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Abstract

We extend clique-width to graphs with multiple edges. We obtain ..xed-
parameter tractable model-checking algorithms for certain monadic second-
order graph properties that depend on the multiplicities of edges, with re-
spect to this "new" clique-width. We de..ne special tree-width, the variant
of tree-width relative to tree-decompositions such that the boxes that con-
tain a vertex are on a path originating from some ..xed node. We study its
main properties. This de..nition is motivated by the construction of ..nite
automata associated with monadic second-order formulas using edge set
quanti..cations. These automata yield ..xed-parameter linear algorithms
with respect to tree-width for the model-checking of these formulas. Their
construction is much simpler for special tree-width than for tree-width,
for reasons that we explain.

1 Introduction

It is well-known that the model-checking problem for graph properties ex-
pressed by monadic second-order sentences with edge set quanti..cations is ..xed-
parameter linear for tree-width as parameter ([5], [12], [14]) and that, for graph
properties expressed by the (basic) monadic second-order sentences without edge
set quanti..cations, itis..xed-parameter cubic for clique-width ([9], together with
the approximate parsing algorithm of [19]; see Chapter 6 of [6]).

Because of the usually considered representation of graphs by relational
structures, the graph properties of the second type cannot take into account
the multiplicity of edges. In this article, we extend clique-width, de..ned up to



now for simple graphs only, to graphs with multiple edges. We use the same
"cliqgue-width graph operations™ as for simple graphs, but we let them act on
graphs with multiple edges. We also extend the representing logical structures
and, accordingly, the vocabulary of monadic second-order formulas, without us-
ing edge set quanti..cations. (The idea governing this extension is that, without
using edge set quanti..cations, we can nevertheless count multiple edges up to
a threshold or modulo a ..xed integer ). The ..xed-parameter cubic algorithm
(with clique-width as parameter) extends to this more general situation.

The .xed-parameter tractable monadic second-order model-checking algo-
rithms for tree-width and clique-width as parameters are based on construc-
tions of ..nite automata on terms. It appears that these constructions are more
complicated for the terms related to tree-width (these terms represent tree-
decompositions algebraically) than for those related to clique-width. Analysing
this di¢culty lead us to the de..nition of particular tree-decompositions called
special tree-decompositions, that yield the notion of special tree-width. This pa-
rameter, that is new to our knowledge takes values between path-width and
tree-width. Graphs of tree-width 2 have unbounded special tree-width. Special
tree-width can be de..ned in terms of the generalized "clique-width operations™
that operate on graphs with multiple edges. The corresponding constructions of
..nite automata from monadic second-order sentences using edge set quanti..ca-
tions are as easy as in the case where clique-width is the intended parameter.

All necessary de..nitions will be given, but we will frequently refer to de..-
nitions (of secondary importance) and to the constructions developed in detail
in Chapters 2 and 6 of [6]. We will use as much as possible the notation and
terminology of this book, but this article introduces de..nitions that will not
be included in it. Section 2 introduces the clique-width of graphs with multiple
edges, Section 3 de..nes the relevant extension of counting monadic second-order
logic. The applications to model-checking are in Section 4. Special tree-width is
de..ned and studied in Section 5. Its application to model-checking is in Section
6 where we also compare it to tree-width with respect to the construction of
automata. Section 7 is a short conclusion.

2 Graphs algebras

All graphs and relational structures will be ..nite.
De..nition 1: Graphs

We will consider ..nite graphs that can have loops and multiple (or parallel)
edges. We will not consider a undirected graph as a directed graph such that
each edge has an opposite edge.

A concrete graph G is a triple (Vg, Eg,vertg) with vertex set V5, edge
set F¢ and incidences de..ned by the mapping verts such that vertg(e) is the



set of end vertices of an edge e if G is undirected (it has a single element if e
is loop), and vertg(e) is the pair (z,y) if G is directed and e links = to y. The
notation e: x j¢ y means that e is an undirected edge that links = and y, and
e:z j¥ ¢ y means that e is a directed edge from z (its tail) to y (its head). In
both cases, we have x = y if e is a loop. Two edges e and e’ & e such that
vertg(e) = vertg(e') are parallel . The edge-thickness of a graph G, denoted
by p(G), is the maximum cardinality of a set of pairwise parallel edges. We say
that GG is simple if it has no pair of parallel edges (i.e., p(G) - 1).

A graph is the isomorphism class of a concrete graph. We call it an abstract
graph to stress that it is de..ned "up to isomorphism®. The reader will ..nd the
detailed (anyway obvious) de..nitions concerning isomorphisms in Chapter 2 of
[6].

If G isa concrete graph, we let Spl(G) be a simple subgraph of it obtained
by iteratively removing one edge of any pair of parallel edges. Any two graphs
obtained in this way are isomorphic, hence Spl is a (single-valued) mapping on
abstract graphs.

De..nition 2 : Operations on graphs and graph algebras

Let A be a countable set of port labels containing the set N of nonnegative
integers and the special symbol ?. Unless otherwise speci..ed, the de..nitions
are the same for directed and undirected graphs. A concrete graph with ports, or
a concrete p-graph in short, is a pair G = (G*, port ;) consisting of a concrete
graph G* and a mapping port, : V= ¥ A. A vertex z is an a-port of G if
port(xz) = a. The type w(G) of G is the set port (V) of port labels of its
vertices. (We denote also V= by Vi, and similarly for other items).

If G and H are concrete p-graphs, we say that G is a subgraph of H if
G* is a subgraph of H* and port. is the restriction of port, to V5 (so that
m(G) K m(H)).

An (abstract) graph with ports, or an (abstract) p-graph is the isomorphism
class of a concrete p-graph. In many cases, we will omit the distinction between
concrete and abstract graphs because it is clear that, for proving properties of
(abstract) graphs, we need to use concrete graphs.

Every (concrete or abstract) graph G* will be identi..ed with the (concrete
or abstract) p-graph (G*,ports) such that port(z) = ? for every vertex z.
Hence, we will use ? as a "default port label™.

Our next objective is to de..ne operations on directed and undirected abstract
p-graphs, hence, to equip these graphs with algebra structures.

Disjoint union. Two concrete graphs G and H are disjoint if Vg \ Vg = ;
and Eq¢ \ Eyg = ;, so that one can take their union in an obvious way. For
disjoint p-graphs G and H, we let G© H be the union of G* and H* equipped
with the port mapping port oo := port [ porty. If G and H are not disjoint,



we replace one of them by an isomorphic copy disjoint from the other. In this
way, we obtain a well-de..ned binary operation on abstract p-graphs. Clearly

(G © H) = 7(G) [ 7(H).

Edge addition.__'Let a,b 2 A, with a & b. For every concrete directed p-
graph G, we let A&Ha,b(G) be a concrete p-graph G° such that Vg 1= Vg, Ego
is Eg to which we add one edge from z to y, for every =,y 2 Vs such that
port.(z) =a and port,(y) = b (so that vertco(e) := vertg(e) if e 2 E¢ and
vertgo(e) == (x,y) if e is such a new edge), and port o := port. For adding a
loop, we use the operation add’°’? that adds a loop at each vertex = such that
port(x) = a.

___For adding undirected edges, we use the operation add, ; de..ned similarly as
a{fi'cia,b. There is no dicerence between a directed and an undirected loop, hence,
the operation add°°” will also be used to add loops to undirected graphs. We
have: g

(d8d,,,(G)) = m(@dd . 4(G)) = m(add**"(G)) = w(G).

=
Note that e{&aa,b(G) = G if a or b does not belong to 7(G), and similarly for
add, , and for add'°” if a 2 7(G).

These operations are well-de..ned on abstract p-graphs.

Port relabelling. Leth: A ¥ Ais a mapping that is the identity outside of
a ..nite subset of A. We de..ne relab,, as the unary operation such that relab, (G)
is the concrete p-graph G° such that Vgo := Vg, Ego := Eg, verte 1= vertg
and portgo := h £port;. We have :

w(relab, (G)) = h(n(G)).

Clearly, relaby, £ relab,o = relab.,0 for all mappings h and h". A particular case
deserves an easier notation: for a,b 2 A, a & b, we let relab, s, denote relaby,
where h: A ¥ Ais such that h(a) = b and h(c) = c for every ¢ 2 A j fag. We
have relab, » ,(G) = G if a 2 7(G). We can express a composition of relabellings
relab,, » 5, £ relab,, v 4, £¢¢¢ £relab,, »y, as a single operation relab,, and vice-
versa.

If C WmAandh :C ¥ A is the identity outside of a ..nite subset of C
(which holds in particular if C is ..nite), we also denote by relab, the operation
relab;o where A agrees with 1 on C and is the identity outside of C'. For each
set C L A, we denote by [C ¥ (] the set of mappings h: C ¥ C such that h
is the identity outside of a ..nite subset of C'.

Again, these operations are well-de..ned on abstract p-graphs.

Basic graphs. The constant symbol a will denote the abstract p-graph with
a single vertex that is an a-port. The symbol ? will denote the empty graph.
We have n(a) = fag and «(?) = ;.



The two VR algebras of p-graphs. We obtain two countably in..nite sets
of graph operations. Those of the ..rst set act on directed p-graphs:

=1
FVRA = fo, 8, ,,add'°? relab,,a,? ja,b 2 A, a& b, h 2[A ¥ Alsg
and those of the second one on undirected p-graphs:
FVRU = f©,add . ;,add'*” relabj,a,? ja,b 2 A, a &b, h2[A ¥ Alsg.

We let GPY denote the FVR9-algebra with domain GPY de..ned as the set of
all (abstract) directed p-graphs, and we let GPY be the corresponding FVRU-
algebra of undirected p-graphs with domain GP". We call them the VR alge-
bras. (This terminology is motivated by the close relationship with the vertex-
replacement graph grammars; see Chapter 4 of [6]).

We denote by T'(F) the set of terms over a set F' of graph operations. We will
identify a term ¢ and its syntactic tree. Hence, we will discuss the occurrences of
operation symbols in a term with the terminology of trees: nodes, leaves, root,
ancestor etc. The ancestor relation is denoted by -; (v -;v ifu =wvorwvisa
proper ancestor of u).

Each term ¢t in T(FVRd) (resp. in T(FVRY)) evaluates to a directed (resp.
an undirected) p-graph that we denote by val(¢). Its vertlces are created by
the constant symbols a and its edges by the operations :ﬂidab, add,, and
addff"”. An occurrence in a term ¢ of an edge addition operation is useful if it
creates at least one edge. By a previous observation, this is equivalent to the
condition that a and b (or a in the case of addfj‘"’) belong to w(val(t/u1)),
where t/u; is the subterm of ¢ issued from w;, the son of u. An occurrence of
such an operation that is not useful can be deleted: we obtain in this way a
term that de..nes the same p-graph. Similarly, the constant symbol ? can be
eliminated (except for de..ning the empty graph; this symbol is also useful for
certain constructions of automata, see Section 6.3.4 of [6].)

We will also need, for each term ¢, a uniquely de..ned concrete p-graph cval (¢)
of which val (¢) is the isomorphism class. We de..ne it as follows:

its set of vertices is Occq(t), the set of occurrences in ¢ of the constant
symbolsa for a 2 A, and

its edges are the palrs (u, (z,y)) such that « is a useful occurrence

of an operation ziﬂ'da » that creates an edge from x to y, the pairs
(u, fz,yg) such that « is a useful occurrence of add, , that creates
an undirected edge between x and y and the pairs (u, fxg) such that
u is a useful occurrence of add'°°? that creates a loop incident with
Z.

This concrete p-graph cval(t) is built from the occurrences of the symbols
in ¢t (i.e., from its nodes since we consider ¢ as a tree). Its formal de..nition,
by induction on the structure of ¢, is clear. There is a natural correspondence
between the vertices of a concrete p-graph de..ned by ¢ and the occurrences of



symbols a in this term, but this is not the case for edges: each occurrence v of an
edge addition operation may create several edges. Hence, we distinguish these
edges by the components (z,y), fz,yg and fzg in the above pairs (u, (z,y)),
(u, fx,y9) and (u, fzQ).

One more technical notion: if w is a node of ¢, we denote by cval(t)/u the
p-graph isomorphic to cval(t/u) with vertex set fy 2 Occo(t) j y -+ ug, where
t/u is the subterm of ¢ issued from . Note that if « & w and t/u = ¢/w, then
the concrete graphs cval(t)/u and cval (t)/w are isomorphic but not equal; they
are actually disjoint because v and w are incomparable with respect to -, . For
an example, consider the term

t=add, 4(add, p2(a3 ©4 bs) ©g relab, s .7(add, p8(a9 ©10 b11)))

where the subscripts 1 to 11 number the occurrences of its operation and
constant symbols. This concrete p-graphis 3, j 5, i 11. i 9, where the subscripts
a,b,c indicate the port labels. Let v := 2 and w := 8. Then t/u = t/w =
add, ;,(a© b). However, cval(t)/u is the concrete graph 3, i 5, and cval(t)/w
is1l, i 9.

Two terms are equivalent if they evaluate into the same (abstract) p-graph.

The subsets FYRY of FVRd and FYRY of FVRY for C A are de.ned
by restricting a,b to belong to C and h to belong to [C ¥ C]; in the above
de..nitions. It is easy to show (by induction on t) that w(val(t)) i C for every
t 2 T(FYRYY [ T(FYRY).

The two VR algebras of simple p-graphs. We de..ne also two algebras
of simple p-graphs, denoted by GP*® and GP (with the superscript s to
distinguish them from GPY and GP"). The disjoint union and the relabellings
transform simple graphs into simple graphs and the operations that add edges
are de..ned as follows_(iels operations of GP*Y and GP™):

o5 A
dhd: (@) = spEd., (@),

add; ,(G) = Spl(add, (),

add$!'°P(@) = Spl(add'*P(G)).

To take an example, the term ¢ = add, ;,(add, ;(a © b) © b) evaluates in
GP®Y into the simple graph b j aj b (with one a-port, two b-ports and two
edges) and, in GPY, into the graph b = a j b (with 3 edges, two of them being
parallel).

Note that the operations of the algebras GP*® and GPY on the one hand
and of GP™ and GP" on the other are the same, but they are evaluated in
dicerent ways. We let sval(t) be the simple graph that is the value in Gps
orin GP™ of aterm t 2 T(FYRY) [ T(FYRY). Clearly, sval(t) = Spl(val(t)).



The following facts are clear from the de..nitions:

SpU(G © H) = Spl(G) © Spl(H),

SpuAd, 1(6)) = SpiE ., (SPI(G))),

Spl(add, ,(G)) = Spl(add ., (Spl(())),

Spl(add Y (G)) = Spl(add; " (Spi(G))),

Spl(relab, (G)) = relab;, (Spl(@)),

Spl(a) =aand Spl(?)= 7.

They imply that the mapping Spl is a homomorphism of algebras: GP¢
¥ GP* and: GPY ¥ GP%.

De..nition 3 : Clique-width.

The cliqgue-width of a p-graph G is the minimal cardinality of a set of
labels C' such that G is the value of a term ¢ in T(FYRY) [ T(FYRY). This
number is denoted by cwd(G). Every p-graph G is the value of some term in
T(FVRY [ T(FYRY) and cwd(G) -j Vi j . A simple graph can be de..ned as
val(t) for some term ¢ 2 T(FYRY) [ T(FYRY), but it can also be de..ned as
sval(t’) for such a term #, that might use a smaller set of labels C'. However,
this is not the case:

Proposition 4 : If G = sval(t) for some term ¢ 2 T(FYRY) [ T(FYRY),
then G = val(t’) for some term ' 2 T(FYRY) [ T(FYRY). For every graph G,
we have cwd(Spl(G)) - cwd(G), and the inequality may be strict.

Proof : We let t 2 T(FYRY), G := sval(t) and H := cval(t). If H is simple,
we take t':= t. Otherwise H has two edges e and €’ sych that verty(e) =
verty (eo_)_.lThey are created by edge addition operations, a{&aa,b at an occurrence

v and a{a'dc,d at an occurrence v that is a proper ancestor of « in ¢; the pair
(¢, d) may dizer from (a, b) because of possible relabellings on the path between
u and v in this tree, We denote this fact by v @ v. Since e“_i_gparallel to e, all
edges created _tg¥ a{(!JHmb at u have parallel edges created by :ﬂfd d at v. Hence,
if we replace A&aa,b at u by the identity (say by the unary operation relab;,),
we obtain a term ¢; such that sval(t1) = sval(t), and such that val(t1) has less
edges than val(t). By repeating ..nitely many times this transformation that
does not introduce new port labels we obtain a term ¢ 2 T(FYRY) such that
val () = sval(t). The same proof can be done for undirected graphs.

Since every term t 2 T(FYRI) [ T(FYRY) that evaluates into a p-graph G
can be transformed into ° 2 T(FYRY) [ T(FYRY) that evaluates into Spi(G),
we have cwd(Spl(G)) - cwd(G). Here is qp'example such that cwd(Spl(G)) <

=

cwd(G). We let H := val(t) where ¢ := a!baa,b(dhaa,b(a__c? a© b ©b)) and G
be H minus one edge. We have Spl(G) = Spl(H) = val(34d,,(a©a©b®© b)),
hence cwd(Spl(G)) = 2. It is clear that G = wval(s) where s is the term

4., , retab, « . 0 ., @0, (@ ©b) © b CY)),



and it is not hard to check that no term using only 2 labels can de..ne G.
Hence, cwd(G) =3. ©

Clique-width has been de..ned in [10] and [9] for simple graphs only, as
the minimal cardinality of a set C such that G = swval(t) for some term ¢ 2
T(FYRY) [T(FYRY). The ..rst assertion of Proposition 4 shows that the new
de..nition agrees for simple graphs with the usual one.

Another technical point is discussed in Section 2.5.6 of [6]: the clique-width
of simple graphs can be de..ned by replacing in the sets FYR9 and FYRY the
operations relab, by the particular operations relab, s for a,b 2 C (as in the
original de..nition of [10]). The resulting values of cligue-width are the same
with the two de..nitions. (This is not completely trivial because if C = fa,bg
and h exchanges a and b, then relab, is not a composition of the operations
relab, s , and relab,s ,.) The proof given in [6] works as well for terms denoting
graphs with multiple edges (as it does not concern the operations that add edges,
but only the relabellings).

The notion of clique-width can also be de..ned for simple (L,=)-labelled
graphs, i.e., for graphs such that every edge has a unigue label from a ..xed ..nite
set @ and every vertex has a possibly empty set of labels from a ..xed ..nite set
L disjoint from A. For specifying labels, one uses the constant symbol aZ to
de,ne an isolated a-port with set of labels B and the edge addition operations
3d> , add}, and add'*?"* that add edges labelled by \ 2 @. We refer the
reader to [6]7for the detailed de..nitions. The extension of the above de..nitions
to (L, @)-labelled graphs with multiple edges is straightforward.

The following proposition shows that adding randomly parallel edges to a
given simple graph may increase its clique-width in an unbounded way.

Proposition 5: There isnofunction f such that cwd(G) - f(cwd(Spl(G)))
for every graph G without any triple of parallel edges, hence a fortiori, for every
graph G.

Proof : The proof will use the following claim:

Claim: Let K and H be two concrete simple undirected and loop-free
graphs such that H is a subgraph of K and Vg = Vi; we de..ne K + H as the
graph obtained from K by adding a parallel edge to every edge of H. Then we
have cwd(H) - cwd(K + H).&

Let us illustrate the de..nition. Let X' be thepath: =z j vy i zi wandlet
H bexjy =ziju. Then K+ H is the graph = =y j z = u with two pairs of
parallel edges between x and y, and z and w.

Proof of the claim: We let K + H be de..ned by a term ¢ in T'(FYR") such
that C has the minimal cardinality, i.e. j C j= cwd(K + H). We can assume



that all occurrences of edge addition operations are useful in ¢ (cf. De..nition
2).

If v is an occurrence of add, ;, and v is an occurrence of add.,, we write
u @ v (similarily as in the proof of Proposition 4) if and only if v is a proper
ancestor of » and the relabellings on the path in ¢ between v and v (composed
bottom-up) transform fa,bg into fc, dg. The second condition is equivalent to
the fact that the operation add., at v creates an edge parallel to some edge
that has been created by add,, ; at . It implies that each edge created by add,
at v gets a parallel edge created by add.4 at v. It is also clear that any two
parallel edges of K + H are created by such operations, at some occurrences u
and v such that v @ v. It follows from these observations that there are no 3
occurrences u, v, w of edge addition operations such that v @ v @ w, otherwise,
we would have a triple of parallel edges. This is not possible by the de..nition
of K + H.

We now transform ¢ into ¢ 2 T'(FYR") as follows:

if u is an occurrence of add,; in ¢ such that there is no v with
u @ v, then we replace add,; by the identity operation at w.

We claim that H = val(t"). Consider an edge e of K + H without parallel
edge: it is created by an operation add ., at some occurrence u such that there
is no v with v @ v, hence this operation is replaced in t° by the identity and
this edge is not in val(#"); if e has a parallel edge €', then these two edges are
created by edge addition operations at » and v such that v @ v; the operation
at v is replaced by the identity but the operation at « remains by the de..nition
of t°, hence exactly one of the two edges remains in val(t"). This shows that
H = val(f). Hence, cwd(H) - cwd(K + H).&

For proving the proposition, we consider K + H as in the above fact. Then
Spl(K + H) = K. Take for K a clique, and for H, any simple undirected
and loop-free graph such that Vi = Vi. Hence, cwd(Spl(K + H)) = 2. If,
for some ..xed function f we would have cwd(G) - f(cwd(Spl(G))) for every
graph G having no triple of parallel edges, then, by taking G := K + H and
by the claim, we would have cwd(H) - cwd(K + H) - f(2). But the simple
undirected and loop-free graphs have unbounded clique-width ([10,17]), hence
we get a contradiction.

The proof is easily adapted to directed graphs. ©

Although the following notion is well-known we recall its de..nition at least
for making notation precise.

De..nition 6 : Tree-decompositions.

A tree-decomposition of a graph G is a pair (7, f) such that T" is a rooted
and directed tree with set of nodes Ny and f: Nr i ¥ P(Vg) is a mapping
such that:



1) Every vertex of G belongs to f(u) for some u in N,

2) Every edge has its ends in f(u) for some u in N,

3) For each vertex z, the set fil(z) := fu 2 Ny j = 2 f(u)g is connected in
T.

The width of a tree-decomposition (7', f) is the the maximal cardinality
il of a box, i.e. of a set f(u). A path-decomposition is de..ned as a tree-
decomposition such that 7' is a directed path. The tree-width twd(G) (the
path-width pwd(G)) of a graph G is the minimal width of a tree-decomposition
(a path-decomposition) of this graph.

It is known from [4] and [10] that a set of simple graphs, directed or not, that
has bounded tree-width has bounded clique-width. This is not true for graphs
with multiple edges.

For every graph G, we let G — = be the graph obtained by adding to G a
universal vertex, i.e., a vertex o linked to all vertices of G (by undirected edges
if G is undirected and by edges directed towards o if GG is directed).

Proposition 7 : The set of undirected graphs of tree-width 2 has un-
bounded clique-width.

Proof : We use an auxiliary construction. Let G be a simple loop-free
undirected graph, and let @ be obtained from G — o by the addition of parallel
edges to all edges of G — &, in such a way if fz,yg & fw, 29, = i5y and
w i gz then, the number of edges between z and y and between w and = are

dicerent. Clearly, twd(d) = twd(G) + 1, since tree-width does not depend on
the multiplicity of edges.

Claim: If cwd(®) - k, then pwd(G) - k i 1.

Proof of the claim: Let ¢ 2 T'(FYRY) be a term such that cval(t) = @ and
j Cj= k. Let = be a vertex of G, hence a leaf of ¢, and let « be a node above z.
We denote by port;(x,u) the port label of z at u, de..ned as the port label of
the vertex z in the concrete p-graph cval(t)/u, cf. De..nition 2. (For the term ¢
used as example in this de..nition, we have port;(11,u) = b for u 2 8,10, 119
and port;(11,u) = ¢ for v 2 f1,2,6,7¢.)

We denote by lca(x,y) is the least common ancestor of two vertices (hence,
two leaves) x and y. It is an occurrence of ©. The vertices x and y are adjacent if
and only if there exists an occurrence w of add,, ;, or add, , such thatlca(z,y) -,
w, porty(z,w) = a and port;(y,w) = b. We say that a vertex z is live at u if
x -, u and there is a vertex y adjacent to = such that u -; lca(z,y).

We let P be the path in ¢ linking the root to the leaf a. For each u on this
path, we let f(u) be the set of vertices of G that are live at u. We claim that
(P, f) is a path-decomposition of G of width at most k& j 1.

(a) Every vertex x is adjacent to o, hence itis live at ica(xz,®) and belongs
to the box f(lca(x,n)).
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(b) Let x and y be adjacent in G. If ica(z,y) <; lca(z,®) = lca(y,), then
z and y belong both to f(lca(z,r)) by (a). If lca(x,8) <, lca(z,y) = lca(y, B),
then z and y are live at lca(z, i) hence they belong both to the box f(lca(y, ®)).
If lca(y,®) <t lca(x,y) = lca(z, @) they belong both to the box f(lca(z,®)).

(c) The connectivity condition holds because, if x is live at , it is live at all
nodes v on the path in ¢ between = and w.

(d) Let x and y belong to a box f(u). We have lca(x,y) -; u. The vertices
z and y have dicerent port labels at u: there is a vertex z adjacent to x such
that v -, lca(z, z). If x and y had the same port labels at », both would be
adjacent to z with the same numbers of parallel edges, but this is not possible
by the construction of .

Hence, (P, f) is a path-decomposition of G whose boxes have at most &
vertices.o

To complete the proof of the proposition, take G tobe a tree. Then twd((l?) =
2, but trees have unbounded path-width. Hence, the clique-widths of the graphs
& are unbounded.o

From this proposition, we obtain another proof of Proposition 5. Since tree-
width does not depend on the multiplicity of edges, if we had a function f
such that cwd(G) - f(cwd(Spl(GR)), the graphs of tree-width 2 (with multiple
edges) would have bounded clique-width because simple undirected graphs of
tree-width 2 have clique-width at most 6 by [4].

De..nition 8: The parsing problem.

The parsing problem for cliqgue-width consists in ..nding an algorithm to do
the following:

Given a graph G and an integer k, to answer that G has clique-width
more than & or to output a term witnessing that its clique-width is
at most k.

This problem is NP-complete [13] but there exists an approximation algo-
rithm, call it AP..q (by the results of [19] and [20]) that does the following in
time g(k).n3, where n is the number of vertices of the given graph, and f and
g are ..xed functions:

Given asimple graph G and an integer k, either it answers (correctly)
that G has clique-width more than &, or it outputs a term witnessing
that it has clique-width at most f(k).

This result su¢ces to prove that the model-checking problem for every
monadic second-order property is ..xed-parameter cubic with respect to clique-
width as parameter ([9] and Chapter 6 of [6]). It extends to simple (L, ©)-
labelled graphs because these graphs can be encoded into simple undirected
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vertex-labelled graphs, and this encoding preserves the property that a set of
graphs has bounded clique-width; the details are in Section 6.2 of [6]. From this
result, we obtain as follows a ..xed-parameter cubic algorithm for approximat-
ing the clique-width of graphs with multiple edges, where the functions f and g
depend on k and on the edge-thickness p(G) of the input graph G. We sketch
the idea of this extension.

Let G be a graph and p(G) - p. For every e 2 E¢, let P(e) be the set con-
sisting of e and the edges parallel to it. We distinguish these edges by labelling
them by the integers 1,2,....j P(e) j- p. In this way, we transform G into a
simple (;, [p])-labelled graph &. From any term that de..nes A, we get one that
de..nes G by deleting the edge labels from its edge addition operations. Hence,
cwd(G) - cwd((?). A technical lemma gives the equality. It follows that the
algorithm for approximating the clique-width of simple (;, [p])-labelled graphs
can be used for approximating the clique-width of graphs of edge-thickness at
most p. (However, this algorithm is actually not practically usable because it is
based on complicated constructions that yield huge constants).

It is an open problem to ..nd an approximation algorithm for the clique-
width of graphs with multiple edges analogous to AP, that would operate in
time g(k).n¢, or even in time n9%) where n is the number of vertices and edges
of the input graph G and such that the ..xed constant ¢ and/or function g do
not depend on p(G).

3 Monadic second-order logic

De..nition 9 : CMS; and CMS, graph properties.

We assume that the reader knows the basics of monadic second-order logic
(exposed in, e.g., in [9], [12], [14], [18] and Chapter 5 of [6]). We only review
some perhaps not so well-known notions and the relevant notation.

If ¢ . 2 and 0 - p < ¢, the set predicate Card, ,(X) expresses that
the cardinality of X is equal to p modulo ¢. We will use Card, ,(X) as an
atomic formula where X is a set variable. Let » be a nonnegative integer: a
C,MS formula is a monadic second-order formula that can be written with the
set predicates Card, 4 for ¢ - r. The CMS formulas are the same without
any bound on ¢; the CoMS (that are also the C; MS) formulas use no such set
predicates and are the MS formulas. Counting monadic second-order logic refers
to CMS formulas.

Graph properties can be expressed by monadic second-order formulas (or by
formulas of any language) via two (main) representations of graphs by relational
structures. The ..rst representation associates with every graph G the logical
structure bGc := hVg,edggi where edgs the binary relation on vertices such
that (z,y) 2 edge if and only if verig(e) = fx,yg (possibly with x = y) or
vertg(e) = (z,y) for some edge e of G.
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A graph property P(X3,...,X,), where Xj,...,X, denote sets of vertices,
is a C/MS; graph property (a CMS; graph property) if there exists a C,MS
formula (a CMS formula) ¢(X4, ..., X,,) such that, for every graph G and for all
sets of vertices Xi, ..., X, of this graph, we have:

bGec FE (X1, ..., X,) ifand only if P(Xy,..., X,) istruein G.

Since for every graph G, we have bGc = bSpl(G)c, a CMS; graph property
cannot depend on the multiplicity of edges. This is not due to monadic second-
order logic but to the chosen representation of graphs. Incidence graphs can
remedy this drawback. The incidence graph of an undirected graph G is the
directed bipartite graph Inc(G) := hVg [ Eg,ingi where ing is the set of
pairs (e,z) such that e 2 Eg and z is an end vertex of e. (We use the
simpler notation ing instead of edgr,c(w)). If G is directed, we let Inc(G) =
hWa [Eg,inia,inagi where inyg (resp. inp ) is the set of pairs (e, ) such that
e 2 Eg and z is the tail vertex of e (resp. its head vertex). Hence, Inc(G) is
directed and bipartite with two types of edges. We will also denote by dGe the
graph Inc(G) considered as a relational structure.

A graph property P(Xy, ..., X,, Y1,...,Y,,), where X;, ..., X, denote sets
of vertices and Yi,...,Y,, denote sets of edges, is a C,MS;, graph property
(a CMS, graph property) if there exists a C,MS formula (a CMS formula)
o(X1, .y Xp, Y1,...,Yy), such that, for every graph G, for all sets of vertices
X3,..., X, and for all sets of edges Y1, ...,Y,, of this graph, we have:

dGe E (X1, ..., Xp, Y1, ..., Yy,) if and only if
P(X1,...,X,, Y1,...,Y,,) is true in G.

For example, the property Ham that an undirected graph has at least 3
vertices and a Hamiltonian cycle is an MS;-property that is not CMS; (see
[6], Chapter 5). Note that an undirected graph G satis..es Ham if and only if
Spl(G) satis..es Ham, so this fact has nothing to do with the representation of
multiple edges.

We will introduce graph properties that can depend on the multiplicity of
edges without being written with edge set quanti..cations. They will be inter-
mediate between CMS; and CMS, properties, but they will not include Ham.
The constructions of ..nite automata that yield ..xed-parameter linear model-
checking algorithms for input graphs given with the corresponding terms extend
to them.

De..nition 10 : CMSy; graph properties.
For every graph G, we denote by fedgs the mapping that associates with

every pair of vertices (z,y), the number of edges e of G such that vertg(e) =
fx,yg (possibly with x = y) or vertg(e) = (z,y) (if G is directed). We de..ne:
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bGey = hVg, fedgei. This pair is not a relational structure because fledg¢ is a
function with values in the in..nite set of integers and not a relation, but we will
use it as if it was. Two graphs G and H are isomorphic if and only if bGcy and
bHcy are isomorphic (in the obvious sense).

The CMS formulas that specify CMS; graph properties are written with the
binary relation symbol edg. We de..ne the C, M Sy-formulas as the monadic
second-order formulas that can be written with the set predicates Card, , for
p < ¢ - rand the (new) binary relation symbols edg, for 0 - ¢ - » and edg, 4
for0 - p<gq - rand 2 - ¢. The new symbols will be interpreted in bGc; as
follows :

(z,y) 2 edgpqc if and only if (z,y) 2 edge and fedge(z,y) ~ p
(mod. ¢), and

(z,y) 2 edg, if and only if tedga(z, y) = q.

The notation bGcy F (X4, ...,X,) is thus meaningful if ¢ is a C.MS;-
formula and X, ..., X,, denote sets of vertices. Note that (z,y) 2 edgq if and
only if (z,y) 2 edgoc. Hence, every C.MS-formula can be identi..ed with the
C,.MS;-formula obtained from it by replacing every atomic formula edg(z,y)
by zedgo(x,y).

The purpose of the following proposition is to illustrate the expressive power
of CMS;-formulas. For every graph G and sets of vertices X and Y of this graph,
we let Fdge(X,Y) denote the set of edges from a vertex of X to a vertex of Y
if G is directed and that link a vertex of X and a vertex of Y if G is undirected.
This set includes the loops incident with a vertex in X \'Y. We denote by
fEdga(X,Y) the cardinality of Edgs(X,Y).

Proposition 11 : For every p and ¢ in N, there exist C,MS;-formulas
expressing that $Fdge(X,Y) = g and §Edge(X,Y) = p (mod. ¢) (where ¢ _ 2
and 0 - p < q) for all sets of vertices X and Y of a directed graph G. Similar
formulas exist for undirected graphs. For simple graphs, these constructions
yield respectively MS-formulas and C,MS-formula.=

Proof: (1) The formulas expressing that $Fdgs(X,Y) = ¢ are easy but
lengthy to write. For directed graphs, consider for example the property that
tEdga(X,Y) = 2. It is equivalent to the following:

either there is only one pair in (X £Y) \ edgg and this pair is in
edgoc,

or there are exactly two pairs in (X £Y) \ edgs and each of them
isin edglg.

These conditions can be expressed by a CoMSy-formula. The construction
for the general case is similar and need not use the set predicates C'ard, ,.
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(2) We now consider, for directe%graphs G, the property tEdga(X,Y) ~ p
(mod. ¢). Clearly, tEdga(X,Y) = tEdga(fzg,Y). We also have:
22X

P . . )
tEdge(frg,Y) = i.jfy2Y j(z,y) 2 edgicg ] -
12N

Let us compute this modulo ¢:

- P . : .
§Edge(Frg, V) i.mod,(j fy 2 Y | (z,y) 2 edg; 4c9)) (mod. g),
0-i<q
where for each integer s, mod,(s) is the unique integer in [0,q § 1] that is
equivalent to s modulo ¢q. Hence, {Edgo(fzg,Y) =~ s (mod. ¢) if and only if
the following formula 6, ,(z, Y") with free variables x and Y is satis..ed in bGcy :

w
U.(Card,, ((U)M8u(u2U O u2Y MNedg; o(x,u))),

(po,--,pq§1) 2A(s,q)  0-i<q
where A(s,q) denotes the set of g-tuples (po, ..., pq31) 2 [0,¢ i 1]¢ such that
Opo+Llpi+..+(qil)pe;1~ s (mod. g).

By similar observations, we get that tEdgo(X,Y) = p (mod. ¢) if and only
if there exists a ¢-tuple (po, ..., pqi1) 2 A(p,q) such that, for eachi =0, ...,¢ i 1,
we have p;, = mod,(j fz 2 X j §Edga(fzg,Y) ~ ¢ (mod. ¢)g j). It follows
that §Edg(X,Y) ~ p (mod. ¢) if and only if the following formula ., (X,Y)
with free variables X and Y is satis..ed in bGcy :

W
QU.(Cardy, (U) N 8u2 U O u 2 X N0, ,(u,Y))).

(0, --,pqi1)2A(p,q)  0-i<g

(3) The construction is the same for undirected graphs.

(4) For the particular case of simple directed graphs, we use in these con-
structions edg instead of edgi , and of edgs1, and :-edg instead of edg; , and
edg; forevery ¢ & 1. For undirected graphs, there is a slight dicerence. If G is
simple and undirected, then

1EBdge(X, X) =]z 2 X'j (z,2) 2 edgeg] +
if(z,y) 2(XEX)\edge ]z &yg]j /2,
whereas, if G is simple and directed, we have:
1EBdga(X, X)=jfz 2 X'j (z,2) 2 edgegj +
Jfz,y) 2(XE X)\Nedge jr & yg .

If X and Y are disjoint, then tEdgs(X,Y) =] (X £Y) \ edgs j for simple
undirected graphs, as for simple directed ones. In all cases, Edgg(X,Y) is the
disjoint union of Fdgs(X,Y i X), Fdge(X i Y, X\Y) and Edgs(X\Y, X\Y).
The construction of the formula for simple undirected graphs is then routine
from these observations and the technique used in the ..rst part of the proof.&
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4 Finite automata from monadic second-order
formulas

De..nitions 12 : Assignments encoded in the terms that de..ne graphs

Let F be a..xed ..nite subset of FVRY or of FVRY_ For every graph property
P, we let Lp be the set of terms in T'(F) that evaluate to a graph satisfying
P. If P isa CMS;-property, then Lp isregular, i.e., is de..nable by a ..nite F-
automaton. We will extend the proof given in Section 6.3.4 of [6] to the language
CMS;. This proof uses an induction on the structure of the sentences that de..ne
the properties P. Hence, we need automata associated with formulas having free
variables to handle inductively the case of sentences of the form 9X3,..., X,, ..
Hence, we generalize the previous de..nition.

Let P(X4,...,X,) be a property of sets of vertices X4,..., X,, of the graphs
denoted by terms in T'(F). We recall from De..nition 2 that a term ¢ 2 T'(F)
evaluates to a concrete p-graph cval(t) whose vertex set is Occg(t), the set
of occurrences in ¢ of the constant symbols dicerent from 2. If G is another
concrete graph de..ned by ¢, then itisisomorphic to cval(t), and the veri..cations
of monadic second-order properties that we can do on cval(t) apply to G via
this isomorphism.

For example, consider the term ¢ = add, ;1 (add, 2(as ©4 bs) ©g b7) where
the indices from 1 to 7 designate the occurrences in ¢ of the operation and
constant symbols. We have Occy(t) = ¥3,5,79 and the graph cval(t) is:

5 =3, i 7b.

(The port labels a and b are indicated here as subscripts and there are two
edges between vertices 5 and 3).

Let us go back to the general case. We let F(™ be obtained from F' by replac-
ing each constant symbol a by the constant symbols (a, w) where w 2 0,1g".
Forl - m - n,we letpr,, : F( j¥ Fim) e the mapping, usually called
a projection, that transforms (a, w) into (a,w') where ' is obtained from w by
removing the last m Booleans. A term ¢ in T (F(™) de..nes two things: ..rst, the
graph cval(pr,(t)), (hence, pr,(t) is obtained from ¢ by removing all Boolean
components of the constant symbols), and second, the n-tuple (V1,...,V},) such
that V; is the set of vertices of cwval(pr,(¢t)) that are occurrences of constant
symbols (a, w) where the i-th component of w is 1. The tuple (V1,...,V}) is an
assignment of sets of vertices of cval (pr,(¢)) to the set variables X4, ..., X,,. We
will write ¢ as pr,(t) & (V4, ..., V,,). Every term in T(F®™) s of this form.

Then, we de.ne Lpcx, . x, as the set of terms sa (V1, ..., V,) 2 T(F™)
(with s 2 T'(F) ) such that P(V1,...,V,,) is true in cval(s). If P is de..ned by
a formula ¢ with free variables in X, ..., X,,g, then we denote Lp(x,, . x,)
by Lgx,,..x,)- (A formula ¢ does not determine the variables X,..., X,

in a unique may; furthermore, if, for example, ¢ is X3 | X3, we may have to
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consider L, (x1,x»,x3,x4) 8 Well as L, (x; x» x3); hence we specify (Xq,..., X},)
as argument of L, (x;,...x,) ). The relevant set F is ..xed by the context.

Theorem 13: Let F be a ..nite subset of #VR9 or of FVRY. For every CMS;
graph property P(Xy,..., X,,), the language Lpcx, . x, is regular and an F-
automaton de..ning it can be constructed from a CMS; formula that de..nes
P.

Proof: The proof is a small extension of that given in Section 6.3 of [6] for
CMS; graph properties and the evaluation mapping sval from terms to simple
graphs. Here, we consider CMSy graph properties and the evaluation mapping
val from terms to graphs that can have multiple edges.

We review the main steps of the proof.

First, monadic second-order formulas can be written without ..rst-order vari-
ables and without universal quanti..cations. Furthermore, one can always as-
sume that formulas are written with the “standard™ set variables X,..., X, , ...
and that the variables X; are used in such a way that, for any subformula of
the form 9X,,.0, the formula 6 has its free variables in fX;,..., X, 0.

The atomic formulas are of theforms X; pu X, X; = ;, Sgl(X;), Card, (X;)
and edg(X;, X;), (asin [6]), and here, we also use edg,(X;, X;), edg, (X, X;).
Their meanings, if not already de..ned or not clear from the notation, are as
follows for a graph G:

Sgl(X;) means that X; is singleton,

edg(X;, X;) means that X; and X are singletons, respectively fzg and fyg,
and that (z,y) 2 edgqg,

edgq(X;, X;) means the same with (z,y) 2 edg,c and

edgp.q(Xi, X;) means the same with (z,y) 2 edgp 4c.

Then, the main part of the proof is the construction of a F-automaton
be ..nite, complete and bottom-up deterministic unless otherwise speci..ed). The
construction is by induction on the structure of :

1) If ¢ is o1 ™ 2, g1 _ 2 Or Zp1, then one constructs A, (x,,..
Agixa, .. xn and A, (v, x,) by the classical constructions of automata for
intersection, union and complementation with respect to T(¥ ) of the associ-
ated languages (cf. [3]).

2)_If v is 9X,,.0, then we have L%(XL'_._’XHH).: pri(Ly(xa,...x.) (the
mapping pry replaces every symbol (a, wi), where 4 is 0 or 1, by (a, w), so that
pri(T(FM)) = T(FMiD)), Itis straightforward to obtain from the determinis-
tic F(™-automaton Ao (x,,..x,) thatrecognizes Ly (x,, . x,), a nondetermin-
istic (i D-automaton A that recognizes pri(Lo,(x,.....x,)) = Lo (x1,... X, ;1)
Since we have decided to construct deterministic automata (this is necessary
for complementations), we determinize A, which gives A, (x; .. x,,.)- This de-
terminization step increases (from N to at most 2/V) the number of states of
A.
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3) It remains to construct automata for the atomic formulas. The construc-
tions are in most cases straightforward from the de..nitions. For example, if ¢ is
Sgl(X3), then the automaton A, (x,,... xe) has to accept the terms that contain
one and only one occurrence of a constant symbol of the form (a,w) where the
third component of w is 1 (here w 2 f0, 1g°).

Convention: Every state called Error is a "sink state™: it is not
accepting and the recognized "error" "propagates”, that is, every
transition with Error among the input states yields Error as output
state.

We will only construct the automata for the atomic formulas edg,(X1, X2)
and edg, ,(X1,X2). We ..rst construct the automaton A := Aedgq(XLXZ) for

the set F:= FYR9 and ¢ _ 1. Its set of states is :
S =10, Errorg [ f1(a), 2(a), a(i),ab(?) ja,b 2 C,i 2 [0, q]g

(Another notation of states must be used if C = [k]). The meanings of these
states are described in Table 1. Each state s is characterized by a property P,
in the following sense: for every term t o (Vi, V») in T(F®), we have:

ta(Vy,V2) 2 L(A, s) if and only if the graph cval(t) satis..es P,(V1,V3).

The notation t" 2 L(A,s) means that the unique run of A on a term ¢ 2
T(F@) terminates with state s (at the root of the syntactic tree of ¢).

The number of states is thus (k + 1)(kq + 2) where k£ = jCj. The transition
rules are in Table 2. The missing transitions yield Error. Here is an example:
©[ab(0),a(2)] ¥ Error. The accepting states are those of the form a(q) or ab(q)
(possibly with @ = b). The table speci..es O(k*) transitions.

State s Property P,

0 Vi=V,=;
1(a) Vi =Tvg, Vo = ;,porteyan(v) =a
2(a) Vi=;,Vo="Tug,porteyapn(v) =a

a(l) Vl = V2 = f'Ug, portc\/a](ﬂ(v) = a, edgicval(t)(va U)
ab(i) | Vi ="Tfv1g, Vo = fuag, v1 & v2, porteeaisy(vi) = a,
portepay(v2) = b and edgiepqi (V1. v2)
Error All other cases

Table 1: Meanings of the states of A.

The states aa(0) could be identi..ed with Error because no run including
such a state can reach an accepting state. (The state aa(0) at a node u in-
dicates that the two vertices of V3 and V, have been found in the p-graph
H := cval(t)/u, that they are not linked by an edge and that they are both
a-ports in H. Hence, no sequence of operations applied to H can create an edge
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Transition rules Conditions
210
(a,00)
(a,10) ¥ 1(a)
(a,01) ¥ 2(a)
(a,11) ¥ 4(0)
relab,[0] ¥ O
relab,[i(a)] ¥ i(c)
relab,[a(5)] ¥ c(5) ¢ = h(a),d = h(b),
relaby[ab(7)] ¥ cd(j) i 212,720, 4]
add'P[s] ¥ s s 2 fa(0),¢¢¢ . alq)g
add”Pla(i)] ¥ a(i+1) |i<gq
adgl;'OP[a(q)] ! Error
ad_da p[s] ¥ s 2 fab(0),¢¢¢ , ab(q)g
a{&dub[ab(z)] Y ab(i+1) |i<gq
Ahdab[ab(q)] Y Error
©[1(a),2(b)] T ab(0)
©[2(b),1(a)] ¥ ab(0) (possibly a = b)
©[s,0] ¥ s s28
©[0,s] ¥ s

0

Table 2: The transition rules of A.

between them). This shows that the automaton A is not minimal. However,
keeping states like aa(0) yields a more uniform description of the transitions.

If, in this automaton, we replace the transitions addl"”" [a(q)] ¥ Error and
dia, wlab(g)] ¥ Error by add’*?[a(g)] ¥ a(q) and dig, slab()] ¥ ab(q) respec-
tively, then we obtain an automaton A; that recognizes the language L p(x;,x5)
where P(X1,X5,) means that X; and X, are singletons fxg and fyg such that
(z,y) 2 edg.q for some r _ q. Furthermore, if 0 < p < ¢, the automata A

and Aj recognize the language L.qq,(x1,x>) If they are given ab(p) and a(p) as
accepting states (for both of them).

We will not detail the construction for edg, ,(X1, X>) because it is fully
similar. The set of states is in this case

S :=f0,Errorg [ f1(a), 2(a), a(i), ab(i) ja,b2 C,i 2[0,q i 1]9.
The state ab(7) is characterized by the property:

V]_ = f’Ulg, ‘/2 = f’Uzg,’Ul & V2, portc\,aut)(vl) =a,
POTtcvairy(V2) = b, (v1,02) 2 edg; geval (ty

19



(it implies (v1,v2) 2 edgevai(ry €ven if ¢ =0). The state a(s) is characterized
by the property:

Vi =V = fug, portcyaiy(v) = a, (v,v) 2 edg; gevai ()

(similarly, it implies (v,v) 2 edgevai) even if ¢ = 0). The only transitions
that dicer from the previous case are

Ja!da,b[ab(i)] ¥ ab(mod,(i+ 1)) and add”[a(i)] ¥ a(mod,(i + 1))

forall 4 2 [0, ¢ j 1]. This set of transitions guarantees that, if the state ab(0)
is reached, there is at least one edge from v; to v, (cf. the above description of
the meaning of a state ab(z)), and similarly for a(0).

It is straightforward to transform these automata into automata for the
atomic formulas edg,(X;, X;) and edg,, ,(X;, X;), and to adapt these construc-
tions to undirected graphs.

Remark 14 : Automata for {Edgs(X,Y) = p (mod. ¢): In Propo-
sition 11, we have constructed a formula 1, ((X,Y) to express that sets of
vertices X and Y of a graph G satisfy §Edge(X,Y) ~ p (mod. ¢). This for-
mula uses the relations edg; 4, hence, since we have automata for the atomic
formulas edg; (X, Xi), we can combine them to build automata for the for-
mulas p, ,(X,Y"). However, there is a direct construction that we present as an
example of what one can do by "avoiding logic", i.e., by not using the general
construction. (This technique is used in other cases in [7, 8] and in Section 6.3.4
of [6]. For example the basic property Path(X,Y’) saying that X is a set of two
vertices linked by a path whose vertices are all in Y is monadic second-order
expressible by a formula of quanti..er-height 5. A direct construction yields an
F[X]Ru-automaton with less than 2+°+2 states. An F[X]R“-automaton of similar
size can be constructed for the property Clique(X) expressing that there is an
edge between any two distinct vertices of X. These constructions make easier
the construction of automata for more complex formulas in which Path(X,Y)
and Clique(X) occur as subformulas.)

We .x ¢ and the set of port labels C. The states of the automaton B,
equivalent to A, (x, x, are the 7-tuples (A1, f1, A2, f2, As, f3,7) such that
j2100,q i 1], A1, A2, A3 1 C and f; is amapping : C ¥ [0,¢ j 1] such that
fi(a) =0ifa 2 A; for each i. We describe with the same notation as above the
characteristic property of such a state:

A1 = porteyary(Vi i V2), ie., A1 is the set of port labels of the
vertices of V1 j 15,

fi(a) = mod,(j portél(a) \(V1i Vo)]) for everya 2 C,

Ap = portepairy(Vz i V1) and fa(a) = mod,(j portE*(a)\ (V2 i V1) j)
for every a 2 C,
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Az = porteuain(Vi \ V2) and fz(a) = mod,( portk'(a) \ V2 \ V1 J)
for every a 2 C,

and ..nally, 7 = mod,(4Edgcyaicry(V1, V2)).

The accepting states will be those such that j = p. The number of states
is q.k3@*1) where k =j C' j . The transitions are easy to de..ne from the above
speci..cations. Let us show some examples:

i) For a constant symbol, we have (a,11) i ¥ (;,;,f(a,1)g, 0) (we
write a pair (A;, f;) as the set of pairs (a, f;(a)) for a in A;).

ii) For the disjoint union, we have the following general description:

©[(Alaf1:AZafZ:A3af3:a.j)ﬂ(A%_7ﬁ’A()27f§7A%7f§77j0)] i!
(Al [A(:)Lafl +f§|)_7A2 [A027f2 +fg7A3 [A[:]gafé + f3077j+j0)
where additions are modulo ¢, hence

(f1 + f1)(a) := modg(fi(a) + fi(a)).

iii) For relab, the transition replaces everywhere a by h(a) and up-
dates the counts of vertices. For example, f; is replaced by f! such
that f%(a) is the sum modulo ¢ of the numbers f;(b) such that
h(b) = a. The integer ;5 that counts edges is not modi..ed.

iv) We now consider the operation add'°? that adds loops to the
a-ports. We must count the loops incident with vertices in V3 \ V5.
Hence, the only component of a state (Aj, f1, Az, f2, As, f3,7) that
is modi..ed is j that becomes mod,(j + f3(a)).

v) Finally, we consider the operations a{&%ja,b. The transition must
updates the number of edges from V; to V, that are added by this
operation. These edges are from V; j Vo to V, j Vq, from Vi § V%
to V1 \ V5, and from V3 \ V5 to V; j Vi, and these cases are mutually
exclusive. It follows that ;7 becomes

mod,(j + f1(a). f2(b) + f1(a).f3(b) + f3(a).f2(b)).=

All these constructions of automata are done for generic sets C. That is, if
we replace C by another set in bijection with it by f, then the corresponding
automata are obtained by replacing a 2 C by f(a) everywhere in the states, in
the transitions and the accepting states of the original ones. In particular, the
numbers of states and transitions depend only the cardinality of the considered
set C.

From these constructions and the remarks at the end of De..nition 8, we
obtain that the model-checking problem for CMS; sentences is ..xed-parameter
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cubic with respect to the parameter (cwd(G), p(G)) where G is the input graph
(and p(G) is its edge-thickness, cf. De..nition 1). It would be desirable to elim-
inate the dependency on p(G).

5 Special tree-width

We de..ne special tree-width by means of terms over the sets FVRd and FVRY,
An equivalent de..nition in terms of tree-decompositions will be given later.

De..nition 15: Special VR-terms.

We recall that 7(G) denotes the set of port labels of a p-graph G; we also
denote by 7 (G) the subset of those that label a single vertex of G. If ¢t 2
T(FVYRY) [ T(FVRY), then 7(¢) denotes m(val(t)) and 71 (t) denotes m (val(t)).
Aterm ¢t in T(FVYRY [T (FVYRY) is a special VR-term if it satis..es the following
conditions:

1) 7)) § 71(%) W 29 for every subterm t° of ¢ (we consider ¢ as
one of its subterms),

2) if t; ©t, is a subterm of ¢, then «(t1) \ w(t2) 1 F2g,
3) for every relabelling relab;, occurring in ¢, we have h(?) = 2,

=1
4) for every operation dﬂ'cimb,adda,b,addff"p that occurs in t, we
have a & ? and b & 2,

5) the constant symbol ? has no occurrence in t¢.

If C is a..nite set of port labels, we denote by SpT (FYRY) and SpT'(FYRY)
the sets of special VR-terms in T(FYRY) and in T(FYRY) respectively. The
special tree-width of a graph G, denoted by sptwd(G), is the least integer k such
that such that G = wval(t) for some term ¢ in SpT (FYRY) [ SpT(FYRY) such
thatj C j f?gj= k+ 1. Since we identify a graph with a p-graph whose vertices
are labelled by ?, the set C' must always contain ?, except if G is the empty
graph. The comparison with tree-width will justify the "+1" in the de..nition.
The special tree-width of an empty graph is j1, that of a graph consisting of
loops and isolated vertices is 0. Since the sets w(¢) and 7;1(¢t) are computable
inductively on the structure of a term ¢, the sets SpT(FYRY) and SpT (FYRY)
are regular.

Example 16 : Trees

Trees have special tree-width 1. To prove this, we let C := £?2,1,29. An
undirected tree with one distinguished node called its root, is made into a p-
graph as follows: the root is labelled by 1, all other nodes by ?. Let 73,7, be
two such trees, de..ned by terms t1,t, 2 SpT'(FYRY). Then, we let T := Ty nT5
be de..ned by the term
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t.= relabzi e (add 1’2(151 © relabli! 2(t2))) 2 SpT(FC\;/Ru).

This tree is built as the disjoint union of the trees 77 and 7% augmented with
an undirected edge between their roots, and the root of 7' is de..ned as that of
T,. Every rooted and undirected tree is generated by n from the trees reduced
to isolated roots, that are de..ned (up to isomorphism) by the constant symbol
1. Hence, every rooted and undirected tree is de..ned by a term in SpT(FYRY).
One can forget the root by applying the operation relab; ;u ».

We now consider tree-decompositions. A rooted and directed tree T is always
directed from the root towards the leaves. For two nodes x and y, weletz -+ y
if and only if y is on the directed path from the root to z.

De..nition 17 : Special tree-decompositions.
A tree-decomposition (7', f) of a graph G is special if it satis..es the
following condition, in addition to the three conditions of De..nition 6:

4) For each vertex z, the set fil(z) is a directed path in T.

Proposition 18 : The special tree-width of a graph is the minimal width of
a special tree-decomposition of this graph. There are linear-time algorithms for
convertinga term ¢ in SpT(FYRY)[SpT(FYRY) into a special tree-decomposition
of width j C j f2g]j il of the graph val(t) and vice-versa.

Proof: From terms to decompositions. We will de..ne for every term ¢
in SpT(FYRY) [ SpT(FYRY) a special tree-decomposition S(t) of the graph
G = cval(t), the boxes of which have at most j C' j £?g j vertices. The proof
is by induction on the structure of t.

For every t, we will de..ne S(t) so that its root box consists of the vertices
of G that are not ?-ports. By the de..nition of special terms, each element of
C j f?g labels at most one vertex, hence the root box has at most j C j 79
vertices.

If ¢t = a, then S(t) has a single (root) box consisting of the unique
vertex of G.

If t = f(¢t1) where f is an operation that adds edges, then, we take
S() = S(t1).-

If ¢t = relab,(¢1) and (71, f1) := S(t1), we add to 73 a new node 7,
we link it to the root r; of 73 and we let r be the root of the new
tree T. We de..ne f as the extension of f; such that f(r) is the set
of vertices of G := val(t) that are not ?-ports. By the de..nition of
a special VR-term, we have f(r) i f1(r1). We obtain a special tree-
decomposition S(t) := (T, f) of G. (If h(a) & ? for every a & 2,
then f(r) = f1(r1) and we can take S(t) := S(¢1).)
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If t =¢1 ©ty, then we use (17, f1) := S(t1) and (13, f2) := S(t2) as
follows. We take the union of 77 and T, that we can assume disjoint,
we add a new node r, we link it to the roots »; and r, of Ty and 75,
we let r be the root of the new tree 7. We de..ne f as the extension
of f1 and f, such that f(r) := f1(r1) [ f2(r2). Hence, f(r) is the
set of vertices of G := val(t) that are not ?-ports and S(¢t) .= (T, f)
is a special tree-decomposition of G with the required property.

Since each box of S(t) is the root box of S(¢°) for some subterm ° of ¢, we
have a special tree-decomposition of G := cval(t) of width at most j C' j f2g j
il

From decompositions to terms. We now construct special VR-terms from
special tree-decompositions. We need some notation and a claim. Let C be a
..nite set of port labels that contains ?. Let (7', f) be a tree-decomposition of
agraph G and vy: Vs ¥ C j f?g be a mapping that is injective on each box.
We call such a mapping a proper coloring of (T, f). It is also a proper vertex-
coloring of G since every edge has its ends in a same box. For every node u
of T, we let T'/u be the rooted and directed subtree of T issued from wu, with
Nrpjy =Ffw 2 Np jw - pug. 1ts root is u.

We denote by G (u) the p-gragh (G (u)*, portg,y) where G(u)* is the induced
subgraph of G with vertex set  ff(w) j w 2 Nz,,9 and portg(,y(z) = y(z) if
z 2 f(u) and portguy(z) == ? if 2 2 Vg i f(u). Hence, G(u) is a p-graph
such that 7(G(w)) i 71(G(u)) 1 F?g. We have G = G(root7)*.

Claim: Let (7', f) be a tree-decomposition of width at most k£ j 1 of a graph
G and let C' 1 A be a set of cardinality £ + 1 that contains ?. There exists a
proper coloring v: Vg ¥ Cj £2g of (T, f). Such a coloring can be determined
in time O(jN7j). ©

Proof of the claim: Let G,C,T,f be as in the statement and Jg :
f(rooty) ¥ (C j f?g be any injective mapping. We will prove that the fol-
lowing holds for every v 2 Ny :

Every injective mapping 6 : f(u) ¥ C j f?g can be extended into
amapping v: Vgw) ¥ C i T2g that is injective on f(w) for each w
in NT/u-

The proof is by bottom-up induction on . If w is a leaf of T there is nothing
to prove. Otherwise, let uq,...,u, be the sons of w. For each of them one
can ..nd an injective mapping J; : f(u;) ¥ C j f?g that coincides with ¢ on
f(u;) \ f(u). By the induction hypothesis, it can be extended into ~; de..ned
oN Vi(us-

Then, the common extension  of these mappings ~; and of the mapping ¢ is
the desired coloring. This extension exists because if # 2 Ny, ., \ Ny, ., @ & j,
then = 2 f(w;) \ f(u) \ f(u;) by the connectivity condition (Condition 3) of
De..nition 6), and so v;(z) = v;(x) = d(x).
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It is routine work to construct a linear algorithm computing .=

Let (T, f) be a special tree-decomposition of a graph G of widthatmost £ j 1
and ~ be as in the claim. (We need not distinguish the cases of directed and
undirected graphs). We will construct terms ¢(u) that de..ne the p-graphs G (u)
(their port labels depend on ) so that: G = relabes; v > (G (rootr)) (where for

every subset B of C, we let relabp ;x> denote the composition, in any order,
of the operations relab, ;s » for all 62 B j £?g).

Let u have sons ug,...,u,, p . 0. We can assume that we have already
constructed the terms ¢(uq), ..., t(u,). We have:

G(u) = ADD(rE|abBli! ?(G(ul)) ©tto r6|abei [l ?(G(’UJP)) ©a; ©.. ©as)

where faq, ..., as0 := 7(G(v)) i (F?9 [ 7(G(u1)) L... [7(G(uy)), B;:=Ty(x)]
x 2 f(u;) i f(u)g foreachi =1,...p, and AD D is the composition of the edge
addition operations that create the edges (and loops) of G(u) that are not in the
graphs G(u1), ..., G(u,). Note that, since (7', f) is a special tree-decomposition,
the sets w1 (relab g, ; » 2 (G(u;))) are pairwise disjoint. Hence, we can de..ne:

t(u) = ADD(I"E'GbBl in ?(t(ul)) ©ttto relabei 1 ?(t(up)) ©a ©..0 as),

t(u) belongs to SpT (FYRY) [SpT(FYRY) and de..nes G(u).

The term relab¢ ;v > (¢(rooty)) de..nes G.

This construction can be done by a linear time algorithm, where the size of
theinputis jVo [ Eg [ Nrj.©

Proposition 19 : For every graph G we have:
1) twd(@) - sptwd(G) - pwd(G).
2) cwd(G) - sptwd(G) + 2.

Proof: The ..rst assertion follows from Proposition 18, and the second one
from De..nition 15.a

We will denote by STW D( - k) the class of directed and undirected graphs of
special tree-width at most k. Smoothing a vertex of degree 2 means contracting
any one of its two incident edges. (This de..nition excludes the case of a vertex
incident with a loop and with no other edge).

Proposition 20 : For each k, the class STWD(- k) is closed under the
following transformations:

1) Removal of vertices and edges,

2) Reversals of edge directions,

3) Addition and removal of loops incident with existing vertices,

4) Addition of edges parallel to existing edges,

5) Smoothing vertices of degree 2.
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Proof: The closure is clear for the transformations of types 1)-4) because
every special tree-decomposition of a graph is also a special tree-decomposition
of any graph transformed in these ways.

We now consider the smoothing of a vertex y of degree 2 with neighbour
vertices z and z in a graph G. Let (7, f) be a special tree-decomposition of G.
The intersection of the directed paths fil(z) and fil(y) is not empty and is
a directed path, and we let « be its minimal element with respect to - . We
let similarly v be the minimal element of fi%(2) \ fil(y). Since u and v are
on the directed path fil(y), they are comparable, say, u -, v . Let us now
contract the edge between x and y, that is, we delete y and make z adjacent to
z. This gives a graph G° such that Vgo = Vi  fyg. Then, we de..ne f by:

Fw) = (f(w) § Fyg) [ fxg for every w on the path in T from v to
u (including u and v),

f(w) = f(w) i fyg otherwise.

It is easy to see that (7, f') is a special tree-decomposition of G. In particu-
lar, z and z belong both to f’(v). The set f'i(x) is the union of the directed
path fil(z) and of the path from v to u, hence it is a directed path since u be-
longsto fi1(z). Hence, (T, f°) is aspecial tree-decomposition of G and its width
that is no larger than that of (7, f), which shows that sptwd(G") - sptwd(G).a

It follows from items 1) and 5) of this proposition that the class STW D(- k)
is closed under taking topological minors ([11]). It is not closed under taking
minors as we will see in Proposition 25 below. Topological minor inclusion is
not a well-quasi order on STW D(- k) as one might hope. It is not on the
simple undirected graphs in STWD(- 3): for each n _ 3, take the undirected
cycle C,, (with n vertices) and replace each of its edges by a Wheatstone bridge.
One obtains an in..nite set of graphs of special tree-width (and path-width) 3
that are pairwise incomparable for topological minor inclusion.

In the following proposition, pwd(L) denotes the least upper bound of the
path-widths of the graphs in L and similarly for the other notions of width.

Proposition 21 : The class of graphs of tree-width 2 has unbounded special
tree-width. For every set of graphs L:

pwd(L) < 1L =) sptwd(L) < 1L =) twd(L) < L and
sptwd(L) < L =) cwd(L) < 1,
whereas the converse implications do not hold.&

Proof : We will use the following claim.
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Claim : For every graph G, the special tree-width of G — = is equal to its
path-width.

Proof of the claim: Let (T, f) be a special tree-decomposition of G — &
of width k. We let P be the directed path fil(z). We claim that (P, f * P) is
a path-decomposition of G — o

For each vertex z of G, the directed paths P = fil(n) and fil(z) have a
nonempty intersection (because @ and x are adjacent), hence x 2 f(u) for some
u in P.

If y is another vertex of G that is adjacent to z, then P\ fil(y) is not
empty and contains some node v. Let uw and v be the -,-minimal nodes in
P\ fil(z) andin P\ fil(y) respectively. If u =wv, then the edges between
z and y have their ends in f(u). Otherwise, let us assume that v < v. Since
fil(@) \ fil(y) is not empty, it must contain v, and the edges between z and
y have their ends in f(v). The pair (P, f * P) satis..es also the connectivity
condition, hence it is a path-decomposition of G — & of no larger width than
(T, f). Since we have sptwd(G — 8) - pwd(G — ©) by Proposition 19, we have
an equality.o

For proving the proposition by contradiction, we assume that every graph
of tree-width 2 has special tree-width at most k. If 7" is any tree, then T' — &
has tree-width at most 2, hence special tree-width at most %, and path-width
at most k£ by the claim. It follows that 7', since it is a subgraph of 7" —#a, has
path-width at most &, but trees have unbounded path-width (see [11]), which
gives a contradiction.

The implications follow from Proposition 19. Trees have special tree-width
at most 1 (Example 16) and unbounded path-width. Graphs of tree-width 2
have unbounded special tree-width, hence the opposite implications are false.
The converse of sptwd(L) < L =) cwd(L) < A is false if L the set of cliques,
of maximal clique-width 2 and of unbounded tree-width and special tree-width.
o}

De..nition 22: Tree-partitions.
A tree-partition of a graph G is a pair (7, f) such that T is a rooted tree
with set of nodes Ny and f: Ny ¥ P(Vy) is a mapping such that:

1) Every vertex of G belongs to f(u) for a unique node w of T,

2) Every edge has its two ends in f(u) [f(v) for some nodes u, v of
T such that v is the father of w.

The width of (7, f) is de..ned as the maximal cardinality of a box, (no jl
here 1), and the tree-partition-width of a graph G (called strong tree-width in
[21]) is the minimal width of its tree-partitions. We denote it by ¢tpwd(G). The
wheels, i.e., the graphs C,, — s where C,, is the undirected cycle with n vertices
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have path-width (and special tree-width) 3 but unbounded tree-partition width
(see [1], [24]). MaxDeg(G) denotes the maximum degree of a graph G.

Proposition 23: For every graph G :

1) sptwd(G) - 2.tpwd(G) i 1,
2) sptwd(G) - 20(twd(G) + 1) Max Deg(G).

A set of graphs of bounded degree has bounded special-tree-width if and
only if it has bounded tree-width.=

By Proposition 20, we have even:

sptwd(G) - 20twd(G) + )M axDeg(Core(QG))

where Core(G) is the simple, loop-free and undirected graph obtained from
G by forgetting edge directions, removing loops and fusing parallel edges (inde-
pendently of their original directions).

Proof: 1) Let (7, f) be a tree-partition of G of width k. We will transform
it into a special tree-decomposition (77, f%) of G such that Ny = Npo and
f@) p ff(u) for every u 2 Np. We choose an arbitrary linear order - on
Np and we let 7° be the binary tree associated with 7" in the following classical
way:

if w is a node with sons ui, uy, ..., u,, such that u; < uy < ... < uy,
then we let u; be the left son of win 70 and, for eachi =1, ....p i 1,
we let u;41 be the right son of u;.

There are no other edges, hence T° is a tree with root rootr. The root has
no right son. For every u 2 Ny = N0, we de..ne:

) = f(w) if u=rootr,
(W) := f(u) [ f(w) if w is the father of u in T.

It is straightforward to verify that (7°, /%) is a special tree-decomposition
of G. Its boxes have at most 2k vertices, hence G has special tree-width at
most 2k j 1. Figure 1 shows a tree-partition (to the left, the letters A, B, C, ...
represent pairwise disjoint sets of vertices), and, to the right, the corresponding
special tree-decomposition. (The box of the node XY is X[ Y). Unless T has
rooty as single node, it can be delete from 7°. Hence our construction does not
add new nodes to the given tree T'.

2) For every graph G of tree-width and of maximal degree at least 1, we have
tpwd(G) - 5@wd(G) + 1)(7.MaxzDeg(G)/2 i 1)/2 by [24]. For these graphs,
we get sptwd(G) - 20(twd(G) + 1)MaxDeg(G) by the ..rst assertion. This

inequality is actually valid if G is empty or has only loops and isolated vertices.
o]

This result suggests a question:
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Figure 1. A tree-partition and the associated tree-decomposition

Which conditions on a set of graphs, other than bounded degree,
imply that it has bounded tree-width if and only if it has bounded
special tree-width?

Planarity does not since the graphs of tree-width at most 2 are planar but
of unbounded special tree-width. From this case, we can see that conditions
like excluding a ..xed graph as minor or being uniformly k-sparse for some &
do not either. All these conditions however, imply that, for simple graphs,
bounded tree-width is equivalent to bounded clique-width (see [6], Chapter 9).
Since bounded degree for a class of graphs is equivalent to excluding a star as
a subgraph, one might also try to ..nd such conditions expressed in terms of
excluded subgraphs.

Proposition 24 : Every graph of tree-width k£ is obtained by edge contrac-
tions from a graph of special tree-width at most 2k + 1. The class of graphs of
special tree-width at most % is not closed under taking minors for any k£ _ 5.

Proof: Every graph of tree-width & is obtained by edge contractions from a
graph of tree-partition-width at most £ + 1 (easy to check). The ..rst assertion
follows then from Proposition 23. The graphs of tree-width 2 are thus minors of
graphs of special tree-width at most 5. If for some k _ 5 the class SPTW D( -
k) would be closed under taking minors, then all graphs of tree-width 2 would
have special tree-width at most £. We know that this is not the case.o

Connected and biconnected components.
Proposition 25 : The special tree-width of a graph is the maximal special

tree-width of its connected components. It is at most one plus the maximal
special tree-width of its biconnected components. This upper bound is tight.

29



3 \ ) 7

8 910 1112 13
C L A \ Jd

Figure 2. The special tree-decomposition (7', f) of H.

Proof: The ..rst two assertions are easily proved by routine constructions
that we omit. In order to prove the last one, we de..ne a graph G whose special
tree-width is strictly larger than those of its biconnected components.

We let T be the rooted and directed tree with set of nodes fa, b, c,dg and
edgesa j¥ b,b j¥ candb ¥ d. We let Vy := [13] and f be the mapping:
Nt i¥ P(Vg) such that f(a) := f1,2,4,5,69, f(b) := 3,4,5,6,7g, f(c) :=
£3,4,8,9,10g9 and f(d) := f6,7,11,12,13g.We de..ne H as the simple undirected
graph that is the union of the cliques with vertex sets f(a), f(b), f(c) and f(d).
It is clear that H is a chordal graph with 4 maximal cliques of size 5. It has
tree-width 4 and also special tree-width 4: the pair (7, f) is a special tree-
decomposition of H (see Figure 2).

Every clique in a graph is contained in some box of any tree-decomposition
of this graph. It follows that any special tree-decomposition (73, f1) of H of
minimal width must have four nodes a1, b;,c1,d1 such that fi(a1) = f(a),
f1(b1) = f(b), fi(ax) = f(c) and fi(d1) = f(d). The tree 71 cannot have a
directed path containing b1, d;, a1 in this order because this would imply that
vertex 3 belongs to f1(d;) by the connectivity condition. By similar arguments,
we can see that 7; must have directed paths containing a1, b1, ¢; and aq, by, d1 in
this order and no directed path containing b1, c¢; and d; (in any order). Roughly
speaking, (7, f) is the only special tree-decomposition of H of width 4. This
fact is a key point for our construction.

We let H° be the isomorphic copy of H where each vertex i is made into
i' and (7% f°) be the corresponding "isomorphic" special tree-decomposition
of H’. We construct G from the union of # and H® by fusing vertices 7 and
7" (that is, we delete 7° and we connect 7 with the neighbours of 7 in H?).
The biconnected components of G are H and H' hence, G has tree-width 4. It
has special tree-width at most 5: Figure 3 shows a special tree-decompaosition
(T, % of G. Its box f®(a’) contains vertex 7 hence has 6 elements.

30



i &]°
e b
LYY Tl
8910 11 12 13 Jd
G L

[ 3| 4' 5r EI 1

% F, b‘
. a8 a1g 1
H 12"

13

R

Figure 3: The special tree-decomposition (7%, f¥) of G.

Assume that G has a special tree-decomposition (7%, f>) of width 4. It must
have nodes by, dp,ab, by, d5 such that fa(b) = f(b), f2(d2) = f(d), f2(ab) =
@) = f1°, 2", 4 5" 6%, f,(b%) = 3',4°,5° 6", 7g and fo(dp) := f6°,7,11°, 12,
13%. Since (1%, f») is a special tree-decomposition and by the connectivity con-
dition, T> must have a directed path containing by, do, b5 and d%. By the obser-
vation made above for H (which applies also to H'), we can see that we must
have b, before d, and B, before d5. But then we must also have a5 on this path.
We cannot do that without having 7 2 f,(a%). Hence, (7%, f») cannot exist and
G has special tree-width 5.2

Open question: The parsing problem.

Does there exist ..xed functions f and g and an approximation algorithm to
do the following in time O (n9®), where n is the number of vertices of the given
graph :

Given asimple graph G and an integer k, either it answers (correctly)
that G has special tree-width more than k, or it outputs special VR-
term witnessing that its special tree-width is at most f(k)?

Stronger requirements would be that f(k) = k, giving an exact algorithm
and/or the computation time O(g(k).n°) for some .xed ¢ instead of O(n9®).
Since by a result by Bodlaender (presented in detail in [12]) such an algorithm
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exists for tree-width, with f(k) = k and ¢ = 1, one can think that this algorithm
can be adapted to make it construct special tree-decompositions.

A directed path graph ([16], also called a rooted path graph in [2]) is the
intersection graph of a set of directed paths in a rooted and directed tree. It
follows from Proposition 18 that a simple, loop-free and undirected graph has
special tree-width at most % if and only if it is a subgraph of a directed path
graph with maximum clique size k. This characterization is similar to a clas-
sical characterization of graphs of tree-width at most k. Directed path graphs
can be recognized in polynomial time ([16]) and [2] investigates their possible
characterization by forbidden induced subgraphs. However, none of these works
gives a parsing algorithm or a characterization of SPTW D(- k) by forbidden
con..gurations.

6 Finite automata for monadic second-order
formulas with edge set quanti..cations

Our objective is to adapt the constructions of Section 4 to the model-checking of
CMS, graph properties for graphs de..ned by special VR-terms. We will obtain
..xed-parameter linear algorithms for graphs of bounded special tree-width given
by the relevant terms or decompositions.

De..nition 26 : CMS;, formulas and the encoding of assignments

In order to use CMS,-formulas, i.e., monadic second-order formulas with
edge set quanti..cations (and set cardinality predicates), we will represent a
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graph G by the relational structure dGe := Inc(G) of De..nition 9. If G is
undirected, then dGe := hWg [ Eqg,ingi where ing is the set of pairs (e, x)
such that e 2 E; and z is an end vertex of e. If G is directed, dGe =
hVe [ Ec,inia,in2ci where inig  (resp. in2g) is the set of pairs (e, x) such
that e 2 E¢ and z is the tail vertex of e (resp. its head vertex).

As in the proof of Theorem 13, we will use formulas with a particular *nor-
malized" syntax. They will be written without ..rst-order variables and universal
quanti..cations, with the "standard™ set variables X, ..., X,,, ... for denoting sets
of verticesand Y1,...,Y,,, ... for denoting sets of edges. In any subformula 9X, .9,
the formula 6 has no free variables in £X .1, ..., and similarly for 9Y,,.6. The
atomic formulas are of the forms edg(X;, X;), in(Y;, X;) (for undirected graphs),
in1(Y;, X;) and  inp(Y;, X;) (for directed graphs), and of course, X; X,
Y WY;, Z =3, Sgl(Z), Cardy,, (Z) where Z is X; or Y,. Their meanings, if
not already de..ned are as follows for a graph G:

in(Y;, X;) means that Y; and X are singletons, respectively fyg and
frg, and that (y,z) 2 ing,

and similarly for ini(Y;, X;) and ino(Y;, X;).

We now discuss the encoding of assignments in terms. Let ¢ be a special
VR-term and G be the concrete graph cval(t). Its vertices are the elements
of Occo(t) (they are leaves of t). Its edges are pairs (u, (z,y)), (u, fz,yg) or
(u, fxg) where w is a useful occurrence of an edge addition operation f (cf.
De..nition 2). Each such occurrence v creates a unique edge or loop because ¢
is a special VR-term. Hence, the useful occurrences of edge addition operations
can be used to represent edges. They form the set Occi(t). A reduced term
is a special VR-term such that all occurrences of edge addition operations are
useful. We will denote by RT'(FYRY) and RT(FYRY) the sets of reduced terms
in T(FYRYY and T(FYRY) respectively. If a special term is not reduced, it
can be transformed into a smaller equivalent reduced term by deleting the edge
addition operations that are not useful.

In order to encode X4, ..., X,,, Y1, ..., Y,,0-assignments, we will use, the sets

of operations Fy, 4" and Fy <™ instead of Fy ™ and FY"'™: the
set Fng("’m) is obtained from Fng(") by replacing every edge addition op-

eration f by the unary operations (f, w), for all w in £0,1g™ and similarly for
FVRu(n,m)
Pt .

We will use the projections pr, as in Theorem 13 and the projections pr!,

that delete the last s Booleans in the unary operations (f,w). It is clear that a
term ¢ty 2 T(F2RY™) such that ¢ is a special VR-term and the occurrences
of edge addition operations in ¢ are all useful, de..nes a concrete graph cval(t)
and an X3, ..., X,,, Y1, ..., Y,,g-assignment ~ such that v(X;) is a set of vertices
(for 7 2 [n]) and y(Y;) is a set of edges (for j 2 [m]).

We let RT(FYR ™) = prlil(priL(RT(FYRY)) p T(FYR™)  and
similarily for RT(Fy~“"™)) Whether a term ¢ in T(Fy ") is reduced or
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not, i.e., belongs or not to RT(Fng(mm)) does not depend on the Boolean
components of its constant symbols and unary edge addition operations. \We now
sketch the construction of an FyR%-automaton R that recognizes RT(FYR?).
Its set of statesis fAjA u C j 299 [ fErrorg. The meanings of these states
are described as follows for a term ¢ in T(Fng) (in a similar way as in as in
Table 1):

Py ., t 2 RT(FYRY)and A =71 (2),
Prrror » t 2 RT(FYRY).

The transition rules are in Table 3. All states except Error are accepting.
This automaton checks simultaneously that the given term is a special term and
that it is reduced.

Transition rules Conditions
?n;
al fag
relab,[A] ¥ h(A) j F?g | ifa,b2 A, a & b and
h(a) = (b)), then h(a) =2

add'°P[A] ¥ A a2 A
N, A Y A a,b2 A
©[A,B]Y ALB ANDB = ;

Table 3: The transition rules of R.

By replacing in this table every edge addition operation f by the unary
operations (f,w) for w 2 f0,1g™ and every constant symbol a by (a,w) for
w 2 f0,1g"™ , we obtain an automaton with the same set of states that recognizes
RT(FYR™)  similar constructions can be done for RT (Fy R ™),

If F is a ..nite subset of FVRY or of FVRY, then it is contained in FYRY or
in FYRY for some ..nite set C, and F¢™™) denotes the corresponding subset of
Fng("’m) or of FgRu("’m). Let us ..x such F (to simplify notation). For every
CMS,; formula ¢ with free variables in £X1, ..., X,,, Y1, ..., Y,,g written with in if
it concerns undirected graphs, or iny and in, if it concerns directed graphs, we
de.ne Ly (X1, . Xn¥i.. V) 8 the set ftoy 2 RT(F(™) j (deval (t)e, 7) = ¢9.
The language Lp(x;,. . x,,v1,.,vm) CaN be de..ned similarly for a graph property
P independently of its logical expression.

Theorem 27: Let F be a ..nite subset of FVRd or of FVRUY, For every CMS,
graph property P(Xy, ..., X,,,Y1,...,Yy,), the language Lpcx,  x.vi..vm) IS
regular and an F'-automaton recognizing it can be constructed from a CMS,
formula that de..nes P.

Proof: As for proving Theorem 13, we will construct by induction on
the structure of ¢ an F-automaton A, (x,,.. x,.v:,..v,,) that recognizes the
language LWv(X17-~-7Xn7Y1~--~7Ym)'
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1) If pis o1 Ny Or o1 o, then one uses the classical constructions of
(product) automata for intersection and union since we have

1702 (X 10000 X Y1y Vo) = Liog (X100 X0 Va0 V) N Lion (X1 X Y1000V )

and similarly for _ with [. If ¢ is Z¢1, we construct an automaton that

recognizes L:Lpl,(Xl,...,Xn,Yl,...,Ym) = RT(F(”J”)) i Lgpl,(Xl,...,Xn,Y]_,...,Ym,)'
2) If pis9X,.0, then we have:

Lo xa, o Xnzava, vy = Pl (xq, X0, Y1, Vi) )

and if ¢ is 9Y,,,.0, we have:
(X are X Y Yims) = PTG, (X g X Ve Vi)

It is straightforward to obtain from the deterministic F(™™)-automaton
that recognizes Ly (x, . . x,.v1,.,vm) &nondeterministic automaton for L, (x,
X, ,Yy,....Y,,), that we determinize to get the desired one.

3) It remains to construct automata for the atomic formulas. Most of the
constructions are straightforward from the de..nitions, as in Theorem 13. We
only consider the atomic formulas edg(X;, X2) and in(Y1, X1).

The automaton AY for edg(X,, X5) is derived from the automaton A of
Theorem 13. Its set of states is (we name its states as those of A):

S = f0, Error, Okg [ f1(a), 2(a), a(0),ab(0) ja,b 2 C j ¥2gg.

The meanings of these states are as in Table 1 (Theorem 13) where Ok
replaces all the states a(:z) and ab(¢) for ¢ _ 1 because here, we do not count
edges, we only want to check the existence of at least one edge from the vertex
in V3 to the one in V5. The number of states is k2 +3(k+ 1) where k = jC j F?g;.
The transition rules are in Table 4. The missing transitions yield Error. Here
is an example: relab, v »[ab(0)] ¥ Error. The unique accepting state is Ok.

However, the automaton A’ has been constructed so as to work correctly on
reduced terms, not on all terms. The automaton A.gq4x,,x5) i then obtained
by a product with the one that recognizes reduced terms, so that it recognizes
L(AY) \RT(Fng(Z’O)). Its number of states is thus 2*.(k% + 3k + 3) instead of
k? + 3k + 3. In the following remark, we will discuss this point.

We now construct an automaton B for ini(Y1, X1), intended to work on
reduced terms. Its set of states is :

S .= f0,Error,Okg [ fl(a) ja2 C j f?2gg p S°.

Their meanings are described in Table 5, where W denotes the value of Y;.
The unique accepting state is Ok. As examples of transitions to Error we give:

©[Ok,1(a)] ¥ Error,
(add!°? 1)[1(b)] ¥ Error if b & a, and
(éﬂ%mb,l)[Ok] ' Error.
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Transition rules

Conditions

210
(a,00) ¥ 0

(a,10) ¥ 1(a)
(a,01) ¥ 2(a)
(a,11) ¥ a(0)

relab,[0] ¥ O
relaby[i(a)] ¥
relab;[a(0)] ¥

i(c)
c(0)

i 212
=h(a) & ?,d=h(b) & 2,

relab,,[ab(0)] ¥ cd(0)
add'P[s] ¥ s s & a(0)
addl"o”[a(O)] Y Ok

a{bldu o[s] 1 5 & ab(0)

J, b[ab(O)]

1
©[1(a),2(b)] ¥ ab(O)
©[2(b),1(a)] ¥ ab(0) | (possibly a = b)
©[s,0] ¥ s all s
©[0,s] ¥ s

Table 4: The transition rules of A°.

State s Property P,
0 Vl = Wl =,
1a) | Vi="Fug, Wi=; portean(v) =a
Ok V1 = fuvg, Wy = fegd, in1qqm)(e,v)
Error All other cases

Table 5: Meanings of the states of B.

Transition rules

Conditions

2010
(a,0) ¥
(@l 1 (

)
relab,[0] ¥ O
relab,[Ok] ® O

relabp[l(a)] ¥ 1(b)

b= h(a) & ?

(add°? 0)[s] ¥ s
(add'°? D)[1(a)] ¥

all s

(zﬂjda 50)s] ¥ s
g, ,. )[1(a)] ¥

all s

©[s,0] ¥ s
©[0,s] ¥ s

all s

Table 6: The transition

36

rules of B.




Remark 28 : The above construction associates with each subformula
(X1, ..., Xn,Y1,...,Yy,,) of the considered formula ¢ an automaton Ay (x,,... x,,
Yi,..,Ym) thatrecognizes only reduced terms. This means that each of these au-
tomata repeats the veri..cation that the input term is reduced. One can actually
postpone this veri..cation to the very end.

Assume that for each atomic formula a(X;, ..., X,,Y1,...,Y;,), we have an

automaton B, (x, . x,.vi,.v.) Such that

Lo (X1 X1 ¥im) = LB (X1, X0 ¥1,e i) NRT(E ),

This means that B, (x1,... x,.,v1,...v.) IS CONstructed so as to works correctly
on reduced terms, and this is what we did above for A’ and B.

Let us build B, (x;,... x..v1,...,v;n) TOr every all formulas ¢ by applying the
general inductive construction described above with, for the negation:

L(B:m,(xl ..... Xn,Y1,..., Ym)):T(F("’m))i L(Bm,(xl ..... Xn,Y1 ...,Ym))~

At the end, for the input formula (X, ..., X,,Y1,...,Y,,), we make the
restriction to reduced terms by de..ning A, (x1,...x,,v1,.., v,y IN such a way
that:

LA, (xq, X, vy v)) = LBy (xy.. X, vy, v)) \ RT (™),

Hence, we use only once and at the end, the restriction to reduced terms.
We claim that L(A, (x,,..x,.v1,..v.)) = Lo(xy,..,x,,v1,....Y,,)- Thisis true by
the hypotheses on the automata B, associated with the atomic formulas and by
the following observations:

(L\NR)\(M\R)=({L\M)\R),
(LNR)L(MN\R)=((LLM)\R),
Ri(L\N\R)=(T i L)\R,

pr(L\ RO\ R = pr(L°) \ R,

where L, M, R, .. aresetssuch that L,M,RuT and L', R* p 7°, and pr
is a mapping from 7° to T such that R’ = pr i(R).

However, the automaton L(B,) associated with a sentence ¢ is su@cient if
all its inputs are reduced terms. This may be guaranteed by a preprocessing
algorithm and the advantage is that B, is smaller than A,. A crucial di¢culty
in the implementation of this method comes from the sizes of the constructed
automata. &
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Tree-width versus special tree-width We now explain why the construc-
tions of automata are easier for graphs of bounded special tree-width than for
those of bounded tree-width.

De..nition 29 : Special HR-terms.

We let FHRY pe the set obtained from FVRY by replacing the operation
© by //. This operation symbol will be interpreted as follows: for directed
p-graphs G and H such that, as in De..nition 15, n(G) i m1(G) 1 f?g and
m(H) i m(H) 1 29, we let G//H be obtained from G © H by the fusion of
any two vertices having the same port label ¢ & ?. An HR-term isa term ¢ in
T (FHRdY such that:

1) 7" § 71" p £2g for every subterm ¢ of ¢,
2) for every relabelling relab;, occurring in ¢, we have h(?) = 2,

=1
3) for every operation é&?}layb, addﬁj’"p that occurs in ¢, we have a & ?
and b & 2,

4) the constant symbol ?? has no occurrence in ¢.

We denote by HT (FHRY) the set of HR-terms. (The accronym HR refers
to hyperedge-replacement graph grammars; see Chapter 4 of [6]). The notations
FYRd and FYR9C™ extend in the obvious way, yielding sets like HT(Fi 2"
that are, clearly, regular languages. These de..nitions also extend to undirected
graphs, giving FHRY | pHRu  pHRUCLM et Every graph is the value val(t)
of some term HR-term ¢, using a large enough set of labels.

Proposition 30 : The tree-width of a graph is the least integer j C j 29 ]
i 1 such that this graph is the value of a term in HT'(FHRY) [ HT (FHRY). There
are linear-time algorithms for converting a term ¢ in HT(FHRY) [ HT (FHRY)
into a tree-decomposition of width j C j f2g j §1 of the graph val(t) and
vice-versa.

Proof: The proof is an easy variant of the proof of Proposition 18. It is
done in detail in [6], Chapter 2 (with slightly diaerent de..nitions).=

Let us go back to De..nition 26, where we discuss the encoding of assignments
in terms. Let ¢ be an HR-term and G be a concrete graph isomorphic to
val(t). Its edges are in bijection with the set Occy(¢) de..ned as for special VR-
terms. However, its vertex set is isomorphic to the quotient of Occo(t) by the
equivalence relation Y% expressing that two leaves = and y in Occo(t) have a
least common ancestor u that is an occurrence of //, and that port,(z,w) =
port(y,u) & 2. This implies that they are fused at some stage and yield the
same vertex of G. Hence, we have no nice bijection between the vertices of G and
particular occurrences of symbols in ¢. A set X | Occo(t) represents correctly
a set of vertices of G if and only it is saturated for % (is a union of classes
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of this equivalence). The automata analogous to By, (x;,... x,,v1,...,v.m) Would
have to check this saturation property, which would increase substancially their
numbers of states. (Taking the leftmost occurrence of each equivalence class of
Y as representation of the corresponding vertex would not make things easier).

There is actually another possibility for representing vertices in terms. Let
us assume that G is a concrete graph (and not a concrete p-graph), hence that
its vertices are all ?-ports. This implies that each vertex of G corresponds
to a unique occurrence of an operation relab, ;s ». Such occurrences, let us
denote their set by Occ"i(t), can be chosen to represent the vertices. In this
case, an edge will be represented by a node in the term that is below the nodes
representing its ends. This is not a di¢culty for constructing automata for the
atomic formulas in(Y1, X1),in1(Y1, X1) and inp (Y1, X1) like B in the proof of
Theorem 27. These automata have also k£ + 3 states (where £ =j C j 29 j),
but the construction of automata for edg(X:, X>) is more complicated. Since
edg(X1, X?) is equivalent (for directed graphs) to 9Y; (in1 (Y1, X1)Nina (Y1, X2)),
the general construction can be used, and it produces an automaton with 20 ¢
states. (The term k2 is due to the use for ~ of a product of two automata,
and the exponentiation is due to the determinization that is needed because of
9Y1). However, every deterministic automaton for edg(Xi, X2) must have at
least 2¥(i1) states (Section 6.3.5 of [6]). Hence, with this representation, an
atomic formula like edg(X1, X>) needs already fairly "large” automata.

Question: Does there exist alternative encodings of tree-decompositions
of width & by terms (or labelled trees) for which the automata as-
sociated with edg(Xl,Xz), z'n(Yl,Xl),inl(Yl,Xl) and Z.nz(Yi_,Xl)
have, say, O(k?) states?

7 Conclusion

We have extended the notion of clique-width to graphs with multiple edges.
Without introducing edge set quanti..cations, we have extended monadic second-
order logic so as to take into account the multiplicity of edges. We have gen-
eralized the usual constructions of automata and obtained a ..xed-parameter
tractable model-checking algorithm with respect to the parameter consisting
of clique-width and edge-thickness. The problem remains open of eliminating
edge-thickness from the parameter, which amounts to ..nding a ..xed-parameter
tractable parsing algorithm for clique-width where clique-width is the only pa-
rameter.

The constructions of automata used for establishing ..xed-parameter tractabil-
ity results for monadic second-order sentences are di¢cult if not impossible in
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practice, because of the sizes of the de..ned automata. This di¢culty is not avoid-
able for general monadic second-order formulas as proved by [15, 22] and [23].

But even for a basic property like connectedness, the minimal F[\Q]R”-automaton

has more than 22“/* states (Chapter 6 of [6]). An attractive possibility is to
replace the "compilation™ of automata by the computation of the needed tran-
sitions for each input term. Such fy-automata are introduced and used in [7]
and studied in [8]. The notion of special tree-width has been introduced in or-
der to facilitate the speci..cation of such automata. The corresponding parsing
problem, presented at the end of Section 5, is open.

Acknowledgements: | thank H. Bodlaender, M. Kanté, M. Rao and the
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