore,
their respective specification programs are logically merged
and the resulting ‘AA0+Ex’ schema is calculated using the
merging matrix (Fig. 2). The ‘+’ operator corresponds to
the unordered or undetermined couple of operations to exe-
cute. The merging process replaces CALL at line 3 of ‘Ex’
by CALL + consumer.In in ‘AA0+Ex’. Finally, the result-
ing AA is translated into a set of PEMs. For instance, the
operator IF is translated into the addition of a generic com-
ponent of type IF.

1 SCHEMA Ex+AA0 (observed,timeout,
2 producer,consumer):
3 observed.^Out ->
4 (IF (timeout.Check) { CALL + consumer.In })
5 timeout.Check -> (timeout.Start ; CALL)
6 producer.^Out -> (observed.In)

We saw the AA-specific design process as well as one cycle of
the adaptive pervasive application. In the next section, we
present the process cycles used to perform self-adaptation.

3.3 Self-adaptation cycles
Self-adaptation consists in reacting to modifications from
the user or the environment. Self-configuration is processed
by the decoupled AA designer. We describe the user-driven
approach and the process which permits to adapt the appli-
cation to its environment (Fig. 3).

The user-driven adaptation consists in selecting or deselect-
ing AA in order to integrate or erase certain behaviors and
functionalities in the system. The user can also intervene
on the base assembly and operate directly on the assembly.
Concerning the area of end-user programming, we distin-
guish expert and end users. Expert users can design new
AAs for new situations whereas end-users do not have to cre-
ate AA, but only select predefined AA. In that case, the in-
teraction with the user is simplified. The context-driven con-
sists in scanning the underlying infrastructure periodically

in order to verify if devices are still present in the environ-
ment. New devices can asynchronously inform the system
of their presence by broadcasting a notification. Therefore,
when a device is removed from the system’s environment,
the software component representing the device is unlinked
and removed from the base assembly. Conversely, when a
new device appears, a new software component representing
this new device is added to the assembly. Consequently, the
self-adaptation process consists in detecting those structural
changes in the base assembly and each cycle of the process
checks if either new AA are applicable, or applied AA are
not valid anymore. If a notable change occurred, it recalcu-
lates PEMs to be applied on the base assembly.

However, two cases should be considered when an adapta-
tion calculation occurs. The base assembly can be empty
(at least no links between components I/O). In such a case,
the application – more precisely the interactions between
components – is constructed by iterations of the application
of AAs. Conversely, the base assembly can be composed of
interconnected components. In that case, before adapting
the assembly by iterations of application of AA, the base
assembly (under the form of ADL) is translated into an AA
which is always selected to be composed so that the com-
position of PEMs takes into consideration this initial state.
For example, the schema ‘AA0’ explained in Sec. 3.2 is the
AA result of the transformation of a base assembly.

Figure 3: Self-adaptation cycles

Finally, the adaptation process is projected on a set of ser-
vices and composite services as defined in Sec. 3.1 and is
considered as a distributed system. Consequently, selected
AAs are duplicated at every level of the application which
is bounded by lightweight containers. But, in this paper, we
do not focus on this particular property. We have presented
our SAPS model by introducing extended aspect concepts
and the self-adaptive process. And the next section mea-
sures the concepts through comparisons and experiments.

4. VALIDATION
We validate our approach by commenting the results of ex-
periments on sets of randomly-generated assemblies which

show the advantages of AAs while evaluating the additional
costs concerning the reaction time when changing context.

Merging process. Our weaver with logical merging combines
selected AAs. This approach differs from more classical ap-
proaches such as [7, 10] by proposing a higher and logically-
composable language intended to be systematically merged
into a single coherent program according to a set of logical
rules. This program is then translated at runtime to pro-
duce a set of pure elementary modifications. This allows an
inherent and dispatched distribution of coordination speci-
fications through AA schemas.

Expressiveness of pointcut. We construct an indicator from
the number of PEMs to measure the degree to which apply-
ing our techniques can simplify adaptation. This measure
would show how many elementary modifications are required
to approach similar services in component-oriented systems
and how easier it is to use each service. For instance, for
a set of random programs, the simple AA in Fig. 1 pro-
duces 2 PEMs for 1 single integration. For 30 duplications,
it reaches an average of 36 PEMs. Our approach allows
regrouping elementary modifications into an AA which can
then be duplicated by specifying adequate pointcuts. An AA
is then defined once and applied n times. Moreover, point-
cuts separate the schema from the base assembly by being
responsible for assigning the schema variables (application-
independent) to join points (application-dependent). This
enforces the independence and the reuse of AA schemas.

Figure 4: Performances (Intel T2300 1.66GHz)

Performance. The assembly size is the number of compo-
nents and links. The adaptation process is separated: point-

cut calculation, composition of AAs, translation from an AA
to elementary modifications, and interpretation of modifi-
cations by the container. Overheads are shown in Fig. 4.
Pointcut and interpretation grows slowly while translation
evolves rapidly according to the number of AAs. Composition-
time varies up to 150 ms for 30 AAs. Those experiments
show the required reaction time to perform adaptation. The
system is highly responsive for a reasonable size of program
and number of AAs. One can notice irregularities of logical
merging process (in Prolog) on the performance by looking
points indicated by arrows due to atoms’ garbage collection.

5. CONCLUSION
In this paper, we introduced a middleware approach called
WComp which federates an event-driven component-oriented
approach to compose services for devices. This approach is
coupled with adaptation mechanisms dealing with separa-
tion of concerns. In such mechanisms, aspects (called As-
pects of Assembly) are selected either by the user or by a
self-adaptive process and composed by a weaver with logical
merging of high-level specifications. The result of the weaver
is projected in terms of pure elementary modifications of
components assemblies with respect to blackbox properties
of COTS components. We finally commented results indi-
cating the expressiveness and the performance of such an
approach, showing empirically that the principles of aspects
and program integration can be used to facilitate the design
of adaptive application. We further plan to decouple the
DSL from the AA concept in order to specify schemas by
means of assemblies of components making up ‘good prac-
tice’ schemas. Thus we also intend to generalize AA-merging
algorithm allowing the expert user to define its own merging
strategies.

6. REFERENCES
[1] M. Ahmed, R. Ghanea-Hercock, and S. Hailes.

MACE: adaptive component management middleware
for ubiquitous systems. In Proc. of the 4th Intern.

Workshop on Middleware for Perv. and Ad-Hoc

Comp., page 3, New York, NY, 2006. ACM Press.

[2] A. V. Aho, B. W. Kernighan, and P. J. Weinberger.
The AWK Programming Lang. Addison-Wesley, 1988.

[3] N. Bencomo, G. Blair, and P. Grace. Models, reflective
mechanisms and family-based systems to support
dynamic configuration. In Proc. of the 1st workshop

on MOdel Driven Development for Middleware, pages
1–6, New York, NY, USA, 2006. ACM Press.

[4] G. Blair, G. Coulson, J. Ueyama, K. Lee, and
A. Joolia. OpenCOM v2: A component model for
building systems software. In IASTED Software

Engineering and Applications, 2004.

[5] M. Blay-Fornarino, A. Charfi, D. Emsellem,
Anne-MariePinna-Dery, and M. Riveill. Software
interactions. Jo. Of Obj. Tech., 3(10):161–180, 2004.

[6] D. Cheung-Foo-Wo, J.-Y. Tigli, S. Lavirotte, and
M. Riveill. Wcomp: a multi-design approach for
prototyping applications using heterogeneous
resources. In 17th IEEE Intern. Workshop on Rapid

Syst. Prototyping, pages 119–125, Crete, 2006.

[7] P.-C. David and T. Ledoux. An aspect-oriented
approach for developing self-adaptive Fractal
components. In Softw. Comp., pages 82–97, 2006.

[8] J. Dowling and V. Cahill. Self-managed decentralised
systems using K-Components and collaborative
reinforcement learning. In Proc. of the 1st ACM

SIGSOFT workshop on Self-managed systems, pages
39–43, New York, NY, USA, 2004. ACM Press.

[9] J. O. Kephart. Research challenges of autonomic
computing. In ICSE ’05: Proceedings of the 27th

Intern. conference on Software engineering, pages
15–22, New York, NY, USA, 2005. ACM Press.

[10] J. Robinson, I. Wakeman, and D. Chalmers.
Composing software services in the pervasive
computing environment: Languages or APIs? Journal

of Pervasive and Mobile Computing, April 2007.

[11] B. Schilit and M. Theimer. Disseminating active map
information to mobile hosts. IEEE Netw., 8(5), 1994.

[12] R. Want, K. P. Fishkin, A. Gujar, and B. L. Harrison.
Bridging physical and virtual worlds with electronic
tags. In SIGCHI conference on Human factors in

computing systems: the CHI is the limit, pages
370–377, Pittsburgh, Pennsylvania, USA, 1999.

[13] T. Weis, M. Handte, M. Knoll, and C. Becker.
Customizable pervasive applications. In 4th IEEE

Intern. Conf. on Perv. Comp. and Communications,
pages 239–244. IEEE Comp. Soc., 2006.

[14] M. Weiser. The computer for the twenty-first century.
Scientific American, 265(3):94–104, Sept. 1991.

[15] S. Zachariadis, C. Mascolo, and W. Emmerich. The
SATIN component system - a meta model for
engineering adaptable mobile systems. IEEE Trans.

on Softw. Eng., 32(11):910–927, Nov. 2006.

