
HAL Id: hal-00481752
https://hal.science/hal-00481752

Submitted on 7 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Context-Sensitive Authorization in Interaction Patterns
Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Michel

Riveill

To cite this version:
Vincent Hourdin, Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Michel Riveill. Context-Sensitive
Authorization in Interaction Patterns. Mobility, Sep 2009, Nice, France. �hal-00481752�

https://hal.science/hal-00481752
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Context-sensitive authorization in interaction patterns

Vincent Hourdin
MobileGov and I3S

930 Route des Colles - BP 145
06901 Sophia-Antipolis France
ferry@polytech.unice.fr

Jean-Yves Tigli
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

tigli@polytech.unice.fr

Stéphane Lavirotte
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France
stephane.lavirotte@unice.fr

Gaëtan Rey
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

rey@polytech.unice.fr

Michel Riveill
I3S (UNS - CNRS)

930 Route des Colles - BP 145
06903 Sophia-Antipolis France

riveill@unice.fr

ABSTRACT
Main requirement of recent computing environments, like mobile

and then ubiquitous computing, is to adapt applications to context.

On the other hand, access control generally trust users once they

have authenticated, despite the fact that they may reach unautho-

rized situations. We analyse how dynamic information can be used

to improve security in the authorization process, and what are the

implications when applied to interaction patterns. We experiment

and validate our approach using context as an authorization factor

for eventing in Web service for device (like UPnP or DPWS).

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access Con-

trol,Information flow controls; E.4 [Coding and Information The-

ory]: Formal Models of Communication

General Terms
Security, Design

Keywords
Context-awareness, access control, dynamic authorization, context-

sensitive authorization

1. INTRODUCTION
Ubiquitous computing, under the leadership of Mark Weiser’s vi-

sion [15], has made computing evolve toward multi-device, multi-

user, and highly dynamic environments. Miniaturization of hard-

ware and new wireless communication networks have created new

devices, worn by users or surrounding them. Due to mobility, de-

vices appear and disappear frequently in such environments.

The major concern in ubiquitous or pervasive computing is adapt-

ing applications to users surroundings, and more generally, to their

context. In this paper, we focus on limiting communications be-

tween entities that are in the same context, for security purposes.

Indeed, information involved in ubiquitous computing communica-

tions is often privacy-sensitive, and we want to make sure it cannot

be received or intercepted by non-authorized entities.

Access control [13] relies on and coexists with authentication, au-

thorization and audit. Authentication can be made on information

or persons: it establishes who issued a piece of information, or con-

firms the identity of a person. However, to ensure that the identity

is correct, different authentication factors shoud be used. If the per-

son possesses the information related to each factor, it is assumed

that this is the pretended person [11].

Authorization takes places both before system execution, to define

policies of the security system, and after the authentication phase,

to grant a principal access to the controlled system. We will study

in the following section that authorization is most often static or

controlled by applications, leading the users to be considered au-

thorized for a long time. With context changes we cannot assume

that a user is authorized throughout the duration of the use of an

application, even if he is still authentified. We will then explore

works on dynamic authorization.

2. AUTHORIZATION
To extend authorization in order to use dynamic information, we

study how it has been handled in different systems. It appears that

there are three types of authorization: static, quasi-static, and dy-

namic.

2.1 Static authorization
Historically, access control used static credentials to confirm user

identity and was made only when entering the system. For exam-

ple, the login phase of an operating system needs a login and a

password to authenticate a user, and is made only when he logs in.

It can also be an ID card, a fingerprint pattern, or an identification

token. Infrastructure information is sometimes used to authenticate

users. For example, the Network File System (NFS) access control

uses, in its default configuration, the IP address of a client to grant

him access, as long as he still uses the file system.

We model the access control process with state diagrams. In Fig-

ure 1, a user wants to use a system, and he has to authenticate

himself in the first place. Since this is static authorization, if au-



Figure 1: Static authorization

thentication is correct and matches an authorization rule, he stays

authorized and considered trusted until he logs off.

2.2 Quasi-static authorization
Almost ten years ago, static information for authentication and au-

thorization began to be seen as a limitation in several domains. In

distributed computing for example, with Cholewka et al. [3], the

task being done could affect access control on some objects. The

task was extracted from the workflow of the application, and this

dynamic information was considered to be the context of the appli-

cation.

Later popularized by Web applications, session management has

emphasized what we call quasi-static authorization. In these sys-

tems, credentials are rarely changed compared to the lifespan of

an application. Authorization is made at first access of the system,

and periodically renewed to keep users authorized in case of infor-

mation change in authentication or authorization information. This

mechanism is called leasing, and often used in publish/subscribe

systems. We modelled it in Figure 2.

Figure 2: Quasi-static authorization

It is quite similar to the static authorization diagram, except that a

loop appears between authorized and not-authorized states. When-

ever the lease expires, the user has to be authorized again to return

in trusted state.

Quasi-static authorization prevents users to be connected to a sys-

tem forever. A password change, or the introduction of a new

authentication factor in the access control system would eventu-

ally lead to user’s credential reevaluation. As an example of such

system in industry, we can cite Mobilegov Access Control [12]

that uses infrastructure-based authentication in addition to pass-

word based authentication for different kind of systems.

2.3 Dynamic authorization
Static and quasi-static authorization are inadequate for ubiquitous

computing in which user’s context is an important concern, and is

already a part of applications. Not using contextual information

in security concerns could lead to granting a user access without

considering his condition [10]. Contextual information is highly

dynamic, because the user is likely to be moving, as much as other

users in the same ambient space, with their attached devices. Yet,

sensors can also be fixed in the physical infrastructure, like temper-

ature or light sensors. This dynamic information is used to inval-

idate user’s authorization, even if he is still identified by standard

authentication factors.

Thus, we introduce the dynamic authorization model for environ-

ments in which it is needed to frequently check if users are autho-

rized due to changes in dynamic information used for authorization.

This open gates to considering highly dynamic contextual informa-

tion to be used in the access control process. As opposition to static

and quasi-static authorization, dynamic authorization requires to be

rechecked according to changes in dynamic information. It is nec-

essary to dynamically modify access permissions granted to users

when context information or when software infrastructure change.

While in static and quasi-static authorization subjects were trusted

as long as they were logged or for a predefined time, in dynamic

authorization, authorization must be checked at each operation in

the system. This can be done in two ways:

• The first would be to reduce the lease time near zero, and thus

needing subjects to authenticate and subscribe all the time.

Lease time has to be adapted to system’s reactivity, which

is around one second for ubiquitous computing applications

for example. This is very inefficient and consequently a bad

solution for embedded devices populating ubiquitous com-

puting environments,

• The second, to be more efficient, would need the system to

know user’s context all along his use of the system. In that

case, the system could react on user’s context changes by

enforcing authorization policies to determine if the user is

still authorized and can be kept or not the trusted area. We

modelled this system in Figure 3.

Figure 3: Event-driven dynamic authorization

With this second solution, trusted zone exit and re-entery are context-

driven. Since the dynamics of the context and of the application are

different, the access control process is highly reactive. Quasi-static

and static authorization process, in contrast, were driven by the ap-

plication. However, new issues appear with dynamic authorization:

• How can contextual information be collected by the security

system? As a context-aware system, regular contextual infor-

mation collection can be done, using context observers [4].

• How can it ensure that the information is authentic? As

stated Kindberg and Zhang, in their experience in the location-

aware mobile computing CoolTown project [11]: when using

contextual information for access control, the authentication

of the data itself must be done. Indeed, dynamic data are

provided by sensors, and they can be simulated of falsified if

protocols are not constrained as in [11]. In some cases with

group behaviors, information can also be correlated with sur-

rounding entities’ to check forged information [7]. If sensors

are not able to sign information, it has to be authenticated

when users collect it. A trusted observer has to collect the



same information than users in order to authenticate it, and

verify that it is this information that is used by users to ac-

cess the system. We will study more deeply this question in

section 4.

• What about privacy? Of course, placing a trusted entity in

users computing environment can be recusant. Westin [16]

defined privacy as “the ability to determine for ourselves when,

how, and to what extent information about us is communi-

cated to others”. If the trusted entity describes precisely

how contextual information is used, it should be accepted

by users. Furthermore, one must consider that machine-to-

machine communications play a more and more important

role, and that privacy in those cases is not relevant.

A good example of such system are works of Bacon et al., who

introduce in [2] the OASIS (Open Architecture for Securely Inter-

working Services) Role-Based Access Control. It uses credentials

that a user possesses, along with side conditions that depend on the

state of the environment, to authorize him to activate a number of

roles. In their model, they define that environmental predicates can

be used for environmental constraints or context-sensitive informa-

tion. Environmental constraints can be checked by any entity in the

environment of the application, thus it can authenticate dynamic

information used for authorization.

2.4 Synthesis
The Table 1 summarizes the types of authorization and information

used for authentication.

Identity and infrastructure represent subjects information commonly

used. Infrastructure and environment represent contextual infor-

mation that can be used. User infrastructure is populated by all

computing equipment that are in the context of the user, like local

and remote devices. Environment and system infrastructure gather

all information that can be get by anyone or do not depend on the

infrastructure of the user which has to be authenticated. Date and

time are obviously considered as a part of the environment. In some

cases [7, 11], location and speed can be considered as a part of the

system infrastructure because sensors are part of the security sys-

tem’s domain, and thus can be easily verified.

Static or Dynamic

quasi-static

Identity Operating Sys-

tems login

?

User infrastruc-

ture

Mobilegov

AC R©

?

System infras-

tructure and

environment

NFS OASIS[2],

CSAC [7]

Table 1: Classification of authentication factors dynamicity

To our knowledge, no project uses dynamic information for autho-

rization when it is not accessed by the domain of the security sys-

tem, like information from users devices, sensors available through

the context of the user.

3. ACCESS CONTROL IN INTERACTION

PATTERNS

Figure 4: Sequence diagram of trusted zones in a pub-

lish/subscribe pattern

In this section, we focus on how access control is managed in in-

teraction patterns. We consider two entities, A and B. A is the

consumer. He receives information from the producer B. Thus, he

has to be in a valid context, or in other words, A has to be autho-

rized by B.

To emphasize where the problem is, we explain it for the well

known publish/subscribe pattern [5] (Figure 4). Publish/subscribe

systems are based on two kinds of interactions: the subscription and

notifications. Notifications allow the event producer to send infor-

mation to subscribed entities that he does not necessarily know.

The subscription is a synchronous process, like a request-response

pattern. It is used by consumers to register their interest to a specific

event channel and to give information about the connection that will

be used to send events.

Notification is a purely asynchronous process, made of messages

sent by the producer to the consumer. This process thus needs the

consumer to be authorized to receive events. Since access control

requires the consumer to send authentication and authorization in-

formation to the producer, it is practically done when the client

subscribes.

However, since following interactions are only one way messages,

authorization of the subscriber cannot be verified. For static au-

thorization, as we have seen, this is not a problem because after

subscription, it is not supposed to have changed or it is not im-

portant for system security. With quasi-static authorization, the

subscription is accepted only for a defined validity time: the lease.

Subscriber is trusted only for this time, and has to renew his sub-

scription and access, before the end of the lease, to avoid a service

interruption. We call this lease of trust the trusted zone (Figure 4).

This is also modeled in Figure 5: A subscribes and authenticates

to B, which will allow A to receive notifications from B, until the

subscription expires.

What can be done for dynamic authorization of the recipient? Fig-

ure 4 helps to understand where the problem exactly is. The con-

text observer notifies when the context has changed into a non-

authorized context. It is not connected to anything because the



Figure 5: Access control in standard publish/subscribe systems

producer uses the standard publish/subscribe leasing mechanism.

Context changes happen while the consumer is in the trusted zone.

With dynamic authorization, the producer would reenforce the au-

thorization conditions as soon as an event from the context is re-

ceived. With quasi-static authorization, the consumer is still

able to receive notifications, even while his context is not au-

thorized.

We define the context trusted zone as the period during which the

producer can be certain that the consumer is authorized by its con-

text, and obviously, still authenticated. Contrary to the trusted zone

of usual interaction patterns in which information leak can occur,

the context trusted zone ensures confidentiality of messages.

Bacon et al. [1] already explored access control based on contex-

tual information in publish/subscribe systems; with more details,

they focus on a Message Oriented Middleware (MOM) for large

scale architectures with multiple administration domains. They use

a dedicated security infrastructure for credential management (OA-

SIS RBAC [2]). They apply access control only on event brokers

since they are the link to inter-domain networks. Their solution is

thus based on managing security through a layer below the appli-

cation layer: the transport layer.

In the next section, we describe our contribution, how we handle

dynamic access control for asynchronous communications recipi-

ents, in the application layer, and without needing a specific infras-

tructure for security or message management purposes.

4. CONTEXT-BASED DYNAMIC

AUTHORIZATION
We have seen that in context-sensitive computing, static or quasi-

static authorization cannot be used alone because some contexts are

not compatible with the authorization granted in first place. We also

have seen that an efficient solution would require a trusted entity

from the security system to be placed in users’ context to ensure

the authentication of dynamic information used for access control.

We present our solution as a model (4.1) and we explain how it can

apply to all kind of interaction patterns (4.2).

4.1 Model
As depicted in Figure 6, the publisher B sends A messages. Rounds

tagged with Obi represent context observers in A’s context. To

keep things as simple as possible, we consider that they both act as

sensor information observer for A and B, and that they are trusted

entities to B. The problem is described as follows: when B sends

a one-way message to A, how can it ensure that A is in a context in

agreement with B’s policy for recipients?

Our contribution is to dynamically add trusted context observers

in the context of entities, that notify the controlling entity from

Figure 6: Asynchronous communication and contexts

changes in contextual information that are used for end-to-end ac-

cess control.

Moreover, since most observers Obi provide contextual informa-

tion related to a specific information on the near environment of

A, they may vary along with user moves and changes in the infras-

tructure. Access control rules can thus be adapted to users’ context,

based on which observers are currently part of users’ infrastructure.

Figure 7 models the authorization process based on observer infor-

mation. Once subject is authenticated, its authorization status is

bound to the status of validity of observer information.

Figure 7: Authorization based on dynamic information with

observers

When observers are present, authenticated, and that the value of the

contextual information they provide corresponds to an authorized

value, the access is granted. As example, the authorization com-

putation is kept simple, based only on equalities between collected

information of three observers and information known as valid by

the access control system. We can express the authorization pro-

cess with a logic rule: grant ≡ Ob1 ∧Ob2 ∧Ob3 ∧ valid(Ob1)∧
valid(Ob2)∧valid(Ob3). If all observers are present, and that the

information they provide is valid, access is granted. As opposite, as

soon as an observer information becomes unmet, a granted access

is revoked: denial ≡ ¬Ob1 ∨ ¬Ob2 ∨ ¬Ob3 ∨ ¬valid(Ob1) ∨
¬valid(Ob2) ∨ ¬valid(Ob3).

These rules are written as part of the authorization process to grant

access to users. Several rules should exist for one user, each us-

ing different observers. This allow to grant users access based on

contextual information while they evolve in not already known en-

vironments. Rules are evaluated depending on which observers are

available.

4.2 Application to all interaction patterns
We already took the example of publish/subscribe systems to de-

scribe how the problem could appear. However, other interaction

patterns may suffer from the same information leak issue on con-

text changes.

Synchronous interactions. The most representative synchro-

nous interaction pattern is the request/response mode, used in



Figure 8: Sequence diagram with context trusted zones for re-

quest/response pattern

method invocation and Remote Method Invocation (RMI). In this

pattern, two messages are used for each interaction. The first is sent

by the consumer to request the execution of some procedure on the

producer, possibly with parameters. The second message is sent by

the producer to the consumer with the result of the processing.

We depicted in Figure 8 a dynamic authorization example for re-

quest/response patterns. As a synchronous pattern, it is usually

supposed more secure than asynchronous patterns. But as we see

in the figure, the same problem appears in this pattern too.

The first message is used by the consumer to send his contextual or

authentication information in order to grant access to the method

invocation. A context change can occur after this message has been

sent, placing the consumer in a non-authorized context. Moreover,

the execution time of the method may take several seconds, or even

minutes. In mobile environments, the infrastructure changes often,

and these circumstances can happen quite frequently.

With dynamic authorization, as soon as the context of the consumer

gets unauthorized, the procedure processing can be stopped to spare

resources, and the consumer is sent an access denied message. In

contrast, with quasi-static authorization, the producer would not

notice that the context has changed, and he would consider the

consumer to be still in a trusted zone. The message potentially

containing confidential information would be leaked.

Signaling and broadcasting interactions. The third main

class of interaction pattern we could identify is the signaling or

broadcasting. This pattern is probably the most complicated in

which access control can be handled. In DPWS (Device Profile for

Web Services) for example, WS-Discovery, which uses multicast

messages for reactive discovery of Web services, is the only inter-

action scheme of DPWS that does not handle confidentiality [8].

The reason lies in the decoupling that it provides. Indeed, Eug-

ster [5] has identified three types of coupling:

• time: the consumer and the producer have to be online at the

same time. The message is not bufferized, except at operat-

ing system level if this is a distributed interaction.

• space: the consumer is known by the producer. In broad-

casting and eventing patterns, producers and consumers are

often called loosely coupled because they are not bound at

design-time, nor designed specifically to execute one with

each other. The space decoupling often leads to the fact that

several consumers receive the producer’s messages. Like-

wise, in complex publish/subscribe systems, there can be

several producers sending messages in the same application.

• synchronization: the consumer is blocked until the producer

sends the resulting message. This is typically how request/

response is coupled. Asynchronous request/response actu-

ally decouples the synchronization of entities: the consumer

can continue to execute and will be notified that the result

requested earlier is ready.

Signaling and broadcasting are decoupled in space and synchro-

nization. Most eventing systems also have at least these two de-

coupling. The problem actually appears on a lower level: the trans-

port layer. Publish/subscribe systems are space decoupling from

the producer’s point of view, but not from the messaging system’s

point of view. Indeed, consumers have to subscribe, and conse-

quently they are known from the subscription system. Notifications

are then sent using unicast messages to consumers.

With broadcasting, consumers cannot be known. The pattern is

purely one-way, like in TV broadcasting. They are considered in

a trusted zone permanently. This is exactly the same problem that

appears at the application layer of a publish/subscribe system. The

producer may not be aware of subscriptions, and thus cannot deal

with access control for each client. If we want to handle access

control at the application layer, space decoupling has to use cryp-

tography as a means of access control.

In Bacon works [1], group cryptography is used to ensure con-

fidentiality of events between trusted brokers. Keys are updated

when principals are declared unauthorized, and not when they un-

subscribe, which makes updates happen less frequently in this kind

of environment. We will use the same technique to ensure that non-

authorized entities cannot receive messages.

The dynamic authorization can be applied on interaction systems as

long as there is at least one synchronous exchange for trust estab-

lishment. For signaling, a solution still exists when the consumer is

able to reach the producer: the two-step signaling. A first message

is broadcasted, containing no confidential information and only a

basic description of how to reach the producer. The second step is

initiated by consumers registering their interest for the information,

like a subscription in publish/subscribe systems. Then, for notifica-

tions (broadcasts or signals), a group key encryption is used. Only

consumers in authorized context will have access to the decryption

key. As soon as the context of a consumer becomes unauthorized,

the group key is changed and spread to other authorized consumers.

The dynamic authorization in eventing and in broadcasting pat-

terns can be handled the same way because of the space decou-

pling they both offer. This decoupling allows us to consider these

two patterns as a single problem for context-awareness and access

control. The application of this contribution to a specific infrastruc-

ture will allow us to verify it.

5. APPLICATION FOR EVENTING IN WEB

SERVICE FOR DEVICE
We chose to implement our context-sensitive authorization with

two specific architectures and paradigms: Web service for device

for the software infrastructure, and publish/subscribe systems for



asynchronous communication. Reasons of these choices revolve

around two concepts: ubiquitous computing and space decoupling.

For many years, service oriented architectures (SOA) have been

used in home automation, mobile, pervasive and ubiquitous com-

puting to represent as services the sets of functionalities offered by

devices. They offer lots of features discussed in [14] such as en-

capsulation, dynamicity, discoverability and interoperability. They

evolved from standard SOA to SOA for device (SOAD) by adding

two main features: decentralized reactive discovery and asynchro-

nous communications.

Decentralized reactive discovery has been popularized by projects

such as SLP 1 or Jini. They suppress the need of a service registry

tracking all services active in a network domain. They use mul-

ticasted or broadcasted messages to notify that services appear or

disappear. Asynchronous communications used by SOAD like Jini

are events in a publish/subscribe scheme.

These evolutions allow to create reactive dynamic distributed ap-

plications, suitable for ubiquitous computing environments. In ad-

dition, when Web technologies are used to implement SOAD, in-

teroperability between all entities is enabled, whether they are het-

erogeneous devices or simple software services. Only two imple-

mentations of Web services for devices currently exist: UPnP 2 and

DPWS [8]. UPnP has been created by the UPnP Forum, under the

leadership of Microsoft in 1999. It has never be standardized, but is

used in many objects of everyday life, like home gateways, or me-

dia centers. DPWS appeared in 2004, as a replacement for UPnP,

and as a technology based on several Web services standards, like

WS-Discovery or WS-Eventing.

Publish/subscribe systems use 1 → N communication scheme:

a publisher is able to accept several subscriptions from different

clients. Thus, all consumers are notified when issuing an event.

This feature will require that observers are managed for each sub-

scriber to the eventing channel, and not for each eventing channel.

5.1 Service for device composition
To create applications from this infrastructure of services for de-

vices, we use the Service Lightweight Component Architecture

(SLCA) [6]. It allows to dynamically orchestrate and compose

services for devices using lightweight components. Components

are called lightweight because they execute in the same memory

addressing space, the same process, and the same component con-

tainer. The container provides the least possible technical services,

also known as non-functional concerns helpers. Distribution thus

has to be explicit: if a component needs to communicate remotely,

it has to embed the code to do so. Obviously, we created some

external tools that can generate predefined components. From Web

services for devices description interfaces for example, we generate

client components, that we call proxy components.

Containers manage assemblies of components fully dynamically.

Component types can be loaded and unloaded, component instances

and bindings between them can be added or removed at run-time.

Proxy components are generated, loaded and instantiated dynam-

ically and automatically. Thus, we can follow the presence of a

service in a container, by adding or removing proxy components

when the service appears or disappears.

1The Service Location Protocol.
2Universal Plug and Play Forum: http://www.upnp.org/

Applications or new functionalities can be created from existing

services on the infrastructure by managing an assembly of compo-

nents inside a container. Proxy components are combined together

or with purely functional components to transform information.

SLCA components and services for devices communicate mostly

using event-based communication patterns, which, more than de-

coupling entities and increasing dynamicity, will allow to react to

context changes efficiently.

Finally, containers can export functionalities created by component

assemblies as a new web service for device using probe compo-

nents. Each container has a dynamic functional service interface.

When a probe component is instantiated or destroyed, the inter-

face is dynamically modified: a method or an event is added or re-

moved. Consequently, interfaces of existing services can be cloned

using adequate probe components. Such services can be secured

by adding functional or proxy components to the assembly. Hierar-

chy in the model is possible but has to use the service layer, which,

moreover, allows it to be distributed.

5.2 Composite service for device adaptation
Since compositions are based on lightweight components, service

compositions are fully dynamic. A paradigm called Aspect of As-

sembly [14] allows to adapt composite services according to spec-

ified rules. Aspects of assembly are pieces of information describ-

ing how an assembly of components will be structurally modified,

keeping black-box property of components. Modifications include

adding components and bindings between them. Aspects of As-

sembly consist of two parts, like regular aspects found in Aspect-

Oriented Programming (AOP) [9]: pointcut and advice. Pointcuts

describe to which components the modifications described by ad-

vices have to be weaved (applied).

If some of the required components expressed in a pointcut are not

available, the advice won’t be weaved until they become all avail-

able. Since service discovery is a reactive process and that contain-

ers notifications are events too, aspects can be weaved in response

to the appearance of a service (and thus a device) on the infrastruc-

ture.

Moreover, aspects of assembly provide associativity, commutativ-

ity and idempotence properties when several aspects are enabled to

be weaved at the same time [14].

5.3 Implementation
The service for device infrastructure and SLCA are used for all

parts of the application: publisher, subscriber and observers. Ob-

servers are trusted entities from the publisher’s point of view thanks

to dynamic insertion of authentication components with aspects of

assemblies.

We created a simple example of application, modelled in Figure 9.

An event publisher service, which can be a sensor or any device,

is secured by the composite service on the left. The client of this

secured service is a composite service to simplify the figure. This

can of course be applied to already existing service clients by only

modifying the location (URL) of the service used with a security

proxy composite service. Observers are managed in the context of

the client by another composite service, to simplify communica-

tions.

An idea behind the use of lightweight components in composite

services is to enable adapting non-functional concerns in the same



Figure 9: Implementation using SLCA

layer and the same way than the functional core of the application.

We use aspects of assembly in the publisher’s and subscriber’s com-

posite services to add the access control logic.

Since we manage all concerns of the application on the same layer,

we cannot deal directly with subscriptions handled by the underly-

ing service infrastructure. We have to manage authorizations for all

subscribers at the application layer, as we have studied in (4.2).

Events will be encrypted with a group key. When observers notify

changes of contextual information, if an authorization rule becomes

invalid, the security system in the composite service of the event

producer will change the group key. Modifications of the key are

spread to the subscribers of the event channel using the observers.

Indeed, since they are in subscribers’ context and they are trusted

parties, they can safely deliver the new key.

Aspects of assembly allow us to manage different authorization

rules based on appearing and disappearing trusted observers in the

environment. Thanks to properties of aspects of assembly, we can

enable several rules to be used at the same time for dynamic au-

thorization. Even if they are enabled, they won’t apply until all

observers needed by the rule, defined in pointcuts, are present. The

reactive discovery process of Web service for device makes adap-

tation of authorization rules reactive. This is useful in cases of con-

text overlappings and transitions, or simply to ensure that access

won’t be denied because of slight changes in the highly dynamic

infrastructure of ubiquitous computing.

5.4 Validation
We validate our contribution by three means: we calculate the reac-

tivity of the dynamic authorization process ; we compare the num-

ber of message exchanged for the access control process and the

amount of unauthorized messages received with quasi-static au-

thorization and with our dynamic authorization.

The process of taking into account changes in contextual informa-

tion in the authorization involves several operations. Hence, the

time elapsed between the variation of a contextual information and

the modification of the authorization is the time needed for those

operations: data processing by the observer (o), communication be-

tween the observer and the proxy component of the event provider

(c), and reprocessing the authorization leading to a key change in

the composite authorization service (p). reaction time = o+ c+
p. o and p are local data processing and take typically less than 1

ms to execute. c depends on how many hops there are between the

subscriber and the event provider. In ubiquitous computing, wire-

less networks are often used, so c may suffer from an important

variance. An average of 40 ms then constitutes the predominent

value of the reaction time.

In quasi-static authorization, like lease-based systems, the value

of the lease is several orders higher. The UPnP specification for

example recommends it to be at least half an hour. In security aware

systems though, it shouldn’t be less than one minute to be efficient

enough. The reaction time would then be at maximum the value of

the lease, since the authorization process is reprocessed at the same

time.

The number of messages used for the authorization process in quasi-

static authorization is periodically increased. Indeed, the leased

subscription makes those messages to be send at every lease. Thus,

this number follows a linear law, function of the time spent using

the system. In dynamic authorization, messages are sent only when

dynamic information is modified. It can be higher than the lin-

ear number of messages from quasi-static authorization if context

changes more often than the lease time. Else, it can be lower in

number of message sent, but still more reactive.

The number of received non-authorized messages in dynamic au-

thorization is zero. In quasi-static authorization, depending on the

rate of sent events and the length of the lease, it can be very impor-

tant.

6. CONCLUSION AND TRENDS
We have described a solution that allows dynamic authorization

policies based on dynamic information to be used to manage asyn-

chronous communications access control. Reactive management of

dynamic information changes makes the solution efficient. Finally,

context can be actually used as an improvement for access control

systems in the authorization process.

Future works will study in what conditions the reactive discovery

used by service for device can be secured with the implementa-

tion for publish/subscribe eventing we have described. We will

also experience how easily we can modify the dynamic informa-

tion validation to handle inequality operations, like range of values

for context information instead of equalities.

Acknowledgments
This work is supported by the French ANR research program

VERSO in the project ANR-08-VERS-005 called CONTINUUM.

7. REFERENCES
[1] J. Bacon, D. Eyers, J. Singh, and P. Pietzuch. Access control

in publish/subscribe systems. In Proceedings of the second

international conference on Distributed event-based systems,

pages 23–34. ACM New York, 2008.

[2] J. Bacon, K. Moody, and W. Yao. A model of OASIS

role-based access control and its support for active security.

ACM Transactions on Information and System Security

(TISSEC), 5(4):492–540, 2002.

[3] D. G. Cholewka, R. A. Botha, and J. H. P. Eloff. A

context-sensitive access control model and prototype

implementation. In In: Information Security for Global

Information Infrastructures: IFIP TC 11 Sixteenth Annual

Working Conference on Information Security, pages

341–350. Kluwer Academic Publishers, 2000.



[4] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context

is key. Commun. ACM, 48(3):49–53, 2005.

[5] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The

many faces of publish/subscribe. ACM computing Surveys,

35(2):114–131, 2003.

[6] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill.

SLCA, composite services for ubiquitous computing. In

Proceedings of the International Conference on Mobile

Technology, Applications, and Systems (Mobility). ACM

Singapore, 2008.

[7] R. Hulsebosch, A. Salden, M. Bargh, P. Ebben, and

J. Reitsma. Context sensitive access control. In Proceedings

of the tenth ACM symposium on Access control models and

technologies, pages 111–119. ACM New York, 2005.

[8] F. Jammes, A. Mensch, and H. Smit. Service-oriented device

communications using the Devices Profile for Web Services.

In Proceedings of the 3rd international workshop on

Middleware for pervasive and ad-hoc computing, pages 1–8.

ACM New York, 2005.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J. marc Loingtier, and J. Irwin. Aspect-oriented

programming. In ECOOP. SpringerVerlag, 1997.

[10] Y. Kim, C. Mon, D. Jeong, J. Lee, C. Song, and D. Baik.

Context-aware access control mechanism for ubiquitous

applications. Lecture Notes in Computer Science (LNCS),

3528:236–242, 2005.

[11] T. Kindberg, K. Zhang, and N. Shankar. Context

authentication using constrained channels. In Fourth IEEE

Workshop on Mobile Computing Systems and Applications,

pages 14–21. IEEE Computer Society, 2002.

[12] Mobilegov. Mobilegov Access Control R©. See related

information on http://www.mobilegov.com/, 2009.

[13] R. Sandhu and P. Samarati. Access control: principle and

practice. IEEE Communications Magazine, 32(9):40–48,

1994.

[14] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin,

D. Cheung-Foo-Wo, E. Callegari, and M. Riveill. WComp

Middleware for Ubiquitous Computing: Aspects and

Composite Event-based Web Services. Annals of

Telecommunications (AoT), 64(3–4):197–214, Apr 2009.

[15] M. Weiser. The computer for the twenty-first century.

Scientific American, 265(3):94–104, Sep 1991.

[16] A. Westin and O. Ruebhausen. Privacy and freedom.

Atheneum New York, 1967.


