
HAL Id: hal-00481783
https://hal.science/hal-00481783v1

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Context Adaptative Systems based on Horizontal
Architecture for Ubiquitous Computing

Nicolas Ferry, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey, Michel Riveill

To cite this version:
Nicolas Ferry, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey, Michel Riveill. Context Adaptative
Systems based on Horizontal Architecture for Ubiquitous Computing. International Conference on
Mobile Technology, Applications and Systems, Sep 2009, Nice, France. �hal-00481783�

https://hal.science/hal-00481783v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Context adaptative systems based on Horizontal
architecture for Ubiquitous Computing

Nicolas Ferry
I3S (UNS - CNRS) and CSTB
930 Route des Colles - BP 145
06901 Sophia-Antipolis France
ferry@polytech.unice.fr

Stéphane Lavirotte
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France
stephane.lavirotte@unice.fr

Jean-Yves Tigli
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

tigli@polytech.unice.fr

Gaëtan Rey
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

rey@polytech.unice.fr

Michel Riveill
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

riveill@unice.fr

ABSTRACT
Many adaptative context-aware middleware exist and mostly
rely on so-called vertical architectures that offer a functional
decomposition for context-awareness. This architecture has
a weak point: it leads to data centralization. Our mecha-
nism for adaptation: the Aspects of Assemblies is based on
a horizontal architecture. This type of architecture separate
the system into behavior and is based on a decentralized
approach. However, after having shown some limitations of
AAs in the field of context-awareness we will introduce a
way to improve them using a multi-cycle weaving approach.
Then, using this approach we will be able to build context-
adaptative systems that interact directly with their envi-
ronment. Finally we will evaluate our approach in term of
reactivity.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Configuration Management;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Management, Design, Measurement

Keywords
Ubiquitous computing, software composition, service ori-
ented architecture, component-based software engineering,
aspect-oriented programming, context-awareness

1. INTRODUCTION
Ubiquitous computing, as described by Mark Weiser [21],
relies on a computer present everywhere, at any times in

any things. Thus ambient computing systems must consider
multi-users, multi-devices environments. Indeed with the re-
cent years advance in mobile technologies and the miniatur-
ization of computer hardware, processing units are becoming
invisible and a part of the environment. So pervasive sys-
tems have to be aware of many heterogeneous entities that
compose their environment. The topologies of this infras-
tructure are dynamic due to arbitrary node mobility. Be-
cause environment’s nature is highly variable and entities
may be mobile, pervasive systems have to handle those vari-
ations and offer such dynamicity. These systems have to be
able to adapt to their environment (context of execution).

1.1 Context-awareness
Many context-aware middlewares exist, they mostly rely on
so-called vertical architectures that offer a functional decom-
position (see Figure 1) for context-awareness.

Figure 1: Vertical architecture

Being aware of its environment traditionally relies on dif-
ferent mechanisms [8] (see Figure 1). Most of adaptive and
context-aware middleware fulfill all those mechanisms, and
are often specialized in one of them. The first stage of sens-
ing is to capture observables on the environment [10, 6, 12].
These observables are then processed in the form of symbolic

observables about the state of the environment, for example
using ontologies [11]. Thanks to these data, a decision stage
or situation identification stage will provide an action plan
to be implemented by the decision control stage. This stage
is designed to process an action plan based on changes in
the environment. In order to do this, different mechanisms
can be establish such as event-condition-action rules [9].

These architectures have as weak point: the data centraliza-
tion in at least one of the components of the decomposition.
Thus, in Gaia [17], a context-aware middleware, observables
are stored in a single entity: the ”context file system”. We
found the same problem with SOCAM [11] or CARMEN [3].
For example, CARMEN use a specialized LDAP containing
user profiles for the decision stage. This data centralization
remains hardly imaginable in ubiquitous computing where
we need to manage numerous and heterogeneous entities.
On the other hand few middleware consider data decentral-
ization [13, 6] or are based on pure ad-hoc architecture as
CoWSAMI [1].But they do not consider all the mechanisms
previously described (see Figure 1) including the adaptation
stage.

1.2 Adaptation
Context-awareness processes always end with the adapta-
tion stage. In this field, adaptation aims to change system’s
behavior according to its surrounding. For such systems
adaptation can take two forms [16]. On the one hand static
adaptations require to shutdown the system to be imple-
mented. On the other hand dynamic adaptations are able
to change the system behavior at run-time. Since we con-
sider systems that must continuously evolve in order to be
in lines with their environment, we must center on dynamic
adaptations. However, static adaptations, as in CAMidO
[2], can be considered as an extra .

To do such adaptations there are various approach: alter-
ing data that are processed or modifying internal processing
[14]. The first is used to configure algorithms, components
or strategies, the second aims to exchange algorithms, com-
ponents or strategies with others. This type of adaptation is
implemented in most context-aware middleware. To do this
they use various techniques such as reflection [5], code gen-
eration [2], proxies to redirect methods’ call [19] or aspect
oriented programming as in SAFRAN [9].

Many of these mechanisms also rely on centralized archi-
tectures and/or do not really address the needs of reactiv-
ity. Consequently these approaches for adaptation and more
globally vertical architectures do not fulfill all ubiquitous
computing requirements.

2. HORIZONTAL APPROACH
Accordingly other approaches from reactive systems or robotics
propose to address these issues. For this purpose they evoke
horizontal architectures (see Figure 2)[4].

The aim of this kind of approach is to specialize a generic
minimal core of the application with some specific modules
[22] called horizontal layers. These layers are independent
of each other. As part of a context-aware system, each layer
includes the previously described mechanisms and is con-
nected to the world via a set of sensors. This crosscuting

Figure 2: Horizontal architecture

approach of mechanism for context-awaress induces decen-
tralization.

So a contribution of this architecture is to see the system
not as a sequential process. Indeed, the decomposition sep-
arates a system into behaviors. So more complex behaviors
are achieved with simple ones like for divide and conquer
strategies. Therefore this type of architecture corresponds
to the needs of situated systems (systems that interact di-
rectly with their environment):

• A layer sees only what is relevant for him and not ”the
world”.

• Each layer captures what is relevant in the environ-
ment directly, sensing the surrounding to a degree suf-
ficient to achieve the necessary.

• No representation of the environment, a decentralized
approach.

• Many small behavior of low complexity for the best
possible reactivity.

Horizontal architectures need a coordination mechanism to
combine the output data of each layer in order to obtain a
rational and coherent global behavior. Horizontal decom-
position is often associated to aspect oriented programming
(AOP) and in such case the coordination mechanism is the
aspects weaver. Otherwise in Brooks’ subsumption archi-
tecture [4] it is a priority mechanism. A simpler mechanism
induces more reactivity.

So we propose a mechanism respecting this horizontal ap-
proach and then based on a decentralized architecture in
order to offer a maximum reactivity.

3. HORIZONTAL AUTO-ADAPTATION US-
ING ASPECTS OF ASSEMBLIES

As we said before, ubiquitous computing systems must man-
age numerous and heterogeneous entities and try to be reu-
sable. To do this they are often built using component
based software engineering (CBSE). In component based
systems, assemblies govern application’s behavior and modi-
fying these assemblies will affect their behavior. Thus, using
this notion of component assembly, we can define software
architecture as a graph of components. In such a graph,
nodes are instances of components types and edges are con-
nections between those components. So application and as-
semblies can be written:

Ass = App = (C,L)

Let C be a set of components and L a set of connections.
We can write C = {∅, c0, ..., ci}, where ci is a unique in-
stance of component. In the same way, we can express L as
L = {∅, l00,01, ..., ln−1z,nx}, where ln−1z,nx is a connection
between components n-1 and n on ports number z and x.

Aspects of Assemblies consist of an extended model of AOP
for adaptation schemas and of a weaving process with logi-
cal merging. AAs are a way to build systems based on
a horizontal architecture.They allow structural re-
configuration of components assemblies at runtime,
which is a kind of dynamic reactive composition.
AOP is an approach that enables separation of crosscutting
concerns. In traditional AOP [15] aspects are composed of
pointcuts and advices. Pointcuts point out ”where” inject
the code to weave while advices describe this code. The
scheduling of these aspects occurs at joinpoints, which are
anchors where aspects have to be weaved. In the context of
AAs these concepts are still valid but with some shadings.
Here an advice describes a structural reconfiguration of an
assembly of components, while a pointcut match the com-
ponents’ ports from the assembly on which will take place
those changes. Accordingly, joinpoints are ports rather than
execution’s points. Moreover, as long as it is to reconfigure
an assembly of components (which can be grouped either in
a component, either in a service) we lose the property of en-
capsulation for components (or composite components) as-
semblies. In contrast, they preserve the component’s black
box property. We define therefore an aspect of assembly as
follows:

AAi = (pointcuti, advicei)

The pointcut section (pointcuti) is a set of filters on ports of
the assembly while the advice section (advicei) consists of a
set of rules describing changes in the initial assembly. AAs
are applied on an initial assembly Ass0 which is by default
empty: Ass0(∅, ∅). So weaver’s inputs are: a set of AAs An

and Ass0 , output is: a new assembly Assn+1.

T (Ass0, An) = Assn+1

In the manner of automatons cycles consisting of a phase
of acquisition (storage of inputs), then execution and finally
writing outputs, we’re talking about weaving cycle. Where
inputs are AAs and an assembly, execution is the weaving
process and output is a new assembly, a new application
(see Figure 3). This output of a weaving cycle will not be
the base for the next round of weaving. Each round is al-
ways based on the initial assembly to secure the property of
symmetry. This property must be preserved because
it simplifies the development of adaptations, ensur-
ing a similar result regardless of when adaptations
are incorporated. Then we allow permutations between
adaptations without effect on the resulting application.

In details we can present the cycle as in Figure 4. The
weaving process can be split into 3 steps. First, pointcut
matching is a function that has a set of components from the
initial assembly and pointcuts as inputs. Its goal is to find
the components on which advices will be woven. Thanks to

Figure 3: Weaving cycle

pointcut matching an advice can be weaved many times in
the same weaving process. This function produces joinpoints
Pi.

pointcutMatching(C, pointcuti) = Pi

The second step uses those joinpoints. It consists in gener-
ating instance of advices. This advice factory has for input
a set of joinpoints pi and advices (advicei). It produces an
instance of advice describing some changes to apply on the
initial assembly.

adviceFactory(pij , advicei) = Aij

Finally the composition and merging mechanism merges all
these instances of advices in order to generate a unique in-
stance of advice which is the final assembly.

ϕt(A00, ..., Aij) = Ai+1j

The whole weaving cycle respects some properties: com-
mutativity, associativity, idempotence [7] on a cycle. This
means that there is no order on the application of AAs and
therefore no potentially quickly complex historic of applied
AAs.

Thus we can build applications by composing several
aspects of assemblies at the same time.

4. REACTIVITY AND OPPORTUNISM
In order to be more reactive these cycles can be triggered
in several ways, we call these triggers disruptions. During
consideration of disruptions, system does not tolerate other
disruptions.

4.1 User-triggered
The first type of disruption are variations in the set of AAs
given as input to the weaver. This is the selection / deselec-
tion or adding / removing aspects of assemblies. This kind
of disruption can be noted:

Appn+1 = T (An, Appn)
Appn+2 = T (An + 1, Appn)

So, whenever a change occurs in the set of selected aspects,
a new cycle is triggered on the same initial assembly.

Figure 4: Detailed weaving cycle

4.2 Context-triggered
In the same way at any time a new device can appear /
disappear in the environment and be dynamically inserted
/ removed in the initial assembly. These variations in the
initial assembly are also the source of a new weaving cycle
. In such a case, the pace of the interaction is determined
by the environment, so thanks to AAs we can build
situated systems. This kind of disruption can be noted
(∆appn describes a variation in the application software in-
frastructure):

App′n+1 = F (Appn,∆appn)
App′n+1 = Appn if ∆appn = null

In traditional context-aware approaches the software infras-
tructure is know a priori and the relevant infrastructure is
fixed a priori by the developer. For each entities from the
infrastructure the developer decides if it is relevant to this
specific application. The inclusion of this type of disruption
allows us to build applications with a ”bottom-up”approach.
Thanks to this approach, we can build an application oppor-
tunistically in terms of some infrastructure services, devices.
So we can speak of application in line with its infrastructure.
Opportunism is an important feature since we no
longer consider context-aware systems for specific
scenarios or type of contexts. Both types of disruptions
bring into play a cycle of weaving that can be represented
as in Figure 5:

Figure 5: Formal weaving cycle

Appn+1 = T (An, F (Appn,∆appn)) = Tn(Fn(Appn))
So that if An+1 = An et ∆appn = null then

Appn+1 = Appn

It is therefore to answer opportunistically to unpredictable
changes. This unpredictability implies the loss of commuta-
tivity between several weavings cycles.

5. SYNTHESIS
Finally aspects of assemblies allow us to build auto-adaptative
applications where adaptation is a crosscutting concern. AAs
are reusable entities that can be exchange in a decentralize
approach.

5.1 Aspects of assemblies, a decentralized ap-
proach for reactive adaptations

AAs are a way to build opportunistically application. This
can be done by composing various AAs. Thanks to a mech-
anism of conflict resolution [7] they always provide consis-
tent results. Furthermore preserving the property of symme-
try(commutativity, associativity, idempotence) allows us to
weave AAs without order. A developer should only be con-
cerned with AAs that need to be written. Moreover AAs are
reusable entities; they provide a transversal modularity and
therefore a good reusability. This allows us to offer minimum
code dispersion through pointcuts. Thanks to pointcuts we
can apply that same advice in several places.

So AAs are a way to create situated systems using
a horizontal architecture where adaptation is a dy-
namic reactive composition.

5.2 But still with some limitations
AAs are a way to build systems based on a horizontal archi-
tecture. But with limited skills in context-awareness since it
only consider variation in the software application. Schilit
[18] classified context informations into three domains. The
user domain focus on notion such as users’ profiles, the sys-
tem domain relies on the software infrastructure and thus on
resources available at runtime and finally the environmental
domain. Using AAs, we are only able to work on the system
domain and a little on the user-domain (user-triggering).

Consider for example a building equipped with various lo-
cations systems and light sensors in each rooms. We wish
to use those equipments to enable the room’s energy system
to automatically turn on/off lights and heaters. It may de-
pend on the presence (or not) of someone in the room and
its brightness. In this context we need to use multiple mod-
ules in AAs building such systems. Modules similar to those
previously presented for context-awareness in horizontal ar-
chitectures. It means a module for perception aiming to tell
whether a room is occupied and the brightness of the room

with a maximal reliability. Therefore it will place filters and
components to transform observables into symbolic observ-
ables for presence detection (occupied or not). The second
module of decision shall, depending on the brightness and
on the room occupancy, choose an energy-saving policy. The
last one, the reaction module, will connect lights and heaters
to the decision-making component.

Thanks to this decomposition, if one wishes to install a new
tracking system, changing the observation module will be
sufficient. The same goes for other modules. However, it is
not possible to build such modules with the weaving mech-
anism presented above. Indeed, with the latter, aspects of
assemblies can not use components instantiated by
other aspects of assemblies.

This can be proofed using the formalism previously defined:
As we said before, the properties of commutativity, associa-
tivity and idempotent on a cycle have been proofed in [7].
So we can write:

ϕt(A00, A10, A20) = ϕt(ϕt(A00, A10), ϕt(A00, A20)) =
ϕt(ϕt(A00, A20), ϕt(A00, A10))

AA1 and AA2 are two Aspects of Assembly, let:

1. the initial assembly be empty : Ass0 = (∅, ∅)

2. AA2 be applied only if the component c2 is in the

assembly : ∀j ∃Ã2j ⇒ pointcuti(C) = Pi | pij ∈ Pi ∧
c1 ∈ pkj

Consider that AA1 add the component c1 to the initial as-
sembly then AA2 add the component c2:

ϕt(A00, A10) = A10 = Ass10 = (C0 ∪ Cn, L0 ∪ Ln)|c2 ∈ Cn

ϕt(A10, A20) = A20 = Ass20 = (C0∪Cn, L0∪Ln)|c1, c2 ∈ Cn

So we can rewrite our first equation as:

ϕt(A00, A10, A20) = ϕt(ϕt(A00, A10), A00) = ϕt(A00, A10) =
(C0 ∪ Cn, L0 ∪ Ln)|c1 ∈ Cn

Component c2 cannot be instantiated since we want to re-
spect the property of commutativity. So joinpoint are only
components from the initial assembly. To conclude we can
say that an AA cannot use components instantiated by oth-
ers AAs in a same weaving cycle.

6. A MULTI-CYCLE APPROACH
To address these limitations we propose a multi-cycle weav-
ing approach. We assume that the assembly resulting from
a weaving cycle can be used as the initial assembly in the
next cycle (see Figure 6). It is on this assembly that point-
cut matching and composition/merging will be done. Thus
the components instantiated in the first cycle may be used
by the following one. But this simple implementation en-
tails the loss of the property of commutativity and hence
the symmetry between aspects of assemblies.

Figure 6: Multi-cycle weaving

6.1 Improving reusability while preserving the
symmetry

To maintain properties of associativity, commutativity, idem-
potence, we consider aspects such as ordered sets of AAs.
We can call aspects with cardinality greater than one cas-
cade aspects. AAs include in a set are called modules, each
module is indexed according to the weaving cycle in which
it must be weaved.

AAj = {AA0j , AA1j , ..., AAij}

Keeping in mind the need for modularity and reusability
of modules, they must be traditional aspects of assemblies
with pointcut and advice. Thanks to pointcut matching,
AAs can be applied if some components are in the assembly
regardless of the modules previously woven. These sets are
not necessarily continuous (i.e. there is not necessarily an
aspect for each weaving cycle):

AAz = {AA0z, ∅, AA2z, ..., AAiz}

So there is an order in the merger(see Figure 7):

Figure 7: Cascade AA as a set of modules

ϕt(AAij , AA0) = ϕt(ϕt−1(ϕt−2(...ϕt−i(AA0j , A00)..., AAij)

Finally all aspects given to the weaver as input are seen as
sets of aspects but with various cardinalities (since we want
to weave old fashioned aspects with cascade aspects). The
number of weaving cycles is equal to the cardinality of the
cascade aspect AAz consisting of greater cardinality. This
means for the weaver of aspects to consider in the same cy-
cle i all aspects AAij whatever j. The number of aspects
woven in a cycle is not necessarily equal to the number of
cascade aspect. Thus each element consisting of these cas-
cade AAs are woven in the order defined. Between each
cycle the assembly to consider is always the same; there is
no order between modules in the same cycle. For example,
consider the following cascade aspects:

AA1 = {AA01, AA11, AA21}

AA2 = {AA02, AA12}
AA3 = {AA03}

Aspects AA01, AA02 and AA03 will be woven in a same first
cycle. The resulting assembly is then taken as the initial
assembly for the following weaving cycle planned: AA11 and
AA12. In the same way it is on the assembly thus obtained
that will be woven the aspect AA21 (see Figure 8).

Figure 8: Multi-cycle weaving process

Here we can proof that this approach allow us to preserve
symmetry between cascade aspects of assemblies.

∀i, n ϕt+max(i,n)(AAij , AAnm) =
ϕt+max(i,n)(ϕt+(i−1)(...(ϕt(AA0j , AA00), ..., AAij),

ϕt+(n−1)(...(ϕt(AA0m, AA00), ..., AAnm))

So at instant t we can write :

ϕt(AA0j , AA0m) = ϕt(AA0m, AA0j)
So ϕt(AA0m, AA00) = AA′00 = ϕt(AA0j , AA00)

And we can rewrite our equation as:

∀i, n ϕt+max(i,n)(AAij , AAnm) =
ϕt+max(i,n)(ϕt+(i−1)(...(ϕt(AA1j , AA

′
00), ..., AAij),

ϕt+(n−1)(...(ϕt(AA1m, AA
′
00), ..., AAnm))

Continuing the same reasoning:

if i>n
∀i, n ϕt+max(i,n)(AAij , AAnm) =

ϕt+max(i,n)(ϕt+(i−n)(AA
′
(i−n), AAnj))

if n>i
∀i, n ϕt+max(i,n)(AAij , AAnm) =

ϕt+max(i,n)(ϕt+(n−i)(AA
′
(n−i), AAim))

if n=m
∀i, n ϕt+max(i,n)(AAij , AAnm) =
ϕt+max(i,n)(ϕt−1(AA′(i), AA

′
(n)))

In all cases we respect the propriety of symmetry while we
preserve it in a same weaving cycle. Since the multi-cycle
approach allow AAs to use components instantiated
by others AAs; considering AAs as an ordered sets of
AAs allow us to preserve the properties of symmetry
between cascade aspects of assemblies. Moreover it
improve the modularity and reusability of aspects of

assemblies. Because we are still working on reusable
entities, now organize as sets, we still preserve a
decentralized approach for context-awareness.

6.2 A new kind of disruptions
If the two ways to trigger a weaving cycle described in section
3 are still valid, the multi-cycle approach introduces a new
kind of disruptions. This is to automate changes in the ap-
plication’s software infrastructure (i.e. to automate changes
in the initial assembly). It is no more changes caused by
variations in the environment of the application but by the
system itself. This kind of disruption can be noted:

Appn+1 = T (Ain, Appn)
Appn+2 = T (Ai+1n, Appn+1)

All cycles are directly woven one after the other, so once the
weaving process is started, the system is no longer open to
others disruption (see Figure 9). Thus the set of the aspects
selected for the first weaving A0J will be retained until the
last cycle.

Figure 9: Formal Multi-cycle weaving

6.3 For context-awareness
Using the mono-cycle weaving approach we only were able to
work on the system domain, due to the impossibility for AAs
to use components instantiated by others AAs. Thank to
our multi-cycle weaving we are able to work on the
system domain as well as on the environmental do-
main. More than situated systems now we can build
decentralized context-adaptive systems that continu-
ously adapt their behavior according to infrastructure evolu-
tion [14]. The multi-cycle approach enables us from now on
to direct ourselves toward context-awareness in a similar way
as described previously in section 1. We will consider some
cascade aspects as contextual aspects: AA − contextual =
{AA− audit, AA− decision,AA− reaction}

Such decomposition allows us to reuse modules that compose
contextual AAs. Aspects of audit will aim to instantiate
components on the shelf (COTS) observers. But also to ver-
ify the presence, among the candidates for the observation
of the context which are in the application’s software infras-
tructure, of those necessary to weave AAi (i.e. necessary to
the horizontal layer). Aspects of decision will aim to imple-
ment an evaluation policy for the collected observables. The
composition implementation may rely on different mecha-
nisms of decision (fuzzy logic, event-condition-action rules
...). Finally aspects of reaction will have to adapt the appli-
cation.

As we can see, there is a direct matching between the hor-
izontal architecture proposed by Brooks and our decentral-
ized approach. But since our coordination mechanism be-
tween all horizontal layers is the aspects weaver there is some

Figure 10: Contextual Aspects of Assemblies

advantage. Indeed our approach allows us to share informa-
tion from the various layers during the weaving. Further-
more thanks to the merging mechanism we can assume that
after each cycle there are no conflicts in the assembly. So
back to the example given in section 5.1, we can be context-
aware using the following aspects:

POINTCUT:
locationSensor:=/ubisense[[:digit:]]/
sensor:=/luminosite[[:digit:]]/

ADVICE:
schema location_light_audit(locationSensor, sensor):
occupation:’WComp.BasicBeans.OccupationFilter’ ;
filter:’WComp.BasicBeans.LightValueFiltering’ ;
locationSensor.^NewPosition_EventedValue->
(occupation.isOccupied)
sensor.^Value_Evented_NewValue->(filter.filter)

Pointcut are regular expression in AWK and advices are
written in ISL4WComp [20]. The AA-audit module, when
a tracking system and a light sensor system are discovered,
composes the tracking system with a component to interpret
localizations and the light sensor with a filter to check data’s
validity. Filters and interpreters are instantiated by this
module.

POINTCUT:
occupation:=/OccupationFilter[[:digit:]]/
filter:=/LightValueFiltering[[:digit:]]/

ADVICE:
schema occupation_light_decision(occupation, filter):
decision:’WComp.BasicBeans.LightDecisionModule’ ;
filter.^NewEventedValue->(Decision.setLight)
occupation.^StateChanged->(decision.setOccupation)

The AA-decision module, when a filter for brightness and
an interpret for localization are discovered (it uses compo-
nents instantiated by other modules, AAs), composes them
with a COTS to evaluate contextual conditions.

POINTCUT:
Decision:=/LightDecisionModule[[:digit:]]/
sender:=/switch[[:digit:]]/
receiver1:=/light[[:digit:]]/
receiver2:=/heater[[:digit:]]/

ADVICE:
schema decision_light_reaction(decision, sender,
receiver1, receiver2):
decision.^ReactionLight ->(switch.setState)
decision.^ReactionHeater->(receiver2.setState)
sender.^Status_Evented_NewValue ->(receiver1.SetStatus)

The AA-reaction module, when lights, heaters, switches
and a decision making component are found, composes the
last one with the devices mentioned above. Thanks to this
contextual cascade aspect we are able to do contextual auto-
adaptations and so the build system can manage lights and
heaters from a room.

This cascade aspect can be merged with others cascade as-
pects. For example with an other cascade AA building an in-
frastructure to manage the lights (just connecting the switch
to the light) : AA1 = {∅, ∅, AA13}

The assembly resulting from the merging of AA1 and AA−
contextual is an application able to manage lights and heaters
and to allow users to manage the lights of the room he is
in.

7. EVALUATION
We evaluate our approach with some experiments on the
cost in time of a weaving cycle over components assemblies
randomly generated. They were conducted on a standard
personal computer. For this purpose different types of com-
ponents have been instantiated randomly, in order to ac-
tivate randomly two types of aspects of assemblies. The
aspect involving the merging mechanism is weaved with a
probability of 1/3 depending on components instantiated.

Figure 11: Weaving cycle duration

The inference machine for composition and merging is writ-
ten in Prolog, so peaks are due to garbage collection mech-
anism (see Figure 11). Weaving cycles can be divided into
three categories each with its own cost in time: (1) Selec-
tion of AAs and pointcut matching, (2) Composition and
potentially merging of advice instances and (3) Translation
of instances of advice into elementary instructions. In the
multi-cycle weaving approach each categories are redone ev-
ery cycle. So let C be the cost in time of a weaving cycle,
for a cascade aspect of assemblies it will be about :

D = card(AAij).C

Let D, K and T being respectively the cost in time of point-
cut matching, composition/merging and translations mech-
anisms; C can be noted : C = D +K + T

Pointcut matching cost in time depends on the number of
component c involves in the process. It also belong on Ainit

the number of initial AAs. We have Ainit AAs and each
of them is associated with a pointcut specification. Hence,
each pointcut gives the number δi of duplications. And each
duplication is processed in order to calculate a duplicated
AA. So D can be noted:

D = ai.
∑Ainit

i=1 (δi + 1).c2 + a2

The composition and merging mechanism depends on the
number of instances of advices generated N and thus on the
number of components. Furthermore some rules, as terminal
rules, cost less than others, as recursive rules. So merging
cost depends on the cost of its merging rules C and there
number n.

K = b.
∑N

i=1 n
i(1 + pi.C(g0, gi))

Translation depends on merged and generated instances of
advice complexity. So we have the model:

T = b.((
∑c

i=1(pi.c)) + l)

Thus the cardinality of cascade AAs must be taken
into account since during a multi-cycle weaving the
system does not tolerate other disruptions.

8. CONCLUSION
We presented in this paper an improvement for our approach
for adaptation in the field of ubiquitous computing. Our ap-
proach is based on the concept of AAs as a means of achiev-
ing situated systems based on a horizontal architecture. AAs
allow us to adapt a component based system to its environ-
ment where adaptation is a dynamic reactive composition.
But there were some lacks in the field of context-awareness.
With this approach we can now work on the system domain,
due to the impossibility for AAs to use components instan-
tiated by others AAs. So we proposed a multi-cycle weaving
approach. Thanks to it we can now work on the system
domain as well as on the environmental domain. The in-
troduced cascade AAs are a way to build decentralized
context-adaptive systems based on a horizontal architec-
ture.

Acknowledgments
This work is part of the Continuum Project (French Re-
search Agency) ANR-08-VERS-005.

9. REFERENCES
[1] D. Athanasopoulos, A. Zarras, V. Issarny, E. Pitoura,

and P. Vassiliadis. CoWSAMI: Interface-aware context
gathering in ambient intelligence environments.
Pervasive and Mobile Computing, 4(3):360–389, 2008.

[2] N. Belhanafi, C. Taconet, and G. Bernard. CAMidO,
A Context-Aware Middleware based on Ontology
meta-model. Workshop on Context Awareness for
Proactive Systems, pages 93–103, 2005.

[3] P. Bellavista, A. Corradi, R. Montanari, and
C. Stefanelli. Context-aware middleware for resource
management in the wireless Internet. Software
Engineering, IEEE Transactions on,
29(12):1086–1099, 2003.

[4] R. Brooks. Elephants Don’t Play Chess. Designing
Autonomous Agents: Theory and Practice from
Biology to Engineering and Back, pages 3–15, 1991.

[5] L. Capra, W. Emmerich, and C. Mascolo. CARISMA:
Context-Aware Reflective mIddleware System for
Mobile Applications. IEEE Transactions on Software
Engineering, 29(10):929–945, 2003.

[6] G. Chen, M. Li, and D. Kotz. Data-centric
middleware for context-aware pervasive computing.
Pervasive Mob. Comput., 4(2):216–253, 2008.

[7] D. Cheung-Foo-Wo. Adaptation dynamique par tissage
d’aspects. PhD thesis, UNSA, 2009.

[8] J. Coutaz, J. Crowley, S. Dobson, and D. Garlan.
Context is key. Communications of the ACM,
48:49–53, 2005.

[9] P. David and T. Ledoux. Towards a framework for
self-adaptive component-based applications. Lecture
Notes in Computer Science, pages 1–14, 2003.

[10] A. Dey, D. Salber, M. Futakawa, and G. Abowd. An
architecture to support context-aware applications.
submitted to UIST, 99.

[11] T. Gu, H. Pung, and D. Zhang. A service-oriented
middleware for building context-aware services.
Journal of Network and Computer Applications,
28:1–18, 2005.

[12] J. Hong. The context fabric: an infrastructure for
context-aware computing. In CHI, 2002.

[13] W. X. P. P. P. J. Z. W. L. N. C. W. T. Hung
Keng Pung, Tao Gu and N. H. Chung. Context-aware
middleware for pervasive elderly homecare. J-SAC,
27(4):510:524, 2009.

[14] V. Issarny, M. Caporuscio, and N. Georgantas. A
perspective on the future of middleware-based
software engineering. In International Conference on
Software Engineering, pages 244–258. IEEE Computer
Society Washington, DC, USA, 2007.

[15] G. Kiczales, J. Lamping, C. Lopes, J. Hugunin,
E. Hilsdale, and C. Boyapati. Aspect-oriented
programming. Lecture notes in computer science,
pages 220–242.

[16] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng. A
Taxonomy of Compositional Adaptation.
MSU-CSE-04-17, 2004.

[17] M. Román, C. Hess, R. Cerqueira, A. Ranganathan,
R. Campbell, and K. Nahrstedt. Gaia: a middleware
platform for active spaces. ACM SIGMOBILE Mobile
Computing and Communications Review, 2002.

[18] B. Schilit, N. Adams, and R. Want. Context-aware
computing applications. In Mobile Computing Systems
and Applications, 1994., pages 85–90, 1994.

[19] J. Sousa and D. Garlan. Aura: An Architectural
Framework for User Mobifity in Ubiquitous
Computing Environments. Software Architecture:
System Design, Development and Maintenance, 2002.

[20] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin,
D. Cheung-Foo-Wo, E. Callegari, and M. Riveill.
WComp Middleware for Ubiquitous Computing:
Aspects and Composite Event-based Web Services.
Annals of Telecommunications (AoT), 64, Apr 2009.

[21] M. Weiser. The Computer for the Twenty-First
Century. Scientific American, 265(3):94–104, 1991.

[22] C. Zhang and H. Jacobsen. Resolving feature
convolution in middleware systems. ACM SIGPLAN
Notices, 2004.

