
HAL Id: hal-00481792
https://hal.science/hal-00481792

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Optimized Contextual Discovery of Web Services for
Devices

Nicolas Bussière, Daniel Cheung-Foo-Wo, Vincent Hourdin, Stéphane
Lavirotte, Michel Riveill, Jean-Yves Tigli

To cite this version:
Nicolas Bussière, Daniel Cheung-Foo-Wo, Vincent Hourdin, Stéphane Lavirotte, Michel Riveill, et
al.. Optimized Contextual Discovery of Web Services for Devices. International Workshop on Context
Modeling and Management for Smart Environments, IEEE Computer Society, Oct 2007, Lyon, France.
�hal-00481792�

https://hal.science/hal-00481792
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Optimized Contextual Discovery of Web Services for Devices

Nicolas BUSSIÈRE
1

Daniel CHEUNG-FOO-WO
1,2 Vincent HOURDIN

1,3

Stéphane LAVIROTTE
1,4 Michel RIVEILL

1 Jean-Yves TIGLI
1

1 Laboratoire I3S, Université de Nice - Sophia Antipolis - CNRS
2 CSTB 290, route des Lucioles, BP209 06904 Sophia Antipolis

3 Preceptel Buropolis 1240, Route des Dolines 06560 Sophia Antipolis cedex
4 IUFM Célestin Freinet - Académie de Nice 89, Avenue George V 06046 Nice Cedex 1

{bussiere, cheung, hourdin, lavirott, riveill, tigli}@polytech.unice.fr

Abstract

Due to more and more mobile computers moving among

smart and communicating devices in our everyday life, we

observe the emergence of new constraints in software de-

sign. Indeed, device heterogeneity, dynamic software varia-

tion, and frequent mobile device apparition/disappearance

make software applications compulsorily adapt to their

context. In this paper, we will present an enhancement of

ambient computing discovery mechanisms adding context

handling capabilities to Web Services for Devices. As a

matter of fact, we define contextual parameters for broad-

cast requests so that only devices in the “selected con-

text” reply, which aim at reducing the overall number of

exchanged messages on the network.

1 Introduction

With the multiplication of mobile computing devices and

communicating devices, we observe the emergence of new

constraints in software infrastructures. We observe as well

the emergence of a computer science called “Ubiquitous

Computing” by Mark Weiser [11] also called Ambient

or Omnipresent Computing based on the following state-

ment: “Silicon-based information technology is far from

having become part of the environment”. Technical difficul-

ties being overcome day after day, numerous physical enti-

ties of our environment progressively acquire a computing

existence and new communication capabilities; more con-

cretely, they participate in new software applications [10].

1.1 Serviceoriented architecture for devices

To fulfill reusability and adaptability needs, Service-

Oriented Architectures (SOA) have been defined. Their

principle is to describe services and their interactions [6].

The SOA approach presents interesting benefits for device

management. We now present the combination of SOA and

devices.

We call input/output devices, or simply devices, equip-

ments interacting with the physical environment. Devices

can be sensors, actuators or equipments of various nature

which can be found in new interaction supports for ambient

computing. Devices are basically similar to services as they

both provide a functionality, a means to access it, and also

because they are loosely coupled. However, physical con-

straints – also called resource dependencies – make them

different. A device can appear or vanish at any time. Its

visibility can be considered as a contextual information.

Whereas projects such as SIRENA [3] based on a

SOA for devices outline equipment integration facility, re-

usability, general system extensibility at runtime, and inter-

operability between services, we focus particularly on Web

Services for Devices (WSDs). We will group under this

denomination approaches aiming to council Web Service

principles and device utilization (physical resource depen-

dent by nature). The best-known approaches dealing with

WSD are UPnP 1 and more recently DPWS 2.

Those two previous WSD implementations are not in-

teroperable. This is a good example of the heterogene-

ity problem of Ambient Computing at the protocol level.

[8] presents a solution which deals with such limitations

of protocol interoperability by providing a bridge mech-

anism. We can distinguish three kinds of heterogeneity:

(1) heterogeneity of networks and protocols introduced be-

fore, (2) heterogeneity of platforms, and (3) heterogeneity

of services. Our work is essentially focused on the lat-

ter. Namely, by adding an abstraction layer on top of de-

vices, Services for Devices are allowed to interact by pro-

1http://upnp.org/resources/documents.asp
2http://schemas.xmlsoap.org/ws/2006/02/devprof



viding standard communication protocols and functionality

descriptions. Web Services for Devices specially aim at

permitting interoperability, since they do not rely on any

specific programming language nor hardware architecture.

Service for Devices also undergoes constraints related

to devices’ resource dependencies: frequent disconnec-

tions, memory limitation, narrow network bandwidth, lim-

ited power, processing capacities, etc. Therefore, the de-

scription of Service for Device must include these limita-

tions to inform of specific constraints associated to the pro-

vided service.

To go further, more specific works on the description of

ontological devices and services such as [2] are thus neces-

sary [1] to give a complete Service for Device description.

Devices being most often connected to the real envi-

ronment of applications, associated services need to offer

mechanisms which take into account applications’ reactiv-

ity to environmental variations. However, this is not with-

out consequences on the WSD communication protocols.

WSDs thus define communication protocols using events

(subscription, notification) in an asynchronous execution

context. For this purpose, UPnP uses the GENA protocol3,

whereas DPWS holds on WS-Eventing4.

Besides, the location concept is largely used to deter-

mine the availability of services for devices. In software us-

age, location is implicitly linked to user’s proximity inside

his environment [7].

Centralized service directories are difficult to keep up

to date, because applications undergo frequent disconnec-

tions of devices, which leads to communication overheads

while keeping coherence between pieces of information

stored in a directory. Moreover, evaluating the proximity

between a device and a user is not easy to compute. UDDI

(Universal Description, Description and Integration of Web

Services)5 is the main standard for Web Services’ publica-

tion and discovery. Web Services export their utilization

interface through the Web Service Description Language

(WSDL)6 , which ensures the independence from the tech-

nical platform used by the service provider.

Adopted solutions in WSD hold on local and distributed

discovery mechanisms between service producers and ser-

vice consumers. It is the case for UPnP and DPWS, with

respectively SSDP protocol and WS-Discovery protocol7.

These protocols use multicast UDP messages to discover

servers on the local network. There are actually two dif-

ferent processes for discovery: search and advertisement.

Search is an active request made by clients to discover

servers on the network. An advertisement is made by the

3http://quimby.gnus.org/internet-drafts/draft-cohen-gena-p-base-01.txt
4http://www.w3.org/Submission/WS-Eventing
5http://www.uddi.org/specification.html
6http://www.w3.org/TR/wsdl
7http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf

servers when they arrive on the network, then periodically,

and finally, when they quit. The location concept is there-

fore linked to message routing and associated to the same

local network membership.

However, it seems more natural to associate service dis-

covery to context. Indeed, the interest of a service for de-

vice in the user’s environment is not only linked to a simple

geographic criterion. We can for example associate the ser-

vice availability and its discovery to some authorized time

intervals and more generally to contextual exploitation con-

ditions [5]. Some works outline the context introduction in

service discovery mechanisms [4].

We can cite a third type of discovery management, the

local directory, which gathers centralized service directory

and distributed discovery. This directory listens to local net-

work announcements and quit messages, and keeps up to

date a service list. This means that it is transparent for ser-

vices, unlike a pure centralized directory. The best example

of local directory is the DPWS’ Discovery Proxy7. It is an

optional entity in WS-Discovery used to minimize broad-

cast or multicast discovery messages, which can be expen-

sive for wireless networks.

1.2 Context model

The term “context” has been used to describe various

concepts such as positions (characterizing the physical con-

text), resources (computing context) and human interactions

(social context). Gathering all these different concepts of-

ten leads to ambiguities. Each community having a different

definition for context, finding a common meta-definition is

quite a hard job. We rely on the formal representation of

context of [7, 5] which introduces a different approach to

context-awareness by conveying asymmetric relations be-

tween devices.

Numerous works on context consider that there exists

a symmetric relation between contextual entities, but this

reciprocity is not always true. Indeed, having an A entity in

our context does not mean that we are in the context of A

(loving someone does not necessarily means to be loved).

We can thus distinguish devices which are in our context

(endo-context) and devices for which we are in their con-

text (exo-context). A device can select other devices which

are in its context (endo-selection) or devices for which it

is in their context (exo-selection). When both relations are

verified (both devices are in the other’s context), the selec-

tion mechanism is said to be bilateral. We refer the inter-

ested reader to [5] for more details on these different selec-

tion mechanisms.

In this contextual asymmetric world, each entity needs

a function to compute contextual membership; let us call it

the φ function. Entity e1’s φ function is used to check if an

entity e2 is in its context; this is done by passing contextual



data of e1 and e2 to φ. The phi function can compute a

distance, which is a symmetric function, but for most of

other cases this is an asymmetric cost function, used for an

exo-selection of the context (i.e. if e2 is in the context of

e1).

We consider devices to be the basic entities of which we

will study the context.

2 Contribution: contextual discovery of web

services for devices

As we have seen with SOA and particularly WSD, ser-

vices can be discovered and added to an application during

its execution. However, searching for any devices on a net-

work may retrieve a large amount of unneeded data flows,

resulting in resource wastes (network bandwidth, energy,

time).

In the UPnP case, search messages may use a filtering

mechanism to search for a device with a specific unique

identifier, for a device of a given type, or for a device pro-

viding a given type of service. This filtering mechanism is

not efficient enough to be used for a more generic contex-

tual filtering as all devices of a given type may not be in the

user’s or application’s context. Since devices are not known

beforehand, the unique identifier filter is useless as it can

only be applied on previously found devices.

DPWS provides two kinds of service filtering: on their

type and on their scope. The type filter is similar to the

filtering mechanism described earlier for UPnP. The scope

filter is much more promising. Scopes can be used to or-

ganize services into logical groups, for example one for a

department, or for a specific floor in a building. They can

be specified with a LDAP URL syntax, thus the possibilities

are wide.

The solution we are exposing in this paper relies on the

ability to search devices for which the application is in their

context (exo-selection). This is a non-trivial and efficient

implementation from the formal description described in

[5] which also tries to minimize the overhead communica-

tion costs due to context selection. In an active discovery

(flooding), devices must have a φ function, used to com-

pute the contextual memberships. In a passive discovery

(advertisement), they must be able to send their φ to the in-

terested entities. As we have seen, the function φ uses the

context values of both devices (searching device and po-

tential provider device) to compute the membership. Thus,

discovered devices must have a φ function and also context

information on themselves.

We can distinguish two kinds of devices: (1) devices that

produce information requested by the application (let us call

them D devices) and (2) devices informing about the context

(we will refer to them as C devices). D devices may refer

to different C devices to define values of their context infor-

mation. A C device can finally be shared among several D

devices. If a D device is not linked to a C device, it does not

depend on context. Although C device can exists without

being used by any D devices, we choose not to model this

situation which does not present a great interest as it would

mean that there is no application. Depending on the appli-

cation, a same device can be viewed either as a C or a D

device. For example, for greenhouse applications, tempera-

ture can be viewed as non-contextual information although

we can perform a temperature-oriented search when look-

ing for an available fresh classroom.

Enabling WSD to achieve contextual search and discov-

ery means, with the above notation, that D devices will be

discovered only if their associated C devices match the con-

text selection. There are at least four different ways to do

this, and we will study them in the next section. The whole

idea is to add context information to discovery messages or

search responses of WSD. The traditional way would have

been to request the context instance from every found de-

vice, increasing the workload and unneeded network traffic.

Making D devices aware of their context is not an easy

work. Our solution is to aggregate C and D devices to-

gether into a single new WSD, by means of an orchestration

of WSD [9]. We instantiate, in our event-based component

framework, proxy components for WSD (there for C and D

devices) in a container, and manipulate them like software

components. The container is able to export its own assem-

bly of components as a WSD, which additionally makes the

model re-entrant. This way, search requests and discovery

messages are processed by the upper level aggregated WSD

(the component assembly), which internally makes needed

requests to the concerned C devices.

Context information can be added to UPnP messages.

For instance, a UPnP search request is a HTTP header de-

fined by fields such as response delay and search target,

without a HTTP body. We can add context information

in the body of the request, most of standard UPnP stacks

are not disturbed if headers are still the original ones. For

context-aware UPnP servers, a modification in the SSDP

parser has to be done to check context membership before

replying to the discovery. There is no need for such modi-

fication with DPWS, since scopes can be user-defined, they

can be used to represent an URL-expressible context.

3 Contextual search model

In this section, we will explain in detail how an active

contextual discovery of WSD can be done. Each presented

solution lets us find devices in a given context, on a local

network. Thanks to the active search messages’ modeling,

we will compare the costs of each approach in terms of the

number of exchanged messages.



3.1 Case A: basic application

The obvious and simplest way to perform a context-

aware search of Web Services for Devices is to do a non

context-aware search on the network for servers with a mul-

ticast message in a first time, and then to ask every found

device for its context.

We note N the total number of devices, which is the sum

of P , the number of D devices that produce information re-

quested by the application and K, the number of contextual

C devices that gives information about the context of D de-

vices. We note Costd the cost of the discovery and Costc,

the cost of the communication used to determine if the con-

text matches or not (in most cases, a SOAP request).

We assume that the contextual C device transmits the

complete contextual information in a unique request packet.

We have the following formulas :

Costd=γ + αN

Costc=(β1 + β2)K

where γ stands for the initial discovery messages, α the

number of messages in response and βk represents variables

depending on the communication infrastructure. Here, β1 is

the number of packets needed for the context request, and

β2 for the response. All N devices respond to the search

request, but the context request is made only to the K C de-

vices, which gives contextual information about D devices.

3.2 Case B: aggregation of ‘D ’ devices only

In this second case, we aggregate D devices together.

When searching for devices, we will only discover these

aggregates, but we still have to request the contextual infor-

mation to the C devices.

The number N now stands for the number of devices’

aggregates. We note pi the number of D devices and ki the

number of C devices that are contained in the ith aggregate.

We consider two sub-cases: D services are aggregated

into a new device but not their interfaces, such as there will

be a service per former D device (case 1), and services are

aggregated and their services are merged into a single new

interface (case 2).

Case B1: D services are aggregated

Costd = γ + α

N∑

i=1

pi

Costc ≤ (β1 + β2)

N∑

i=1

piki

All D devices in aggregates respond to the search mes-

sage, and context requests are done to all C devices asso-

ciated to a D device, for each D device, in all aggregates.

As a C device may be associated to several D devices for

their contextual information, Costc is not a strict equality,

and may be lower.

Case B2: services are merged

Costd=γ + αN

Costc=(β1 + β2)

N∑

i=1

ki

In that case, services are merged, and we only have the

aggregated D devices which respond to the search request.

Then, for the context request, C devices are associated to

the new D device, the request will be done on each of them,

but only once per aggregated device.

3.3 Case B
′

: aggregation of contextual C devices
and D devices

This third case is similar to the previous one (B), except

that C devices are now in aggregates of devices. This im-

plies that if an aggregate of device contains more than one

C device, context requests will be handled internally and

the external cost will be as if there were only one request to

fetch all context values for all C devices in each aggregate.

Case B′

1
: D services are aggregated

Costd = γ + α

N∑

i=1

pi

Costc ≤ (β1 + β2)

N∑

i=1

pi

D devices in aggregates respond to the search request.

Context requests are made for each of those in every aggre-

gate.

Case B′

2
: services are merged

Costd=γ + αN

Costc=(β1 + β2)N

Now, only aggregated devices can be discovered, and

context requests can be done directly to them for all nested

devices.



3.4 Case C: our contribution: deporting the con
textual detection to the device

As we have seen in the section 2, our solution is revealed

efficient as it enables devices to communicate their context

information in search replies. Therefore, context requests

are no longer needed.

We note r the ratio representing the number of devices

belonging to the context of the application (0 ≤ r ≤ 1). In

this case, the cost of the communication is null. We have

then respectively the formulas for the two cases:

Costd=γ′ + αrN

Costc=0

3.5 Summary: gain in message number

The important thing we can depict from these equations

is the decrease of the number of messages in the C case.

We can analyze the ratio corresponding to this decrease for

different approaches. For the case B′

2
and C, we have :

ratio =
CostC
CostB′

2

=
γ′ + αrN

γ + αN + (β1 + β2)N

When N ,

i∑
pi and

i∑
ki are big enough, this tends to

ratio −→ r
α

α + β1 + β2

4 Experiment and validation

In this section, we will study a real-world application

case. Let us take a typical study week in a last year univer-

sity cycle. We have there 67 students following 6 among 19

lectures, given by 13 teachers. Teachings spread over half-

days, and often consist of a course followed by a directed

tutorial class or a practical work by halves; so 2 hours will

be our basic time granularity.

All teaching rooms, the center hall, and teachers’ offices

are equipped with interactive devices, which can be discov-

ered as WSD. All those devices constitute our non-moving

devices (that we will call further “fixed devices”) network.

We also have in every location context capture devices giv-

ing context information for all the fixed devices.

This sample would not be interesting if students were not

carrying moving devices. Actually, they are equipped with

some mobile devices, like a cell phone or a PDA, connected

to the main network as well. Some tracking system, or mo-

bile device localization system is coupled to mobile devices,

allowing an application to know its context by itself.

L
ig

h
t

S
h

u
tt

er

D
is

p
la

y

L
o

u
d

S
p

ea
k

er

L
a

rg
e

D
is

p
la

y

V
id

eo
-p

ro
je

ct
o

r

A
ir

-c
o

n
d

it
io

n
in

g

N
u

m
b

er
o

f
ro

o
m

D
ev

ic
es

p
er

ro
o

m

T
o

ta
l

Course 2 2 2 1 0 1 1 3 9 27

Directed Work 2 1 1 0 0 0 1 2 5 10

Practical Work 2 1 1 0 0 0 0 3 4 12

Hall 6 4 1 0 1 0 0 1 12 12

Office 1 1 1 0 0 0 1 14 4 56

34151

Table 1. Classrooms and fixed devices

The typical application which can be set up with this en-

vironment is the following: a teacher coming in a class-

room to give his course would like to connect to the wireless

video-projector to display his documents and to the loud-

speakers to amplify his voice. If he discovers devices with-

out any filter, he will find all devices in the building. If he

specifies a type, he will discover all video-projector devices

in the building. If he specifies a type, and a scope, if we

consider we are in a DPWS environment and scopes are de-

fined with classrooms, he will find the video-projector he

needs. But if students proceed to the same discovery, they

will be able to find it too, what we surely don’t want to hap-

pen in a general case. Therefore, there is still a need for a

contextual evaluation. In that case students will not be able

to discover the video-projector because they are not in its

context, contrarily to the teacher.

The data we are taking for the following quantitative ex-

periment include devices worn by the students. A teacher

can proceed to a search on them, for example to send them

examination questions or instructions for a practical work.

Table 1 describes which devices can be found in every

kind of room. We count 151 fixed devices in our network.

Starting from the courses distribution in time, and the

number of students who have registered to lectures, we cal-

culated the ratio r for each time interval and each room. The

maximum value found for r is 0.28, which means that every

time, discovered devices are nearly a quarter of the whole

set at its maximum, with an average value of 0.17 and a

standard deviation of 0.05. Network traffic will be lowered

as much, as well as the ease of use of the system.

5 Conclusion

In this paper, we presented contextual discovery based

on Service-Oriented Architecture for Devices, well suited

to manage heterogeneity, distribution, and dynamicity in

an Ubiquitous Computing environment. The specificity of

Web Services for Devices lies in its adequacy to manage



interoperability, reactivity and location of services for de-

vices. But with a wide range of devices, the problem of

search and discovery of available services is a challenge,

due to the number of messages. To solve this problem, we

presented our definition of context, especially the asymme-

try of this notion (endo and exo selection). Then we applied

this to provide a contextual discovery of devices, enabling

to have better performances in term of communication mes-

sages to discover such contextual devices. Finally, we pre-

sented an example applying these researches in a real en-

vironment, to highlight the gain obtained with contextual

discovery of mobile devices.

In the university building sample, we used an exo con-

text selection mechanism. In future research, we can con-

sider endo selection mechanism performance enhancement

by deporting the contextual area computing (φ function)

phase on remote devices. Since the same devices can be

used by multiple application, each with a different context

definition, this needs to be studied further. Heterogeneity

also implies that not all the devices can provide the same

contextual information, thus another path to explore would

be to deal with partial contextual information. Finally, we

have introduced in this study measurements for the discov-

ery phase, our ongoing work will now focus on contextual

request and asynchronous event handling.

References

[1] A. Bandara, T. R. Payne, D. de Roure, and G. Clemo. An

ontological framework for semantic description of devices.

In 3rd International Semantic Web Conference (ISWC), Hi-

roshima, Japan, November 2004.

[2] FIPA. Fipa device ontology specification, December 2002.

[3] F. Jammes and H. Smit. Service-oriented paradigms in in-

dustrial automation. IEEE Transactions on Industrial Infor-

matics, 1(1):62–70, February 2005.

[4] J. Kuck and M. Gnasa. Context-sensitive service discov-

ery meets information retrieval. In Fifth IEEE International

Conference on Pervasive Computing and Communications

Workshops (PERCOMW), pages 601–605. IEEE Computer

Society, 2007.

[5] D. Lingrand, S. Lavirotte, and J.-Y. Tigli. Selection us-

ing non symmetric context areas. In Workshop on Context-

Aware Mobile Systems (CAMS), volume LNCS 3762, pages

225–228, Agia Napa, Cyprus, October 2005. OnTheMove

Federated Conferences (OTM’05), Springer.

[6] M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and

R. Metz. Reference model for service oriented architec-

ture 1.0. Technical Report wd-soa-rm-cd1, OASIS, February

2006.

[7] J. Pauty, P. Couderc, and M. Banâtre. Synthèse des méthodes

de programmation en informatique contextuelle. Technical

Report 1595, IRISA, January 2004.

[8] P.-G. Raverdy, O. Riva, A. de La Chapelle, R. Chibout,

and V. Issarny. Efficient context-aware service discovery

in multi-protocol pervasive environments. In MDM ’06:

Proceedings of the 7th International Conference on Mo-

bile Data Management (MDM’06). IEEE Computer Society,

2006.

[9] L. Seinturier. Composition of contracts for the reliability of

service-oriented architectures (faros). Technical report, EDF

R&D, FT R&D, I3S, IRISA, LIFL laboratories, May 2007.

[10] R. Want, K. P. Fishkin, A. Gujar, and B. L. Harrison. Bridg-

ing physical and virtual worlds with electronic tags. In

SIGCHI conference on Human factors in computing sys-

tems: the CHI is the limit (CHI), pages 370–377, Pittsburgh,

Pennsylvania, USA, 1999.

[11] M. Weiser. The computer for the twenty-first century. Sci-

entific American, 265(3):94–104, September 1991.


