
HAL Id: hal-00481765
https://hal.science/hal-00481765v1

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Service Composition based on Natural Language
Requests

Marcel Cremene, Jean-Yves Tigli, Stéphane Lavirotte, Florin-Claudiu Pop,
Michel Riveill, Gaëtan Rey

To cite this version:
Marcel Cremene, Jean-Yves Tigli, Stéphane Lavirotte, Florin-Claudiu Pop, Michel Riveill, et al..
Service Composition based on Natural Language Requests. International Conference on Service Com-
puting, IEEE Computer Society, Sep 2009, Bangalore, India. �hal-00481765�

https://hal.science/hal-00481765v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Service Composition based on Natural Language Requests

Marcel Cremene∗, Jean-Yves Tigli†, Stéphane Lavirotte†, Florin-Claudiu Pop∗, Michel Riveill† and Gaëtan Rey†
∗ Communications dept., Technical University of Cluj-Napoca, Romania

Email: cremene@com.utcluj.ro, florin.pop@com.utcluj.ro
†I3S Lab., ”Rainbow” team, University of Nice Sophia-Antipolis, France

Email: tigli@polytech.unice.fr, lavirott@unice.fr, riveill@unice.fr, gaetan.rey@unice.fr

Abstract—The easiest way for a user to express his needs
regarding a desired service is to use natural language. The
main issues come from the fact that the natural language
is incomplete and ambiguous, while the service composition
process should lead to valid services. In this paper we pro-
pose a natural language service assemblage method based on
composition templates (patterns). The use of templates assures
that the composition result is always valid. The proposed
system, called NLSC (Natural Language Service Composer),
was implemented on the top of a service-oriented middleware
called WComp and tested in an intelligent home environment.

Keywords-natural language; service composition; patterns;

I. INTRODUCTION

Service composition means to create new services by
composing existent ones. In the classical approaches, this
composition is done by a human expert because the com-
position task requires an understanding about the service
semantics.

Automatic service composition means to replace the
human expert by a software application that will cre-
ate/compose the new service. In this paper we are interested
in user-driven automatic service composition. The easiest
way for a (non-expert) user to express his needs regarding a
desired service is to use natural language. Thus, instead of
trying to predict all possible services, which is practically
impossible, we are trying to offer to user the possibility to
use natural language request in order to drive the service
composition. Our application field concerns pervasive ser-
vices but it can be extended to any kind of services.

The main problem that we address here is related with two
different domains: Natural Language Processing (NLP) and
Service Composition. A NLP problem is that unrestricted
natural language may be ambiguous and incomplete. Some
requests may contain indications about how to achieve a goal
(i.e. ”connect the phone with the TV”) but other requests (i.e.
”I want to keep the light level constant”) will indicate just
a goal. On the other hand, the service composition process
must create valid and functional services, without limiting
too much their complexity. Thus, our objective is not an
easy one because we are trying to create complex but valid
services, starting from ambiguous requests.

In order to solve the problem stated before we propose
a system called NLSC (Natural Language Services Com-
poser). Our solution is based on the use of semantic distances
in order to make a connection between the natural language
and the services; and composition templates in order to
assure that the composition result are always valid. Thus,
the use of composition patterns compensates the natural
language ambiguity without losing the user-friendliness and
the flexibility.

The next section presents the conclusions about the re-
lated work and shows the main limitations of the existent
approaches. The proposed solution tries to overcome these
limitations. Section three presents the proposed solution: the
NLSC (Natural Language Service Composer). Section four
contains the implementation, which is based on the top of
WComp middleware [1] and presents some examples that we
have used in order to test our solution. In the section five we
evaluate our work. The last section contains the conclusions
and some future work.

II. RELATED WORK

In or study about the state of the art we have insisted more
on the service composition aspects because our intention is
to reuse existent solutions from the NLP field. We have
focus on semantic-based service composition and natural
language-based service composition. Some existent solutions
are described below.

A solution based on restricted natural language and
sentence templates. The system described in [2] is based on
the similarity that exists between an ontology-based service
description and a formal representation of the user request.
The sentence analysis is based on templates such as: if
. . . then . . . else, when . . . do and others. Verbs are used in
order to identify the action and its parameters. The user
request is processed and finally transformed into a flow
model. One of the major limitations of this solution is the use
of restricted natural language (limited set of words and also
sentence structure). The user should use keywords (if, then,
else, while, or, and, etc.) similar to programming languages.
It is not clear how can we create a new service if the user
request specify only a goal, without giving indications about
how to achieve it.

A solution based on lexical trees associated to services.
Usually, semantic mark-up languages use narrow, predefined
vocabulary, which makes possible only the retrieval of those
Web services for which the vocabulary is known. The
solution patented by Alcatel [3] proposes a method to mark-
up web services in order to allow finding and retrieving web
services via natural language requests. The idea is to create
a lexical tree, built by deriving the service description, and
associate it to the web service. The lexical tree is created
using synonyms and related forms of the derived keywords.
Finding a service based on the user request resumes to
comparing the natural language query to the lexical tree of
each web service. However, this method address only the
service retrieval issue and not service composition.

A solution based on a semantic component model and
semantic graphs. The paper [4] propose the CoSMoS model
and the SegSeC platform for dynamic service composition
based on semantic graph and ontology. A semantic graph
is a regular graph having as nodes the concepts (words)
and as arcs the relations between these concepts. The user
request is processed using a NLP parser like BEELINE [5],
and transformed into a semantic graph. The same type of
model, the semantic graph, is used also for describing the
services. The semantic graph nodes represent: operations,
inputs, outputs, properties of a component and data types.

The authors admit that their solution is not well suited
for a large number of components because the composition
time increases exponentially with the components number.
The platform cannot find a solution if the service semantic
graph does not match exactly the user request. Even if it is
not specified by the authors, their natural language is in fact
restricted: there must be only one predicate, the word set is
restricted by the ontology, the sentence must have a specific
structure.

Our conclusion about the state of the art is that the
most important limitations of the existent solutions are the
following: the vocabulary and the request form are restricted
(the language is not really ”natural”), the developer needs to
create dedicated ontology, which is costly; and the composed
services have usually simple structures because complex
structures are difficult to validate.

III. PROPOSED SOLUTION

A. General architecture

Our system, called NLSC (Natural Language Service
Composer), is based on the following principles:

- It uses a Natural Language Processor, based on existent
NLP tools, in order to transform the user request into a
machine readable, formal, request. This formal request
will be the input for our Service Composer.

- It reuse an existent free English dictionary, like Word-
Net, instead of creating a new ontology.

- It is based on a service platform called WComp
[1]. This platform is targeted mainly for intelligent

environment applications. WComp was designed for
supporting dynamic assembling of services provided
by hardware devices. Web services and UPnP services
in general may be used through this platform also.
The AoA (Aspects of Assembly) mechanism, which
comes with WComp, allows the developer to create
composition patterns and use them at runtime in order
to modify the service architecture.

- The formal request (the NLP output) will be used in
order to select the services and also the AoA patterns.
Once we have selected the services and the patterns,
the WComp platform is able to create almost instantly
the new, composed service.

Figure 1 describes the NLSC architecture. The NLP
(Natural Language Processor) is composed by a set of tools
necessary for user request analyze. The NLP input may be
textual or based on voice recognition. The NLP transforms
the user request (natural language) into a formal request
that is, basically, a list of concepts (extracted from the user
request).

The formal request is used by the SC (Service Composer)
to compose a service, on demand. SC is built on the
top of the WComp platform and uses the AoA (Aspect
of Assemblies) patterns. We motivate our preference for
WComp platform mainly because of the flexibility provided
by the AoA pattern support. Contrarily to other pattern-based
approaches, AoA patterns can be combined/superposed.
Thus, a large number of valid combinations (services) may
be created.

NLP

SC

WComp

AoA
User Request -

formal description

Available
Devices/Services

User Request –
natural language

Service created
on-demand

Figure 1. NLSC system architecture

The easiest way to explain our solution is to see it as a
processing sequence, that starts from the user demand and
it is finalized in a form of a new service.

B. NLSC sequence description

In this section we describe the operations that are executed
by the NLSC system, in order. The first operations are
related to the NLP module and the last are executed by the
SC module.

1) NLP: the input.: The NLP input is a sentence that is
either, written by the user or obtained from an existent voice
recognition system.

2) NLP: the linguistic preprocessing.: The sentence is
processed as it follows, in order:

- The sentence is decomposed in a word collection.
- The link words are eliminated. In order to do that, we

use a list of link words.
- For each word, we apply a stemming procedure: the

verbs are passed to infinitive, the nouns are passed to
single form.

- We apply a spell checking in order to compensate some
errors produced by our stemming algorithm.

Finally, we obtain a list of words that we will call further
”request concepts”.

3) SC: the services selection.: The services selection is
the most complex task of our system. Service selection
means to select the M services from the N available, M
< N, based on the semantic matching between the request
concepts (as explained before) and the concepts associated
with the services. This means that, each service has a
concept that describes it. The concept may be a single word
(ex. TV) or a composed word (ex. mobile phone). We will
call these concepts ”service concepts” in order to make the
difference with ”user concepts”.

The semantic matching is based on what we have defined
as the ”conceptual distance”. The conceptual distance is a
measure of the similarity between two concepts. In order
to compute the semantic matching, we use a representation
called ”conceptual graph”. The conceptual graph and its
usage is described in the next paragraph.

The conceptual graph and the conceptual distance.:
The conceptual graph nodes are the concepts (user concepts
and service’s concepts, defined before). The conceptual
graph arcs connect each user concept to each service con-
cept. The weight of each arc represents the conceptual
distance between the concepts. The notion of conceptual
distance is described below.

The conceptual distance is a measure of similarity be-
tween the concepts. We used for this purpose a specialized
dictionary called WordNet [6]. WordNet contains nouns,
verbs, adjectives and adverbs in sets of synonyms, called
synsets. Each synset describes a different concept. Different
senses of a word are in different synsets. Most synsets
are connected to other synsets via a number of semantic
relations.

Figure 2 describes an example of the conceptual graph
(the incidence matrix), based on the conceptual distance
(computed as described before). The service concepts are
described by columns and the user concepts by rows. The
values represent the conceptual distances: low values meas
high concept similarity. The service concepts correspond to
all available services (in our scenario, all available devices
in the user room).

In order to select the service concepts that are similar
to the user concepts, we need to apply the following two
transformations to the conceptual graph:

Figure 2. The incidence matrix of the conceptual graph

- Find the minimum distance path in the graph (include
all nodes). In order to find the minimum weight sub-
graph, we use the Kruskal [7] algorithm that calculates
the minimum spanning tree (MST). After this transfor-
mation each service description will be connected to 2
text segments.

- For each triplet (service concept, user concept 1, user
concept 2) keep the arc that has the minimum weight.
We obtain a concept pair.

This algorithm helps us to select only the devices/services
(from all available services) that are relevant comparing to
the user request.

4) SC: the services composition.: We used a template-
based service composition system because of its capability
to handle complex interactions between components and
the flexibility of choosing different sets of components.
The system we used, called Aspects of Assembly (AoA)
[1] is part of the WComp [1] middleware for ubiquitous
computing.

These templates can be automatically selected either by
the service composition system when satisfying a user
request or triggered by context changes in a self-adaptive
process and composed by a weaver with logical merging
of high-level specifications. The result of the weaver is
projected in terms of pure elementary modifications (PEMs)
add, remove components, link, unlink ports. The AoA ar-
chitecture consists of an extended model of Aspect Oriented
Programming (AOP) for adaptation advices and of a weaving
process with logical merging. For more details about the log-
ical merging mechanism in case of multiple AoA applying
on same components, the lecturer could refer to [1].

An AoA template is structured as an aspect with a list
of components involved in composition (called ”pointcut”)
and adaptation advice (a description of the architectural
reconfigurations), which is specified using a domain specific
language (DSL). We will examine some AoA templates and
the composition process in detail in the next section.

IV. IMPLEMENTATION AND RESULTS

We used the WComp [1] platform for ubiquitous comput-
ing to connect the intelligent devices that offer services used
to satisfy the user request. WComp uses the UPnP protocol
to communicate with the devices. Each UPnP device has a

software proxy that acts like a software component, exposing
the devices services. We added some meta-data to the UPnP
service description for each device to serve as semantic de-
scription. The interactions between these components were
specified using AoA templates [1].

Scenario 1. ”I want to use my phone to turn off the light,
turn on the TV and play some music on HiFi”. This phrase
contains many irrelevant words to the service composition
system, but the relevant words are identical (except TV)
to the service semantic descriptions. Irrelevant words have
an effect of increasing the time required to process the
conceptual graph. All the relevant services are identified and
then composed.

Figure 3. The dynamically composed service for Scenario 1

Scenario 2. ”Use PDA for broadcasting”. This user
request is challenging for any composition system because
it doesn’t address the TV directly, but through the abstract
concept of broadcasting. Due to the use of the specialized
dictionary, the TV is found and then connected to the PDA.

Figure 4. The dynamically composed service for Scenario 2

The main complexity of the algorithm is given by the
conceptual distance computation. The time necessary to
compute the distance between two concepts (similarity) was
about 6 ms (on a Dell Latitude 830 laptop, CPU Dual
Core 2.2GHz, 2G RAM) with the fastest algorithm that we
have found (a WordNet Similarity implementation, the java
package edu.sussex.nlp.jws.JiangAndConrath). For instance,
we can create the concept graph for 10 user concepts and
64 services in about 2 seconds. The AoA application is very
fast also: less than 1 sec. for up to 350 components.

V. CONCLUSION

This paper proposes a method for assembling new ser-
vices on-demand, starting from the user request expressed

in natural language. The original aspect of our proposal
is the mixed approach: semantic and pattern-based. This
approach combines the advantages of the both approaches:
thanks to composition patterns, it allows us to build complex
composite services, which are always valid and functional.
With other approaches (interface, logic, semantic-based),
that are not using patterns/templates, it is very difficult to
create complex service structures/architectures that are valid
and work correctly. In particular, our AoA patterns can be
composed and this helps us to overcome the limitations
of the traditional pattern-based approach (that is not very
flexible).

Another important advantage of our solution is the reuse
of WordNet free dictionary, which is acting like a huge,
common ontology. Due to this, we can relax very much the
limitations for the natural language, imposed by solutions
where an ontology (usually restricted) must be created by
the developer. For describing the services, their developer
just need to use correct English words. This solves also the
important issue of ontology integration.

As future work, we intend to extend the composition
mechanism to dynamic services adaptation.

ACKNOWLEDGMENTS

This work was supported by the EcoNet project code
18826YM and the national project PNCDI II code 1062.
Thanks to other members of the Rainbow team for fruitful
discussions and feedback: Vincent Hourdin, Daniel Cheung-
Foo-Wo, Eric Callegari.

REFERENCES

[1] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-Foo-
Wo, E. Callegari, and M. Riveill, “WComp Middleware for
Ubiquitous Computing: Aspects and Composite Event-based
Web Services,” Annals of Telecommunications (AoT), vol. 64,
no. 3-4, Apr. 2009.

[2] A. Bosca, F. Corno, G. Valetto, and R. Maglione, “On-the-
fly construction of web services compositions from natural
language requests,” JSW, vol. 1, no. 1, pp. 40–50, 2006.

[3] P. Larvet, “Web service with associated lexical tree, european
patent, ep1835417,” 2007.

[4] K. Fujii and T. Suda, “Semantics-based dynamic service com-
position,” IEEE Journal on Selected Areas in Communications,
vol. 23, no. 12, pp. 2361–2372, 2005.

[5] G. Mann, “Beeline - a situated, bounded conceptual knowledge
system,” in International Journal of Systems Research and
Information Science, 1995, pp. 37–53.

[6] E. by Christiane Fellbaum, WordNet An Electronic Lexical
Database. http://wordnet.princeton.edu/: The MIT Press,
1998.

[7] J. B. Kruskal, “On the shortest spanning subtree of a graph and
the traveling salesman problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, pp. 48–50, February
1956. [Online]. Available: http://www.jstor.org/stable/2033241

