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Abstract

In order to obtain fixed-parameter tractable model-checking algorithms
for monadic second-order graph properties that depend on the multiplic-
ities of edges, we extend clique-width to graphs with multiple edges, and
we extend counting monadic second-order logic accordingly. For monadic
second-order graph properties that need edge set quantifications in their
logical expressions, we define a graph complexity measure called special
tree-width. Its value is between path-width and tree-width. We study its
main properties and we explain why it is better that tree-width.

1 Introduction

It is well-known that the model-checking problem for graph properties ex-
pressed by monadic second-order sentences with edge set quantifications is fixed-
parameter tractable for tree-width as parameter ([DF], [FG]) and that, for graph
properties expressed by the (basic) monadic second-order sentences without edge
set quantifications, it is fixed-parameter tractable (by [CMR] together with the
approximate parsing algorithm of [HliOum]; see [Cou], Chapter 6).
Because of the usually considered representation of graphs by relational

structures, the graph properties of the second type cannot take into account
the multiplicity of edges. In this article, we extend clique-width, defined up to
now for simple graphs only, to graphs with multiple edges. We use the same
"clique-width graph operations" as for simple graphs, but we let them act on
graphs with multiple edges. We also extend the representing logical structures
and, accordingly, the vocabulary of monadic second-order formulas not using
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edge set quantifications. The known fixed-parameter tractable algorithm ex-
tends provided the input graph is given with a term (i.e., its decomposition)
witnessing that its clique-width is bounded by a given integer k. The idea gov-
erning this extension of monadic second-order logic is that, when objects have
no identity, we can only count them. And if we use a computing device that
does not allow arbitrary large integers, we can only count them up to a threshold
or modulo some fixed integer.
The fixed-parameter monadic second-order model-checking algorithms for

tree-width or clique-width as parameters are based on constructions of finite
automata on terms. It appears that these constructions are more complicated
for the terms related to tree-width (these terms represent tree-decompositions
algebraically) than for those related to clique-width. Analysing this difficulty
lead us to the definition of particular tree-decompositions called provisionally
special tree-decompositions, that yield the notion of special tree-width. This
parameter, that is new to our knowledge (but it may be equivalent to some
other one) takes values between path-width and tree-width. Graphs of tree-
width 2 have unbounded special tree-width. Special tree-width can be defined
in terms of the generalized "clique-width operations" that operate on graphs
with multiple edges. The corresponding constructions of finite automata from
monadic second-order sentences using edge set quantifications are as easy as in
the case where clique-width is the intended parameter.

All necessary definitions will be given, but we will frequently refer to defin-
itions (of secundary importance) and to the constructions developped in detail
in the book [Cou]. We will use as much as possible the notation and terminology
of this book, but this article introduces definitions that will not be included in
it. Section 2 introduces the clique-width of graphs with multiple edges, Section
3 defines the relevant extension of counting monadic second-order logic. The
applications to model-checking are in Section 4. Special tree-width is defined
and studied in Section 5. Its application to model-checking is in Section 6 where
we also explain why special tree-width is better than tree-width in this respect.
Section 7 is a short conclusion.

2 Graphs algebras

All graphs and relational structures will be finite.

Definition 1 : Graphs

We will consider graphs that can have loops and multiple (or parallel) edges.
We will not consider a undirected graph as a directed graph such that each edge
has an opposite edge.
A graph G is a triple (VG, EG, vertG) with vertex set VG, edge set EG and

incidences defined by the mapping vertG such that vertG(e) is the set of end

2



vertices of an edge e if G is undirected (it has a single element if e is loop),
and vertG(e) is the pair (x, y) if G is directed and e links x to y. The notation
e : x−Gy means that e is an undirected edge that links x and y, and e : x −→G y
means that e is a directed edge from x (its tail) to y (its head). In both cases,
we have x = y if e is a loop. The graph G is simple if vertG(e) 6= vertG(e

0) for
e 6= e0. We let Spl(G) be the simple graph obtained from G by fusing any two
parallel edges, that is, any two edges e and e0 such that vertG(e) = vertG(e

0).
We can also describe Spl(G) as obtained by iterating the removal of one element
of a pair of parallel edges until one gets a simple graph. Hence, Spl(G) can be
seen as a subgraph of G.
An abstract graph is a graph up to isomorphism, i.e., formally, the isomor-

phism class of a (concrete) graph. The reader will find the (obvious) definitions
in Chapter 2 of [Cou].

Definition 2 : Operations on graphs.
Let A be a countable set of port labels containing the set N of nonnegative

integers and the special symbol ⊥. Unless otherwise specified, the definitions are
the same for directed and undirected graphs. A graph with ports, or a p-graph
in short, is a pair G = (G◦, portG) consisting of a graph G◦ and a mapping
portG : VG◦ → A. A vertex x is an a-port of G if portG(x) = a. The type π(G)
of G is the set portG(VG) of port labels of its vertices. (We denote also VG◦ by
VG, and similarly for other items).
If G andH are p-graphs, we say that G is a subgraph of H if G◦ is a subgraph

of H◦ and portG is the restriction of portH to VG (so that π(G) ⊆ π(H)).
Every graph will be considered as a p-graph, all vertices of which are ⊥-ports

(hence, ⊥ is a default port label).¤

Our next objective is to define signatures of graph operations, more precisely,
of operations that act on directed and undirected p-graphs.

Disjoint union. Two graphs G and H are disjoint if VG ∩ VH = ∅ and EG ∩
EH = ∅, so that one can take their union in an obvious way. For disjoint p-
graphs G and H, we let G ⊕ H be the union G◦ and H◦ equipped with
the port mapping portG⊕H := portG ∪ portH . If G and H are not disjoint, we
replace one of them by an isomorphic copy disjoint from the other. In this way,
we obtain a well-defined binary operation on abstract p-graphs. Clearly

π(G⊕H) = π(G) ∪ π(H).

Edge addition. Let a, b ∈ A, with a 6= b. For every directed p-graph G, we
let
−−→
adda,b(G) be the p-graph G0 such that VG0 := VG, EG0 is EG to which we

add one edge e from x to y for every x, y ∈ VG such that portG(x) = a and
portG(y) = b (so that vertG0(e) := vertG(e) if e ∈ EG and vertG0(e) := (x, y)
if e ∈ EG0 −EG is as above), and portG0 := portG.
For adding a loop, we use the operation add loopa that adds a loop at each

vertex x such that portG(x) = a.
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For adding undirected edges, we use the operation adda,b defined similarly as−−→
adda,b. There is no difference between a directed and an undirected loop, hence,
the operation add loopa will also be used to add loops to undirected graphs. We
have:

π(
−−→
adda,b(G)) = π(adda,b(G)) = π(add loopa (G)) = π(G).

Note that
−−→
adda,b(G) = G if a or b does not belong to π(G), and similarly for

adda,b, and for add
loop
a if a /∈ π(G).

Port relabelling. Let h : A→ A is a mapping that is the identity outside of a
finite subset of A. We define relabh as the unary operation such that relabh(G)
is the p-graph G0 such that VG0 := VG, EG0 := EG, vertG0 := vertG and
portG0 := h ◦ portG. We have :

π(relabh(G)) = h(π(G)).

Clearly, relabh ◦ relabh0 = relabh◦h0 for all mappings h and h0. A particular
case deserves an easier notation: for a, b ∈ A, a 6= b, we let relaba→b denote
relabh where h : A → A is such that h(a) = b and h(c) = c for every c ∈ A,
c 6= a. We have relaba→b(G) = G if a /∈ π(G). We can express a composition of
relabellings relaba1→b1 ◦relaba2→b2 ◦ · · ·◦relabak→bk as a single operation relabh,
and vice-versa.
If C ⊆ A and h : C → A is the identity outside of a finite subset of C

(which holds in particular if C is finite), we also denote by relabh the operation
relabh0 where h0 agrees with h on C and is the identity outside of C. For each
set C ⊆ A, we denote by [C → C]f the set of mappings h : C → C such that h
is the identity outside of a finite subset of C.

Basic graphs. The constant symbol a will denote the abstract p-graph with
a single vertex that is an a-port. The symbol ∅ will denote the empty graph.
We have π(a) = {a} and π(∅) = ∅.

The two VR algebras of p-graphs. We obtain two countably infinite sig-
natures, the first one acts on directed p-graphs:

FVRd := {⊕,−−→adda,b, add loopa , relabh,a,∅ | a, b ∈ A, a 6= b, h ∈ [A→ A]f}

and the second one on undirected p-graphs:

FVRu := {⊕, adda,b, add loopa , relabh,a,∅ | a, b ∈ A, a 6= b, h ∈ [A→ A]f}.

We let GPd denote the FVRd-algebra with domain GPd defined as the set of
all (abstract) directed p-graphs, and we let GPu be the corresponding FVRu-
algebra of undirected p-graphs with domain GPu. We call them the VR algebras.
(There are "historical reasons" for this terminology: see [Cou], Chapter 4).
Each term t over FVRd (resp. over FVRu) evaluates into a directed (resp. an

undirected) concrete p-graph denoted by cval(t). Its set of vertices is Occ0(t),
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the set of occurrences in t of the constant symbols a for a ∈ A, and its edges
are the pairs (u, (x, y)) such that u is an occurrence of an operation

−−→
adda,b that

creates an edge from x to y, the pairs (u, {x, y}) such that u is an occurrence of
adda,b that creates an undirected edge between x and y and the pairs (u, {x})
such that u is an occurrence of addloopa that creates a loop incident with x. The
formal definition of cval(t), using an induction on the structure of t, is clear
from the definitions of the operations. We denote by val(t) the corresponding
abstract p-graph (the isomorphism class of cval(t)). Two terms are equivalent
if they evaluate into the same abstract p-graph.
The signatures FVRdC and FVRuC for C ⊆ A are defined by restricting a, b

to belong to C and h to belong to [C → C]f in the above definitions. It is
easy to show (by induction on t) that π(val(t)) ⊆ C for every t ∈ T (FVRdC ) ∪
T (FVRuC ). Every term in T (FVRdC )∪T (FVRuC ) that denotes a nonempty p-graph
is equivalent to a term in T (FVRdC − {∅}) ∪ T (FVRuC − {∅}).

The two VR algebras of simple p-graphs. The following facts are clear
from the definitions:

Spl(G⊕H) = Spl(G)⊕ Spl(H),

Spl(
−−→
adda,b(G)) = Spl(

−−→
adda,b(Spl(G))),

Spl(adda,b(G)) = Spl(adda,b(Spl(G))),

Spl(add loopa (G)) = Spl(add loopa (Spl(G))),
Spl(relabh(G)) = relabh(Spl(G)),
Spl(a) = a and Spl(∅) = ∅.

We also have two algebras of simple p-graphs, denoted by GPsd and GPsu
(with the superscript s to distinguish them from those of GPd and GPu); the
disjoint union and the relabellings transform simple graphs into simple graphs;
the operations that add edges are defined as follows as operations of GPsd and
GPsu:−−→
addsa,b(G) = Spl(

−−→
adda,b(G)),

addsa,b(G) = Spl(adda,b(G)),

adds,loopa (G) = Spl(add loopa (G)).
To take an example, the term t = adda,b(adda,b(a ⊕ b) ⊕ b) evaluates in

GPsu into the simple graph b− a− b (with 2 edges) and, in GPu, into the
graph b = a− b (with 3 edges).

Note that the signatures of the algebras GPsd and GPd on the one hand
and of GPsu and GPu on the other are the same, but the terms over these
signatures are evaluated in different ways. We let sval(t) be the simple graph
that is the value in GPsd or in GPsu of a term t ∈ T (FVRdC )∪T (FVRuC ). Clearly,
sval(t) = Spl(val(t)).

Definition 3 : Clique-width.

5



The clique-width of a p-graph G is the minimal cardinality of a set of labels
C such that G is the value of a term t in T (FVRdC ) ∪ T (FVRuC ). This number
is denoted by cwd(G). It is easy to prove that every p-graph G is the value of
some term in T (FVRd) ∪ T (FVRu) and that cwd(G) ≤| VG | . A simple graph
can be defined as val(t) for some term t ∈ T (FVRdC )∪ T (FVRuC ), but it can also
be defined as sval(t0) for such a term t0, that might use a smaller set of labels
C. However, this is not the case:

Proposition 4 : If G = sval(t) for some term t ∈ T (FVRdC ) ∪ T (FVRuC ),
then G = val(t0) for some term t0 ∈ T (FVRdC ) ∪ T (FVRuC ). For every graph G,
we have cwd(Spl(G)) ≤ cwd(G), and the inequality may be strict.

Proof : Let G = sval(t) and H := val(t). If H is simple, we take t0 := t.
Otherwise H has at least two edges e and e0 such that vertH(e) = vertH(e

0).
They are specified by edge addition operations,

−−→
adda,b at an occurrence u and

−−→
addc,d at an occurrence v that is an ancestor of u in the syntactic tree of t.
The pair (c, d) may differ from (a, b) because of possible relabellings on the path
between u and v in this tree. Since e0 is parallel to e, all edges created by−−→
adda,b at u have parallel edges created by

−−→
addc,d at v. Hence, if we replace−−→

adda,b at u by the identity (say by relabId), we obtain a term t1 such that
sval(t1) = sval(t), and such that val(t1) has less edges than val(t). By repeating
this transformation step (that does not introduce new port labels) finitely many
times, we obtain a term t0 ∈ T (FVRdC ) ∪ T (FVRuC ) such that val(t0) = sval(t).

Since every term t ∈ T (FVRdC ) ∪ T (FVRuC ) that evaluates into a p-graph G
can be transformed into t0 ∈ T (FVRdC ) ∪ T (FVRuC ) that evaluates into Spl(G),
we have cwd(Spl(G)) ≤ cwd(G). Here is an example such that cwd(Spl(G)) <

cwd(G). We let H := val(t) where t :=
−−→
adda,b(

−−→
adda,b(a ⊕ a ⊕ b ⊕ b)) and G

be H minus one edge. We have Spl(G) = Spl(H) = val(
−−→
adda,b(a⊕ a⊕b⊕b)),

hence cwd(Spl(G)) = 2. It is clear that G = val(s) where s is the term

−−→
adda,b(relabc→a(

−−→
addc,b(

−−→
adda,b(a⊕ b)⊕ b⊕ c))),

and it is not hard to check that no term using only 2 labels can define G.
Hence, cwd(G) = 3. ¤

Clique-width has been defined in [CouOla], [Cou], [CMR] for simple graphs
only, as the minimal cardinality of a set C such that G = sval(t) for some term
t ∈ T (FVRdC ) ∪ T (FVRuC ). The first assertion of Proposition 4 shows that the
new definition agrees for simple graphs with the usual one.
Another technical point is discussed in [Cou], Chapter 2: the clique-width of

simple graphs can be defined by replacing in the signatures FVRdC and FVRuC

the operations relabh by the particular operations relaba→b for a, b ∈ C (as in
the original definition of [CouOla]). The resulting values of clique-width are
the same with the two definitions. (This is not completely trivial because if

6



C = {a, b} and h exchanges a and b, then relabh is not a composition of the
operations relaba→b and relabb→a.) The proof given in [Cou] works as well for
terms denoting graphs with multiple edges (as it does not concern the operations
that add edges, but only the relabellings).

The notion of clique-width can also be defined for simple (L,Λ)-labelled
graphs, i.e., for graphs such that every edge has a unique label from a fixed
finite set Λ and every vertex has a possibly empty set of labels from a fixed
finite set L disjoint from A. We refer the reader to [Cou] for the detailed
definitions. We only recall that clique-width is independent of the labelling of
vertices. The extension of the above definitions to (L,Λ)-labelled graphs with
multiple edges is straightforward and does not offer any particularly interesting
question.

The following proposition shows that adding parallel edges to a given simple
graph may increase its clique-width in an unbounded way.

Proposition 5 : There is no function f such that cwd(G) ≤ f(cwd(Spl(G)))
for every graph G without any triple of parallel edges, hence a fortiori, for every
graph G.
Proof : The proof will use the following claim:

Claim: Let K and H be two simple undirected and loop-free graphs such
that H is a subgraph of K and VH = VK ; let K + H be the graph obtained
from K by adding a parallel edge to every edge of H. Then we have cwd(H) ≤
cwd(K +H).¤

Let us illustrate the definition. LetK be the graph (the path): x−y−z−u
and let H be x − y z − u. Then K +H is the graph x = y − z = u with
parallel edges between x and y, and z and u.

Proof of the claim: We let K+H be defined by a term t in T (FVRuC ) such
that C has the minimal cardinality, i.e. | C |= cwd(K +H). We can assume
that each occurrence u of an operation adda,b is useful in t, i.e., that it creates
at least one edge. This is equivalent to the condition that a and b belong to
π(val(t/u1)), where t/u1 is the subterm of t issued from u1, the son of u. We
can assume this condition because if an occurrence u of an operation adda,b is
not useful, we can replace adda,b at u by relabId, the identity operation (or we
can delete it), and we get an equivalent term written with no other port labels
than those of C.
If u is an occurrence of adda,b and v is an occurrence of addc,d, we write

u @ v if and only if u is below v in t (hence u 6= v) and the relabellings on the
path in t between u and v (composed bottom-up) transform {a, b} into {c, d}.
The second condition is equivalent to the fact that the operation addc,d at v
creates an edge parallel to some edge that has been created by adda,b at u. It is
clear that each edge created by adda,b at u gets by addc,d at v a parallel edge.
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It is also clear that two parallel edges of K +H are created by such operations,
at some u and v such that u @ v. It follows from these observations that there
are no 3 occurrences u, v, w of edge addition operations such that u @ v @ w,
otherwise, we would have a triple of parallel edges. This is not possible by the
definition of K +H.
We now transform t into t0 ∈ T (FVRuC ) as follows: if u is an occurrence of

adda,b in t such that there is no v with u @ v, then we replace adda,b by the
identity operation at u. We claim that H = val(t0). Consider an edge e of K+H
without parallel edge: it is created by an operation adda,b at some u such that
there is no v with u @ v, hence this operation is replaced in t0 by the identity and
this edge is not in val(t0); if e has a parallel edge, these two edges are created by
edge additions at u and v such that u @ v. The operation at v is replaced by the
identity (but not the operation at u), hence only one of the two edges remains
in val(t0). This shows that H = val(t0). Hence, cwd(H) ≤ cwd(K +H).¤

For proving the proposition, we consider K +H as in the above fact. Then
Spl(K +H) = K. Take for K a clique, and for H, any simple undirected and
loop-free graph such that VH = VK . Hence, cwd(Spl(K+H)) = 2. If, for some
fixed function f we would have cwd(G) ≤ f(cwd(Spl(G))) for every graph
G having no triple of parallel edges, then by taking G := K + H, we would
have cwd(H) ≤ cwd(K +H) ≤ f(2). But the simple undirected and loop-free
graphs have unbounded clique-width ([CouOla], [Cou], [GolRot]), hence we get
a contradiction.

The proof is easily adapted for directed graphs. ¤

Although the following notion is well-known we recall the definition at least
for notation.

Definition 6 : Tree-decompositions.
A tree-decomposition of a graph G is a pair (T, f) such that T is a rooted

and directed tree with set of nodes NT and f : NT −→ P(VG) is a mapping
such that:
1) Every vertex of G belongs to f(u) for some u in NT ,
2) Every edge has its ends in f(u) for some u in NT ,
3) For each vertex x, the set f−1(x) := {u ∈ NT | x ∈ f(u)} is connected in

T .
The width of a tree-decomposition (T, f) is the the maximal cardinality

−1 of a box, i.e. of a set f(u). A path-decomposition is defined as a tree-
decomposition such that T is a directed path. The tree-width twd(G) (the
path-width pwd(G)) of a graph G is the minimal width of a tree-decomposition
(a path-decomposition) of this graph.

It isknown from [CouOla], [Cou] and [CorRot] that a set of simple graphs,
directed or not, that has bounded tree-width has bounded clique-width. This is
not true for graphs with multiple edges.
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For every graph G, we let G ⊗ ∗ be the graph obtained by adding to G a
universal vertex, i.e., a vertex ∗ linked to all vertices of G (by undirected edges
if G is undirected and by edges directed towards ∗ if G is directed).

Proposition 7 : The set of undirected graphs of tree-width 2 has un-
bounded clique-width.

Proof : We use an auxiliary construction. Let G be a simple loop-free
undirected graph, and let bG be obtained from G⊗ ∗ by the addition of parallel
edges to all edges of G ⊗ ∗, in such a way if {x, y} 6= {w, z}, x −G y and
w −G z then, the number of edges between x and y and between w and z are
different. Clearly, twd( bG) = twd(G) + 1, since tree-width does not depend on
the multiplicity of edges.

Claim: If cwd( bG) ≤ k, then pwd(G) ≤ k − 1.
Proof of the claim: Let t ∈ T (FVRuC ) be a term that defines bG by using

k labels. Without loss of generality, we will identify the vertices of bG with the
elements Occ0(t) (the occurrences in t of the constant symbols different from ∅;
cf. Definition 2), and we will consider them as the leaves of t (we will identify a
term and its the syntactic tree).
Let x be a vertex (a leaf of t) and u be a node above x. We denote by

portt(x, u) the port label of x at u, defined as the port label of x in the graph
cval(t)/u with set of vertices {y ∈ Occ0(t) | y ≤t u} that is the value of t/u (the
subterm of t issued from node u). We denote by lca(x, y) is the least common
ancestor of two vertices (hence, two leaves) x and y. It is an occurrence of⊕. The
vertices x and y are adjacent if and only if there exists an occurrence w of adda,b
or addb,a such that lca(x, y) ≤t w, portt(x,w) = a and portt(y, w) = b. We say
that x is live at u if there is a vertex y adjacent to x such that u ≤t lca(x, y).
We let P be the path in t linking the root to the leaf ∗. For each u on this

path, we let f(u) be the set of vertices of G that are live at u. We claim that
(P, f) is a path-decomposition of G of width at most k − 1.
(a) Every vertex x is adjacent to ∗, hence it is live at lca(x, ∗) and belongs

to the box f(lca(x, ∗)).
(b) Let x and y be adjacent in G. If lca(x, y) <t lca(x, ∗) = lca(y, ∗), then

x and y belong both to f(lca(x, ∗)) by (a). If lca(x, ∗) <t lca(x, y) = lca(y, ∗),
then x and y are live at lca(x, y) hence they belong both to the box f(lca(y, ∗)).
If lca(y, ∗) <t lca(x, y) = lca(x, ∗) they belong both to the box f(lca(x, ∗)).
(c) The connectivity condition holds because, if x is live at u, it is live at all

nodes v on the path in t between x and u.
(d) Let x and y belong to a box f(u).We have lca(x, y) ≤t u. The vertices x

and y have different port labels at u: there is a vertex z adjacent to x such that
u ≤t lca(x, z). If x and y had the same port labels at u, they would be both
adjacent to z with the same numbers of parallel edges, but this is not possible
by the construction of bG.
Hence, (P, f) is a path-decomposition of G whose boxes have at most k

vertices.¤
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To complete the proof of the proposition, takeG to be a tree. Then twd( bG) =
2, but trees have unbounded path-width. Hence, the clique-widths of the graphsbG are unbounded.¤

From this proposition, we obtain another proof of Proposition 5. Since tree-
width does not depend on the multiplicity of edges, if we had a function f such
that cwd(G) ≤ f(cwd(Spl(G)), the graphs of tree-width 2 (with multiple edges)
would have bounded clique-width because simple undirected (resp. directed)
graphs of tree-width 2 have clique-width at most 6 by [CorRot] (resp. at most
65 by [CouOla]).

Definition 8: The parsing problem.
The parsing problem for clique-width consists in finding an algorithm to do

the following:

Given a graph G and an integer k, to answer that G has clique-width
more than k or to output a term witnessing that its clique-width is
at most k.

This problem is NP-complete [FRSS] but there exists an approximation al-
gorithm, call it APcwd (by the results of [HliOum] and [OumSey]) that does the
following, for some fixed functions f and g, and in time O(g(k).n3), where n is
the number of vertices of the given graph :

Given a simple graphG and an integer k, either it answers (correctly)
that G has clique-width more than k, or it outputs a term witnessing
that its clique-width is at most f(k).

This result suffices to prove that the model-checking problem for every
monadic second-order property is fixed-parameter cubic with respect to clique-
width as parameter ([CMR] and [Cou] Chapter 6). It extends actually to simple
(L,Λ)-labelled graphs because these graphs can be encoded into simple undi-
rected (L0, ∅)-labelled graphs for some fixed set L0, i.e., into vertex-labelled
graphs, and this encoding preserves for a set of graphs the property of having
bounded clique-width; the details are in [Cou], Section 6.2. However, we do not
see how to extend this type of encoding so as to handle multiple edges. Hence,
it is an open problem to find an algorithm analogous to APcwd that would op-
erate in time O(g(k).nc), or even in time O(nc(k)) for some fixed constant or
function c and for input graphs that are not simple. Proposition 5 shows that
is not a trivial question.

The above definitions of the parsing problem and of approximation algo-
rithms can of course be used for other width notions, like special tree-width to
be defined below.
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3 Monadic second-order logic

Definition 9 : CMS1 and CMS2 graph properties.
We assume that the reader knows the basics of monadic second-order logic

(exposed in, e.g., [CMR], [Cou], [DF], [FG], [Lib]). We only review some perhaps
not so well-known notions and the relevant notation.
If q ≥ 2 and 0 ≤ p < q, the set predicate Cardp,q(X) expresses that

the cardinality of X is equal to p modulo q. We will use Cardp,q(X) as an
atomic formula where X is a set variable. Let r be a nonnegative integer: a
CrMS formula is a monadic second-order formula that can be written with the
set predicates Cardp,q for q ≤ r. The CMS formulas are the same without
any bound on q; the C0MS (that are also the C1MS) formulas use no such set
predicates and are theMS formulas. Counting monadic second-order logic refers
to CMS formulas.
Graph properties can be expressed by monadic second-order formulas (or by

formulas of any language) via two (main) representations of graphs by relational
structures. The first representation associates with every graph G the logical
structure bGc := hVG, edgGi where edgG the binary relation on vertices such
that (x, y) ∈ edgG if and only if vertG(e) = {x, y} (possibly with x = y) or
vertG(e) = (x, y) for some edge e of G.
A graph property P (X1, ...,Xn), where X1, ...,Xn denote sets of vertices,

is a CrMS1 graph property (a CMS1 graph property) if there exists a CrMS
formula (a CMS formula) ϕ(X1, ...,Xn) such that, for every graph G and for
all sets of vertices X1, ...,Xn of this graph, we have:

bGc |= ϕ(X1, ...,Xn) if and only if P (X1, ...,Xn) is true in G.

Since for every graph G, we have bGc = bSpl(G)c, a CMS1 graph property
cannot depend on the multiplicity of edges. This is not due to monadic second-
order logic but to the chosen representation of graphs. Incidence graphs can
remedy this drawback. The incidence graph of an undirected graph G is the
directed bipartite graph Inc(G) := hVG ∪ EG, inGi where inG is the set of
pairs (e, x) such that e ∈ EG and x is an end vertex of e. (We use the
simpler notation inG instead of edgInc(G)). If G is directed, we let Inc(G) :=
hVG∪EG, in1G, in2Gi where in1G (resp. in2G) is the set of pairs (e, x) such that
e ∈ EG and x is the tail vertex of e (resp. its head vertex). Hence, Inc(G) is
directed and bipartite with two types of edges. We will also denote by dGe the
graph Inc(G) considered as a relational structure.

A graph property P (X1, ...,Xn, Y1, ..., Ym), where X1, ...,Xn denote sets
of vertices and Y1, ..., Ym denote sets of edges, is a CrMS2 graph property
(a CMS2 graph property) if there exists a CrMS formula (a CMS formula)
ϕ(X1, ...,Xn, Y1, ..., Ym), such that, for every graph G, for all sets of vertices
X1, ...,Xn and for all sets of edges Y1, ..., Ym of this graph, we have:
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dGe |= ϕ(X1, ...,Xn, Y1, ..., Ym)
if and only if P (X1, ...,Xn, Y1, ..., Ym) is true in G.

For example, the property Ham that an undirected graph has at least 3
vertices and an Hamiltonian cycle is an MS2-property that is not CMS1 (see
[Cou], Chapter 5). Note that an undirected graph G satisfies Ham if and only
if Spl(G) satisfies Ham, so this fact has nothing to do with the representation
of multiple edges.
We will introduce graph properties that can depend on the multiplicity of

edges without being written with edge set quantifications. They will be inter-
mediate between CMS1 and CMS2 properties, but they will not include Ham.
The constructions of finite automata that yield fixed-parameter linear model-
checking algorithms for input graphs given with the corresponding terms extend
to them.

Definition 10 : CMS graph properties.
For every graph G, we denote by edgG the mapping that associates with

every pair of vertices (x, y), the number of edges e of G such that vertG(e) =
{x, y} (possibly with x = y) or vertG(e) = (x, y) (if G is directed). We define:
bGc := hVG, edgGi. This pair is not a relational structure because edgG is a
function with values in the infinite set of integers and not a relation, but we will
use it as if it was. Two graphs G and H are isomorphic if and only if bGc and
bHc are isomorphic (in the obvious sense).
The CMS formulas that specify CMS1 graph properties are written with

the binary relation symbol edg. We define the CrMS -formulas as the monadic
second-order formulas that can be written with the set predicates Cardp,q for
p < q ≤ r and the (new) binary relation symbols edgq for 0 ≤ q ≤ r and edgp,q
for 0 ≤ p < q ≤ r and 2 ≤ q. The new symbols will be interpreted in bGc as
follows :

(x, y) ∈ edgp,qG if and only if (x, y) ∈ edgG and edgG(x, y) ≡ p
(mod. q), and

(x, y) ∈ edgqG if and only if edgG(x, y) = q.

The notation bGc |= ϕ(X1, ...,Xn) is thus meaningful if ϕ is a CrMS -
formula and X1, ...,Xn denote sets of vertices. Note that (x, y) ∈ edgG if and
only if (x, y) /∈ edg0G. Hence, every CrMS-formula can be identified with the
CrMS -formula obtained from it by replacing every atomic formula edg(x, y)
by ¬edg0(x, y).

The purpose of the following proposition is to illustrate the expressive power
of CMS -formulas. For every graph G, and sets of vertices X and Y of this
graph, we let EdgG(X,Y ) be the set of edges from a vertex of X to a vertex
of Y if G is directed and that link a vertex of X and a vertex of Y if G is
undirected. This set includes the loops incident with a vertex in X ∩ Y .
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Proposition 11 : For every p and q in N , there exist CqMS -formulas that
express, for every directed graph G and sets of vertices X and Y that the set
EdgG(X,Y ) has cardinality q and that its cardinality is equivalent to pmodulo q
(where in this case, we assume that q ≥ 2 and 0 ≤ p < q). Similar formulas exist
for undirected graphs. For simple graphs, these constructions yield respectively
MS-formulas and CqMS-formula.¤

Proof : If G is a graph and X,Y ⊆ VG, we let EdgG(X,Y ) denote the
cardinality of EdgG(X,Y ).

(1) The formulas expressing that EdgG(X,Y ) = q are easy but lengthy to
write. For directed graphs, consider for example the property that EdgG(X,Y ) =
2. It is equivalent to the following:

either there is only one pair in (X × Y ) ∩ edgG and this pair is in
edg2G,

or there are exactly two pairs in (X × Y ) ∩ edgG and each of them
is in edg1G.

These conditions can be expressed by a C0MS -formula. The construction
for the general case is similar and need not use the set predicates Cardp,q.

(2) We now consider, for directed graphs G, the property EdgG(X,Y ) ≡ p
(mod. q). Clearly, EdgG(X,Y ) =

P
x∈X

EdgG({x}, Y ).

We also have: EdgG({x}, Y ) =
P
i∈N

i. | {y ∈ Y | edgG(x, y) = i} | . Let us

compute this modulo q:

EdgG({x}, Y ) ≡
P

0≤i<q
i.modq(| {y ∈ Y | edgi,qG(x, y)} |) (mod. q),

where for each integer s, modq(s) is the unique integer in [0, q − 1] that is
equivalent to s modulo q. Hence, EdgG({x}, Y ) ≡ s (mod. q) if and only if
the following formula θs,q(x, Y ) with free variables x and Y is satisfied in bGc :

W
(p0,...,pq−1)∈A(s,q)

V
0≤i<q

∃U.(Cardpi,q(U)∧∀u(u ∈ U ⇐⇒ u ∈ Y ∧edgi,q(x, u))),

where A(s, q) denotes the set of q-tuples (p0, ..., pq−1) ∈ [0, q− 1]q such that
0.p0 + 1.p1 + ...+ (q − 1).pq−1 ≡ s (mod. q).

By similar observations, we get that EdgG(X,Y ) ≡ p (mod. q) if and only
if there exists a q-tuple (p0, ..., pq−1) ∈ A(p, q) such that, for each i = 0, ..., q−1,
we have pi = modq(| {x ∈ X | EdgG({x}, Y ) ≡ i (mod . q)} |). It follows
that EdgG(X,Y ) ≡ p (mod. q) if and only if the following formula μp,q(X,Y )
with free variables X and Y is satisfied in bGc :
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W
(p0,...,pq−1)∈A(p,q)

V
0≤i<q

∃U.(Cardpi,q(U) ∧ ∀u(u ∈ U ⇐⇒ u ∈ X ∧ θi,q(u, Y ))).

(3) The construction is the same for undirected graphs.
(4) For the particular case of simple directed graphs, we use in these con-

structions edg instead of edg1,q and of edg1, and ¬edg instead of edgi,q and
edgi for every i 6= 1. For undirected graphs, there is a slight difference. If G is
simple and undirected, then

EdgG(X,X) =| {x ∈ X | (x, x) ∈ edgG} | +
| {(x, y) ∈ (X ×X) ∩ edgG | x 6= y} | /2,

whereas, if G is simple and directed, we have:

EdgG(X,X) =| {x ∈ X | (x, x) ∈ edgG} | +
| {(x, y) ∈ (X ×X) ∩ edgG | x 6= y} | .

If X and Y are disjoint, then EdgG(X,Y ) =| (X × Y ) ∩ edgG | for simple
undirected graphs, as for simple directed ones. In all cases, EdgG(X,Y ) is the
disjoint union of EdgG(X,Y −X), EdgG(X−Y,X∩Y ) and EdgG(X∩Y,X∩Y ).
The construction of the formula for simple undirected graphs is then routine
from these observations and the technique used in the first part of the proof.¤
.

4 Finite automata from monadic second-order
formulas

Definitions 12 : Assignments encoded in the terms that define graphs

Let F be a fixed finite subsignature of FVRd or of FVRu. For every graph
property P , we let LP be the set of terms in T (F ) that evaluate to a graph
satisfying P . If P is a CMS1-property, then LP is regular, i.e., is definable
by a finite F -automaton. We will extend the proof given in [Cou], Chapter 6
to the language CMS . This proof uses an induction on the structure of the
sentences that define the properties P . Hence, we need automata associated
with formulas having free variables to handle inductively the case of sentences
of the form ∃X1, ...,Xn.ϕ. Hence, we generalize the previous definition.
Let P (X1, ...,Xn) be a property of sets of vertices X1, ...,Xn of the graphs

denoted by terms in T (F ). If a term t evaluates to G, there is a bijection of
Occ0(t), the set of occurrences in t of the constant symbols different from∅, onto
VG. In other words, by applying the definitions of the operations of FVRd and
FVRu, cf. Definition 2, one can construct a concrete graph cval(t) isomorphic
to val(t) with vertex set Occ0(t).
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For example, consider the term t = adda,b1(adda,b2(a3 ⊕4 b5)⊕6 b7) where
the indices from 1 to 7 designate the occurrences in t of the operation and
constant symbols. We have Occ0(t) = {3, 5, 7} and the graph cval(t) is 5b =
3a − 7b. (The port labels a and b are indicated here as subscripts and there are
two edges between vertices 5 and 3).

Let us go back to the general case. We let F (n) be the signature obtained
from F by replacing each constant symbol a by the constant symbols (a, w)
where w ∈ {0, 1}n. For 1 ≤ m ≤ n, we let prm : F (n) −→ F (n−m) be the
mapping, usually called a projection, that transforms (a, w) into (a, w0) where
w0 is obtained from w by removing the last m Booleans. A term t in T (F (n))
defines two things: first, the graph cval(prn(t)), (hence, prn(t) is obtained from
t by removing all Boolean components of the constant symbols), and second,
the n-tuple (V1, ..., Vn) such that Vi is the set of vertices of cval(prn(t)) that are
occurrences of constants (a, w) where the i-th component of w is 1. The tuple
(V1, ..., Vn) is an assignment of sets of vertices of cval(prn(t)) to the set variables
X1, ...,Xn. We will write t as prn(t) ∗ (V1, ..., Vn). Every term in T (F (n)) is of
this form.
Then, we define LP (X1,...,Xn) as the set of terms t ∗ (V1, ..., Vn) ∈ T (F (n))

such that P (V1, ..., Vn ) is true in cval(t). If P is defined by a formula ϕ with
free variables in {X1, ...,Xn}, then we denote LP (X1,...,Xn) by Lϕ,(X1,...,Xn).
(Some variables in {X1, ...,Xn} may not occur or may not be free in ϕ). The
relevant signature F is fixed by the context.

Theorem 13: Let F be a finite subsignature of FVRd or of FVRu. For every
CMS graph property P (X1, ...,Xn), the language LP (X1,...,Xn) is regular and
an F -automaton defining it can be constructed from a CMS formula that
defines P .

Proof: The proof is a small extension of that given in [Cou], Chapter 6 for
CMS1 graph properties and the evaluation mapping sval from terms to simple
graphs. Here, we consider CMS graph properties and the evaluation mapping
val from terms to graphs that can have multiple edges.
We review the main steps of the proof. Details are in [Cou], Section 6.3.
First, monadic second-order formulas can be written without first-order vari-

ables and without universal quantifications.
Furthermore, one can always assume that formulas are written with the

"standard" set variables X1, ...,Xn, ... and that the variables Xi are used in
such a way that, for any subformula of the form ∃Xn.θ, the formula θ has its
free variables in {X1, ...,Xn}.
The atomic formulas are of the formsXi ⊆ Xj ,Xi = ∅, Sgl(Xi), Cardp,q(Xi)

and edg(Xi,Xj) (in the constructions of [Cou]), and edgq(Xi,Xj), edgp,q(Xi,Xj)
(in the present case). Their meanings, if not already defined or not clear from
the notation, are as follows for a graph G:

Sgl(Xi) means that Xi is singleton,

15



edg(Xi,Xj) means that Xi and Xj are singletons, respectively {x} and {y},
and that (x, y) ∈ edgG,

edgq(Xi,Xj) means the same with (x, y) ∈ edgqG and
edgp,q(Xi,Xj) means the same with (x, y) ∈ edgp,qG.

Then, the main part of the proof is the construction of a F -automaton
Aϕ,(X1,...,Xn) that recognizes the language Lϕ,(X1,...,Xn). (All automata will
be finite, complete and bottom-up deterministic unless otherwise specified). The
construction is by induction on the structure of ϕ:
1) If ϕ is ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 or ¬ϕ1, then one constructs Aϕ,(X1,...,Xn)

from Aϕ1,(X1,...,Xn) and Aϕ2,(X1,...,Xn) by the classical constructions of
automata for intersection, union and complementation with respect to T (F (n))
of the associated languages (cf. [TATA]).
2) If ϕ is ∃Xn.θ, then we have Lϕ,(X1,...,Xn−1) = pr1(Lθ,(X1,...,Xn)), (the

mapping pr1 replaces every symbol (a, wi), where i is 0 or 1, by (a, w), so that
pr1(T (F

(n))) = T (F (n−1))). It is straightforward to obtain from the determinis-
tic F (n)-automaton Aθ,(X1,...,Xn) that recognizes Lθ,(X1,...,Xn), a nondetermin-
istic F (n−1)-automaton A that recognizes pr1(Lθ,(X1,...,Xn)) = Lϕ,(X1,...,Xn−1).
Since we have decided to construct deterministic automata (this is necessary
for complementations), we determinize A, which gives Aϕ,(X1,...,Xn−1). This de-
terminization step increases (from N to at most 2N ) the number of states of
A.
3) It remains to construct automata for the atomic formulas. The construc-

tions are in most cases straightforward from the definitions. For example, if ϕ is
Sgl(X3), then the automaton Aϕ,(X1,...,X6) has to accept the terms that contain
one and only one occurrence of a constant symbol of the form (a, w) where the
third component of w is 1 (here w ∈ {0, 1}6).

Convention: If a state called Error is present, it is not accepting
and the recognized "error" "propagates", that is, every transition
with Error among the input states yields Error as output state.

We will only construct the automata for the atomic formulas edgq(X1,X2)
and edgp,q(X1,X2). We first construct the automaton A := Aedgq(X1,X2) for
the signature F := FVRdC and q ≥ 1. Its set of states is :

S := {0, Error} ∪ {1(a), 2(a), a(i), ab(i) | a, b ∈ C, i ∈ [0, q]}

The meanings of these states are described in Table 1. Each state s is char-
acterized by a property Ps in the following sense: for every term t ∗ (V1, V2) in
T (F (2)), we have:

t ∗ (V1, V2) ∈ L(A, s) if and only if the graph cval(t) satisfies Ps(V1, V2).
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The notation t0 ∈ L(A, s) means that the unique run of A on a term t0 ∈
T (F (2)) terminates with state s (at the root of the syntactic tree of t0).
The number of states is thus (k + 1)(kq + 2) where k = |C|. The transition

rules are in Table 2. The missing transitions yield Error. Here is an example:
⊕[ab(0), a(2)]→ Error . The accepting states are those of the form a(q) or ab(q)
(possibly with a = b). The table specifies O(k4) transitions.

State s Property Ps
0 V1 = V2 = ∅
1(a) V1 = {v}, V2 = ∅, portcval(t)(v) = a

2(a) V1 = ∅, V2 = {v}, portcval(t)(v) = a

a(i) V1 = V2 = {v}, portcval(t)(v) = a, edgicval(t)(v, v)
ab(i) V1 = {v1}, V2 = {v2}, v1 6= v2, portcval(t)(v1) = a,

portcval(t)(v2) = b and edgicval(t)(v1, v2)
Error All other cases

Table 1: Meanings of the states of A.

Transition rules Conditions
∅→ 0
(a, 00)→ 0
(a, 10)→ 1(a)
(a, 01)→ 2(a)
(a, 11)→ a(0)
relabh[0]→ 0
relabh[i(a)]→ i(c)
relabh[a(j)]→ c(j) c = h(a), d = h(b),
relabh[ab(j)]→ cd(j) i ∈ [2], j ∈ [0, q]
add loopa [s]→ s s /∈ {a(0), · · · , a(q)}
add loopa [a(i)]→ a(i+ 1) i < q

add loopa [a(q)]→ Error
−−→
adda,b[s]→ s s /∈ {ab(0), · · · , ab(q)}
−−→
adda,b[ab(i)]→ ab(i+ 1) i < q
−−→
adda,b[ab(q)]→ Error
⊕[1(a), 2(b)]→ ab(0)
⊕[2(b), 1(a)]→ ab(0) (possibly a = b)
⊕[s, 0]→ s s ∈ S
⊕[0, s]→ s

Table 2: The transition rules of A.

The states aa(0) could be identified with Error because, as one can check,
no run including such a state can reach an accepting state. This shows that
the automaton A is not minimal. However, keeping these states yields a more
uniform description of the transitions.
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If, in this automaton, we replace the transitions add loopa [a(q)]→ Error and−−→
adda,b[ab(q)] → Error by add loopa [a(q)] → a(q) and

−−→
adda,b[ab(q)] → ab(q)

respectively, then we obtain an automaton A1 that recognizes the language
LP (X1,X2) where P (X1,X2) means that X1 and X2 are singletons {x} and {y}
such that (x, y) ∈ edgrG for some r ≥ q. Furthermore, the automata A and
A1 with accepting states ab(p) and a(p) for 0 < p < q recognize the language
Ledgp(X1,X2) .

We will not detail the construction for edgp,q(X1,X2) because it is fully
similar. The set of states is in this case

S0 := {0, Error} ∪ {1(a), 2(a), a(i), ab(i) | a, b ∈ C, i ∈ [0, q − 1]}.

The state ab(i) is characterized by the property:

V1 = {v1}, V2 = {v2},v1 6= v2, portcval(t)(v1) = a,
portcval(t)(v2) = b, (v1, v2) ∈ edgi,qcval(t),

(it implies (v1, v2) ∈ edgcval(t) even if i = 0). The state a(i) is characterized
by the property:

V1 = V2 = {v}, portcval(t)(v) = a, (v, v) ∈ edgi,qcval(t),

(similarly, it implies (v, v) ∈ edgcval(t) even if i = 0). The only transitions
that differ from the previous case are

−−→
adda,b[ab(i)]→ ab(modq(i)) and add loopa [a(i)]→ a(modq(i))

for all i ∈ [0, q−1]. This set of transitions guarantees that, if the state ab(0)
is reached, there is at least one edge from v1 to v2 (cf. the above description of
the meaning of a state ab(i)), and similarly for a(0).

It is straightforward to transform these automata into automata for the
atomic formulas edgq(Xi,Xj) and edgp,q(Xi,Xj), and to adapt these construc-
tions to undirected graphs.

Remark 14 : Automata for EdgG(X,Y ) ≡ p (mod. q)

In Proposition 11, we have constructed a formula μp,q(X,Y ) to express that
sets of vertices X and Y of a graph G satisfy : EdgG(X,Y ) ≡ p (mod. q).
This formula uses the relations edgi,q, hence, since we have automata for the
atomic formulas edgi,q(Xj ,Xk), we can combine them to build automata for the
formulas μp,q(X,Y ). However, there is a direct construction that we present as
an example of what one can do by "avoiding logic", i.e., by not using the general
construction. (This technique is used in other cases in [CouDur] and in [Cou],
Chapter 6).
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We fix q and the set of port labels C. The states of the automaton Bp
equivalent to Aμp,q(X1,X2) are the 7-tuples (A1, f1, A2, f2, A3, f3, j) such that
j ∈ [0, q − 1], A1, A2, A3 ⊆ C and fi is a mapping : C → [0, q − 1] such that
fi(a) = 0 if a /∈ Ai for each i. We describe with the same notation as above the
characteristic property of such a state:

A1 = portcval(t)(V1 − V2), i.e., A1 is the set of port labels of the
vertices of V1 − V2,

f1(a) = modq(| port−1G (a) ∩ (V1 − V2) |) for every a ∈ C,

A2 = portcval(t)(V2−V1) and f2(a) = modq(| port−1G (a)∩(V2−V1) |)
for every a ∈ C,

A3 = portcval(t)(V1 ∩ V2) and f3(a) = modq(| port−1G (a) ∩ V2 ∩ V1 |)
for every a ∈ C,

and finally, j = modq( Edgcval(t)(V1, V2)).

The accepting states will be those such that j = p. The number of states
is q.k3(q+1) where k =| C | . The transitions are easy to define from the above
specifications. Let us describe some cases:

i) For a constant symbol, we have for an example (a, 11) −→ (∅, ∅, {(a, 1)},
0) (we write a pair (Ai, fi) as the set of pairs (a, fi(a)) for a in Ai).

ii) For the disjoint union, we have the following general description:

⊕[(A1, f1, A2, f2, A3, f3, , j), (A01, f 01, A02, f 02, A03, f 03, , j0)] −→
(A1 ∪A01, f1 + f 01, A2 ∪A02, f2 + f 02, A3 ∪A03, f3 + f 03, , j + j0)

where additions are modulo q (hence (f1+ f 01)(a) := mod q(f1(a)+
f 01(a)) ).

iii) For relabh the transition replaces everywhere a by h(a) and up-
dates the counts of vertices. For example, f1 is replaced by f 01 such
that f 01(a) is the sum modulo q of the numbers f1(b) such that
h(b) = a. The integer j that counts edges is not modified.

iv) We now consider the operation add loopa that adds loops to the
a-ports. We must count the loops incident with vertices in V1 ∩ V2.
Hence, the only component of a state (A1, f1, A2, f2, A3, f3, j) that
is modified is j that becomes modq(j + f3(a)).

v) Finally, we consider the operations
−−→
adda,b. The transition must

updates the number of edges from V1 to V2 that are added by this
operation. These edges are from V1 − V2 to V2 − V1, from V1 −
V2 to V1 ∩ V2 and from V1 ∩ V2 to V2 − V1, and these cases are
mutually exclusive. It follows that j becomes modq(j+f1(a).f2(b)+
f1(a).f3(b) + f3(a).f2(b)).¤
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All these constructions of automata are done for generic sets C. That is, if
we replace C by another set in bijection with it by f , then the corresponding
automata are obtained by replacing a ∈ C by f(a) everywhere in the states, in
the transitions and the accepting states of the original ones. In particular, the
numbers of states and transitions depend only the cardinality of the considered
set C.

5 Special tree-width

We define special tree-width by means of terms over the signatures FVRd and
FVRu. An equivalent definition by means of tree-decompositions will be given
later.

Definition 15: Special VR-terms.

We recall that π(G) denotes the set of port labels of a p-graph G; we also
denote by π1(G) the subset of those that label a single vertex of G. If t ∈
T (FVRd) ∪ T (FVRu), then π(t) denotes π(val(t)) and π1(t) denotes π1(val(t)).
A term t in T (FVRd)∪T (FVRu) is a special VR-term if it satisfies the following
conditions:

1) π(t0) − π1(t
0) ⊆ {⊥} for every subterm t0 of t (we consider t as

one of its subterms),

2) if t1 ⊕ t2 is a subterm of t, then π(t1) ∩ π(t2) ⊆ {⊥},
3) for every relabelling relabh occurring in t, we have h(⊥) = ⊥,
4) for every operation

−−→
adda,b, adda,b, add

loop
a that occurs in t, we

have a 6= ⊥ and b 6= ⊥,
5) the constant symbol ⊥ has no occurrence in t.

If C is a finite set of port labels, we denote by SpT (FVRdC ) and SpT (FVRuC )
the sets of special VR-terms in T (FVRdC ) and in T (FVRuC ) respectively. The
special tree-width of a graph G, denoted by sptwd(G), is the least integer k such
that such that G = val(t) for some term t in SpT (FVRdC ) ∪ SpT (FVRuC ) such
that | C−{⊥} |= k+1. Since we identify a graph with a p-graph whose vertices
are labelled by ⊥, the set C must always contain ⊥, except if G is the empty
graph. The comparison with tree-width will justify the "+1" in the definition.
The special tree-width of an empty graph is −1, that of a graph consisting of
loops and isolated vertices is 0. Since the sets π(t) and π1(t) are computable
inductively on the structure of a term t, the sets SpT (FVRdC ) and SpT (FVRuC )
are regular.

Example 16 : Trees
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Trees have special tree-width 1. To prove this, we let C := {⊥, 1, 2}. An
undirected tree with one distinguished node called its root, is made into a p-
graph as follows: the root is labelled by 1, all other nodes by ⊥. Let T1, T2 be
two such trees, defined by terms t1, t2 ∈ SpT (FVRuC ). Then, we let T := T1nT2
be defined by the term

t := relab2−→⊥ (add1,2(t1 ⊕ relab1−→2(t2))) ∈ SpT (FVRuC ).

This tree is built as the disjoint union of the trees T1 and T2 augmented with
an undirected edge between their roots, and the root of T is defined as that of
T1. Every rooted and undirected tree is generated by n from the trees reduced
to isolated roots, that are defined (up to isomorphism) by the constant symbol
1. Hence, every rooted and undirected tree is defined by a term in SpT (FVRuC ).
One can forget the root by applying the operation relab1−→⊥.¤

We now consider tree-decompositions. A rooted and directed tree T is always
directed from the root towards the leaves. For two nodes x and y, we let x ≤T y
if and only if y is on the directed path from the root to x.

Definition 17 : Special tree-decompositions.
A tree-decomposition (T, f) of a graph G is special if it satisfies the

following condition, in addition to the three conditions of Definition 6:

4) For each vertex x, the set f−1(x) is a directed path in T .

Proposition 18 : The special tree-width of a graph is the minimal width of
a special tree-decomposition of this graph. There are linear-time algorithms for
converting a term t in SpT (FVRdC )∪SpT (FVRuC ) into a special tree-decomposition
of width | C − {⊥} | −1 of the graph val(t) and vice-versa.

Proof: From terms to decompositions. We will define for every term t
in SpT (FVRdC ) ∪ SpT (FVRuC ) a special tree-decomposition S(t) of the graph
G := cval(t), the boxes of which have at most | C − {⊥} | vertices. The proof
is by induction on the structure of t.
For every t, we will define S(t) so that its root box consists of the vertices

of G that are not ⊥-ports. By the definition of special terms, each element of
C − {⊥} labels at most one vertex, hence the root box has at most | C − {⊥} |
vertices.

If t = a, then S(t) has a single (root) box consisting of the unique
vertex of G.

If t = f(t1) where f is an operation that adds edges, then, we take
S(t) := S(t1).

If t = relabh(t1) and (T1, f1) := S(t1), we add to T1 a new node r,
we link it to the root r1 of T1 and we let r be the root of the new
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tree T . We define f as the extension of f1 such that f(r) is the set
of vertices of G := val(t) that are not ⊥-ports. By the definition
of a special VR-term, we have f(r) ⊆ f1(r1). We obtain a special
tree-decomposition S(t) := (T, f) of G.

If t = t1 ⊕ t2, then we use (T1, f1) := S(t1) and (T2, f2) := S(t2) as
follows. We take the union of T1 and T2 that we can assume disjoint,
we add a new node r, we link it to the roots r1 and r2 of T1 and T2,
we let r be the root of the new tree T . We define f as the extension
of f1 and f2 such that f(r) := f1(r1) ∪ f2(r2). Hence, f(r) is the
set of vertices of G := val(t) that are not ⊥-ports and S(t) := (T, f)
is a special tree-decomposition of G with the required property.

Since each box of S(t) has been the root box of S(t0) for some subterm t0

of t, we have a special tree-decomposition of G := cval(t) of width at most
| C − {⊥} | −1.

From decompositions to terms. We now construct special VR-terms from
special tree-decompositions. We need some notation and a claim. Let C be a
finite set of port labels that contains ⊥. Let (T, f) be a tree-decomposition of
a graph G and γ : VG → C − {⊥} be a mapping that is injective on each box.
We call such a mapping a proper coloring of (T, f). It is also a proper vertex-
coloring of G since every edge has its ends in a same box. For every node u
of T , we let T/u be the rooted and directed subtree of T issued from u, with
NT/u = {w ∈ NT | w≤Tu}. Its root is u.
We denote byG(u) the p-graph (G(u)◦, portG(u)) where G(u)◦ is the induced

subgraph of G with vertex set
S
{f(w) | w ∈ NT/u} and portG(u)(x) := γ(x) if

x ∈ f(u) and portG(u)(x) := ⊥ if x ∈ VG(u) − f(u). Hence, G(u) is a p-graph
such that π(G(u))− π1(G(u)) ⊆ {⊥}. We have G = G(rootT )

◦.

Claim: Let (T, f) be a tree-decomposition of width at most k−1 of a graph
G and let C ⊆ A be a set of cardinality k + 1 that contains ⊥. There exists a
proper coloring γ : VG → C − {⊥} of (T, f). Such a coloring can be determined
in time O(|NT |). ¤

Proof of the claim: Let G,C, T, f be as in the statement and δ0 :
f(rootT ) → C − {⊥} be any injective mapping. We will prove that the fol-
lowing holds for every u ∈ NT :

Every injective mapping δ : f(u) → C − {⊥} can be extended into
a mapping γ : VG(u) → C− {⊥} that is injective on f(w) for each w
in NT/u.

The proof is by bottom-up induction on u. If u is a leaf of T there is nothing
to prove. Otherwise, let u1, . . . , up be the sons of u. For each of them one
can find an injective mapping δi : f(ui) → C − {⊥} that coincides with δ on
f(ui) ∩ f(u). By the induction hypothesis, it can be extended into γi defined
on VG(ui).
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Then, the common extension γ of these mappings γi and of the mapping δ is
the desired coloring. This extension exists because if x ∈ NT/ui ∩NT/uj , i 6= j,
then x ∈ f(ui) ∩ f(u) ∩ f(uj) by the connectivity condition (Condition 3) of
Definition 6), and so γi(x) = γj(x) = δ(x).
It is routine work to construct a linear algorithm computing γ.¤

Let (T, f) be a special tree-decomposition of a graph G of width at most k−1
and γ be as in the claim. (We need not distinguish the cases of directed and
undirected graphs). We will construct terms t(u) that define the p-graphs G(u)
(their port labels depend on γ) so that: G = relabC−→⊥(G(rootT )) (where for
every subset B of C, we let relabB−→⊥ denote the composition, in any order,
of the operations relabb−→⊥ for all b ∈ B − {⊥}).

Let u have sons u1, . . . , up, p ≥ 0; we can assume that we have already
constructed the terms t(u1), . . . , t(up) and we have:

G(u) = ADD(relabB1−→⊥(G(u1))⊕ · · ·⊕ relabBp−→⊥(G(up))⊕ a1 ⊕ ...⊕ as)

where {a1, ..., as} := π(G(u))− ({⊥}∪ π(G(u1))∪ ...∪ π(G(up)), Bi := {γ(x) |
x ∈ f(ui)− f(u)} for each i = 1, ...p, and ADD is the composition of the edge
addition operations that create the edges (and loops) of G(u) that are not in the
graphs G(u1), ..., G(up). Note that, since (T, f) is a special tree-decomposition,
the sets π1(relabBi−→⊥(G(ui))) are pairwise disjoint. Hence, we can define:

t(u) := ADD(relabB1−→⊥(t(u1))⊕ · · ·⊕ relabBp−→⊥(t(up))⊕ a1 ⊕ ...⊕ as),

t(u) belongs to SpT (FVRdC ) ∪SpT (FVRuC ) and defines G(u).
The term relabC−→⊥(t(rootT )) defines G.
This construction can be done by a linear time algorithm, where the size of

the input is | VG ∪EG ∪NT | .¤

Proposition 19 : For every graph G we have:
(1) twd(G) ≤ sptwd(G) ≤ pwd(G).
(2) cwd(G) ≤ sptwd(G) + 2.

Proof: The first assertion follows from Proposition 18, and the second one
from Definition 15.¤

Note the difference between Proposition 7 and Assertion (2).

We will denote by STWD(≤ k) the class of directed and undirected graphs of
special tree-width at most k. Smoothing a vertex of degree 2 means contracting
any one of its two incident edges. (We exclude the case of a vertex incident with
a loop and with no other edge).

Proposition 20 : For each k, the class STWD(≤ k) is closed under the
following transformations:

23



1) Removal of vertices and edges,
2) Reversals of edge directions,
3) Addition and removal of loops incident with existing vertices,
4) Addition of edges parallel to existing edges,
5) Smoothing vertices of degree 2.

Proof: The closure is clear for the transformations of types 1)-4) because
every special tree-decomposition of a graph is also a special tree-decomposition
of any graph transformed in these ways.
We now consider the smoothing of a vertex y of degree 2 with neighbour

vertices x and z in a graph G. Let (T, f) be a special tree-decomposition of G.
The intersection of the directed paths f−1(x) and f−1(y) is not empty and is
a directed path, and we let u be its minimal element with respect to ≤T . We
let similarly v be the minimal element of f−1(z) ∩ f−1(y). Since u and v are
on the directed path f−1(y), they are comparable, say, u ≤T v . Let us now
contract the edge between x and y, that is, we delete y and make x adjacent to
z. This gives a graph G0 such that VG0 = VG − {y}. Then, we define f 0 by:

f 0(w) := (f(w)− {y})∪ {x} for every w on the path in T from v to
u (including u and v),

f 0(w) := f(w)− {y} otherwise.

It is easy to see that (T, f 0) is a special tree-decomposition of G. In particu-
lar, x and z belong both to f 0(v). The set f 0−1(x) is the union of the directed
path f−1(x) and of the path from v to u, hence it is a directed path since u be-
longs to f−1(x). Hence, (T, f 0) is a special tree-decomposition ofG and its width
that is no larger than that of (T, f), which shows that sptwd(G0) ≤ sptwd(G).¤

It follows from items 1) and 5) of this proposition that the class STWD(≤ k)
is closed under taking topological minors ([Die]). It is not closed under taking
minors as we will see in Proposition 25 below. In the following proposition,
pwd(L) denotes the least upper bound of the path-widths of the graphs in L
and similarly for the other notions of width.

Proposition 21 : The class of graphs of tree-width 2 has unbounded special
tree-width. For every set of graphs L:

pwd(L) <∞ =⇒ sptwd(L) <∞ =⇒ twd(L) <∞ and

sptwd(L) <∞ =⇒ cwd(L) <∞,

whereas the converse implications do not hold.¤

Proof : We will use the following claim.
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Claim : For every graph G, the special tree-width of G⊗ ∗ is equal to its
path-width.

Proof of the claim: Let (T, f) be a special tree-decomposition of G⊗ ∗
of width k. We let P be the directed path f−1(∗). We claim that (P, f ¹ P ) is
a path-decomposition of G⊗ ∗.
For each vertex x of G, the directed paths f−1(∗) = P and f−1(x) have a

nonempty intersection, hence x ∈ f(u) for some u in P , and every edge linking
∗ and x has its two ends in f(u).
If y is another vertex of G that is adjacent to x, then P ∩ f−1(y) is not

empty and contains some node v. Let u and v be the minimal such nodes with
respect to ≤ . If u = v, then the edges between x and y have their ends
in f(u). Otherwise, let us assume that u <T v. Since f−1(x) ∩ f−1(y) is not
empty, it must contain v, and the edges between x and y have their ends in
f(v). The pair (P, f ¹ P ) satisfies also the connectivity condition, hence it is
a path-decomposition of G ⊗ ∗ of no larger width than (T, f). Since we have
sptwd(G⊗ ∗) ≤ pwd(G⊗ ∗) by Proposition 19, we have an equality.¤

For proving the proposition, we assume that every graph of tree-width 2 has
special tree-width at most k. If T is any tree, then T ⊗∗ has tree-width at most
2, hence special tree-width at most k, and path-width at most k by the claim.
It follows that T , since it is a subgraph of T ⊗ ∗, has path-width at most k,
but trees have unbounded path-width (see [Die]), which gives a contradiction.

The implications follow from Proposition 19. Trees have special tree-width
at most 1 (Example 16) and unbounded path-width. Graphs of tree-width 2
have unbounded special tree-width, hence the opposite implications are false.
The converse of sptwd(L) <∞ =⇒ cwd(L) <∞ is false if L the set of cliques,
of maximal clique-width 2 and of unbounded tree-width and special tree-width.
¤

Definition 22: Tree-partitions.
A tree-partition of a graph G is a pair (T, f) such that T is a rooted tree

with set of nodes NT and f : NT −→ P(VG) is a mapping such that:

1) Every vertex of G belongs to f(u) for a unique node u of T ,

2) Every edge has its two ends in f(u) ∪f(v) for some nodes u, v of
T such that v is the father of u.

The width of (T, f) is defined as the maximal cardinality of a box, (no −1
here !), and the tree-partition-width of a graph G is the minimal width of its
tree-partitions. We denote it by tpwd(G). We will prove that sptwd(G) ≤
2.tpwd(G)− 1. The wheels, i.e. the graphs Cn ⊗ ∗ where Cn is the undirected
cycle with n vertices have path-width (and special tree-width) 3 but unbounded
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tree-partition width (see [BodEng], [Wood]). MaxDeg(G) denotes the maxi-
mum degree of a graph G.

Proposition 23: For every graph G :

1) sptwd(G) ≤ 2.tpwd(G)− 1,
2) sptwd(G) ≤ 20(twd(G) + 1)MaxDeg(G).

A set of graphs of bounded degree has bounded special-tree-width if and
only if it has bounded tree-width.¤

By Proposition 20, we have even:

sptwd(G) ≤ 20(twd(G) + 1)MaxDeg(Core(G))

where Core(G) is the simple, loop-free undirected graph obtained from G
by forgetting edge directions, removing loops and fusing parallel edges (inde-
pendently of their original directions).

Proof: 1) Let (T, f) be a tree-partition of G of width k. We will transform
it into a special tree-decomposition (T 0, f 0) of G such that NT = NT 0 and
f(u) ⊆ f 0(u) for every u ∈ NT . We choose an arbitrary linear order ≤ on
NT and we let T 0 be the binary tree associated with T in the following classical
way:

if u is a node with sons u1, u2, ..., up, such that u1 < u2 < ... < up,
then we let u1 be the left son of u in T 0 and, for each i = 1, ..., p− 1,
we let ui+1 be the right son of ui.

There are no other edges, hence T 0 is a tree with root rootT . The root has
no right son. For every u ∈ NT = NT 0 , we define:

f 0(u) := f(u) if u = rootT ,

f 0(u) := f(u) ∪ f(w) if w is the father of u in T .

It is straightforward to verify that (T 0, f 0) is a special tree-decomposition
of G. Its boxes have at most 2k vertices, hence G has special tree-width at
most 2k− 1. Figure 1 shows a tree-partition (to the left, the letters A,B,C, ...
represent pairwise disjoint sets of vertices), and, to the right, the corresponding
special tree-decomposition. (The box of the node XY is X∪Y). Unless T has
rootT as single node, it can be delete from T 0.
2) For every graph G of tree-width and of maximal degree at least 1, we

have tpwd(G) ≤ 5(twd(G) + 1)(7.MaxDeg(G)/2 − 1)/2 by [Wood]. For these
graphs, we get sptwd(G) ≤ 20(twd(G) + 1)MaxDeg(G) by the first assertion.
This inequality is actually valid if G is empty or has only loops and isolated
vertices. ¤

This result suggests a question:
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Figure 1: A tree-partition and the associated tree-decomposition

Which conditions on a set of graphs, other than bounded degree,
imply that it has bounded tree-width if and only if it has bounded
special tree-width?

Planarity does not since the graphs of tree-width at most 2 are planar but of
unbounded special tree-width. From this case, we can see that conditions like
excluding a fixed graph as minor or being uniformly k-sparse for some k do not
either. All these conditions however, imply that, for simple graphs, bounded
tree-width is equivalent to bounded clique-width (see [Cou], Chapter 9).
Proposition 24 : Every graph of tree-width k is obtained by edge contrac-

tions from a graph of special tree-width at most 2k + 1. The class of graphs of
special tree-width at most k is not closed under taking minors for any k ≥ 5.

Proof: Every graph of tree-width k is obtained by edge contractions from a
graph of tree-partition-width at most k + 1 (easy to check). The first assertion
follows then from Proposition 23. The graphs of tree-width 2 are thus minors of
graphs of special tree-width at most 5. If for some k ≥ 5 the class SPTWD(≤
k) would be closed under taking minors, then all graphs of tree-width 2 would
have special tree-width at most k. We know that this is not the case.¤

Connected and biconnected components.

Proposition 25 : The special tree-width of a graph is the maximal special
tree-width of its connected components. It is at most one plus the maximal
special tree-width of its biconnected components. This upper bound is tight.
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Proof: We first consider the assertion about biconnected components. Let
G,H and H 0 be concrete graphs. We write G = H ∪x H 0 if VH ∩ VH0 = {x},
EH ∩EH0 = ∅, and G is the union of H and H 0. If (T, f) and (T 0, f 0) are special
tree-decompositions of H and H 0 such that x is in the root box of (T 0, f 0), then,
we construct as follows a special tree-decomposition (T 00, f 00) of G:

we let u be the least node of T (least with respect to ≤T ) such that
x ∈ f(u),

T 00 is obtained from the union of T and T 0 (assumed to be disjoint)
augmented with a directed edge from u to rootT 0 (so that rootT 00 =
rootT ),

f 00 is f ∪ f 0, the common extension of f and f 0.

Its width is the maximum of those of (T, f) and (T 0, f 0).
Let G be a connected graph with biconnected components H1, ...,Hp, for

which we have special tree-decompositions of width at most k. We can assume
that H1, ...,Hp are numbered in such a way that, for each 1 < i ≤ p, the graph
Gi := H1∪ ...∪Hi satisfies Gi = Gi−1∪xHi for some vertex x. By induction on
i, we construct as follows a special tree-decomposition of Gi of width at most
k+ 1. For i = 1, we have it by the hypothesis. For i > 1 and Gi = Gi−1 ∪xHi,
we modify if necessary the decomposition of Hi so that x is in its root box (if
this is not the case, we add x to all boxes above the ones that contain x). By
induction we have a special tree-decomposition of Gi−1 of width at most k+ 1,
and by using the first construction, we obtain a special tree-decomposition of
Gi of width at most k + 1. Since G = Gp, we have the result.

If G is the union of disjoint graphs H and H 0 and (T, f) and (T 0, f 0) are
special tree-decompositions of H and H 0, then, we construct a special tree-
decomposition (T 00, f 00) of G as above, letting u be any node of T . Its width
is the maximum of those of (T, f) and (T 0, f 0). Hence, if G is a union of con-
nected components H1, ...,Hp for which we have special tree-decompositions of
maximum width k, we construct as above a special tree-decomposition of G of
width k. By Proposition 20(1), sptwd(G) ≥ sptwd(Hi) for any i, which proves
the first assertion.

We now define a graph G whose special tree-width is strictly larger than
those of its biconnected components.

We let T be the rooted and directed tree with set of nodes {a, b, c, d} and
edges a −→ b, b −→ c and b −→ d. We let VH := [13] and f be the mapping:
NT −→ P(VH) such that f(a) := {1, 2, 4, 5, 6}, f(b) := {3, 4, 5, 6, 7}, f(c) :=
{3, 4, 8, 9, 10} and f(d) := {6, 7, 11, 12, 13}.We defineH as the simple undirected
graph that is the union of the cliques with vertex sets f(a), f(b), f(c) and f(d).
It is clear that H is a chordal graph with 4 maximal cliques of size 5. It has
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Figure 2: The special tree-decomposition (T, f) of H.

Figure 3: The special tree-decomposition (T 00, f 00) of G.
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Figure 4: The tree T 00

tree-width 4 and also special tree-width 4: the pair (T, f) is a special tree-
decomosition of H (see Figure 2).
For every tree-decomposition of any graph, a clique in this graph is con-

tained in some box. It follows that any special tree-decomposition (T1, f1) of
H of minimal width must have four nodes a1, b1, c1, d1 such that f1(a1) = f(a),
f1(b1) = f(b), f1(c1) = f(c) and f1(d1) = f(d). The tree T1 cannot have a di-
rected path containing b1, d1, a1 in this order because this would imply that the
vertex 3 belongs to f1(d1) by the connectivity condition. By similar arguments,
we can see that T1 must have directed paths containing a1, b1, c1 and a1, b1, d1 in
this order and no directed path containing b1, c1 and d1 (in any order). Roughly
speaking, (T, f) is the only special tree-decomposition of H of width 4. This
fact is a key point for our construction.
We let H 0 be the isomorphic copy of H where each vertex i is made into i0.

We let G be obtained from the union of H and H 0 by the fusion of vertices 7
and 70 (let us say that we delete 70 and we connect 7 with the neighbours of 70 in
H 0). Let (T 0, f 0) be the corresponding "isomorphic" special tree-decomposition
of H 0.
The biconnected components ofG areH andH 0 hence, G has tree-width 4. It

has special tree-width at most 5: Figure 3 shows the special tree-decomposition
(T 00, f 00) of G arising from the construction of the beginning of the proof. Note
that the box f 00(a0) contains vertex 7 hence has 6 elements.

Assume that G has a special tree-decomposition (T2, f2) of width 4. It must
have nodes b2, d2, a02, b

0
2, d

0
2 such that f2(b2) = f(b), f2(d2) = f(d), f2(a02) =

f 0(a0) = {10, 20, 40, 50, 60}, f2(b02) = {30, 40, 50, 60, 7} and f2(d2) := {60, 7, 110, 120,
130}. Since (T2, f2) is a special tree-decomposition and by the connectivity con-
dition, T2 must have a directed path containing b2, d2, b02 and d02. By the obser-
vation made above for H (which applies also to H 0), we see that we must have
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b2 before d2 and b02 before d
0
2. But then we must also have a

0
2 on this path. We

cannot do that without having 7 ∈ f2(a
0
2). Hence, (T2, f2) cannot exist and G

has special tree-width 5.¤

Open question: The parsing problem.

Does there exist fixed functions f and g and an approximation algorithm to
do the following in time O(ng(k)), where n is the number of vertices of the given
graph :

Given a simple graphG and an integer k, either it answers (correctly)
that G has special tree-width more than k, or it outputs special VR-
term witnessing that its special tree-width is at most f(k)?

Stronger requirements would be that f(k) = k, giving an exact algorithm
and/or the computation time O(g(k).nc) for some fixed c instead of O(ng(k)).
Since by a result by Bodlaender (presented in detail in [DF]) such an algorithm
exists for tree-width, with f(k) = k and c = 1, one can think that this algorithm
can be adapted in order to find special tree-decompositions.

6 Finite automata for monadic second-order
formulas with edge set quantifications

Our objective is to adapt the constructions of Section 4 to the model-checking
of CMS2 graph properties for graphs defined by special VR-terms. We will
obtain fixed-parameter linear algorithms for graphs of bounded special tree-
width given by the relevant terms or decompositions.

Definition 26 : CMS2 formulas and the encoding of assignments

In order to use CMS2-formulas, i.e. monadic second-order formulas with
edge set quantifications (and set cardinality predicates), we will represent a
graph G by the relational structure dGe := Inc(G) defined in Definition 9. If
G is undirected, then dGe := hVG ∪ EG, inGi where inG is the set of pairs
(e, x) such that e ∈ EG and x is an end vertex of e. If G is directed, dGe :=
hVG∪EG, in1G, in2Gi where in1G (resp. in2G) is the set of pairs (e, x) such that
e ∈ EG and x is the tail vertex of e (resp. its head vertex).
As in the proof of Theorem 13, we will use formulas with a particular "nor-

malized" syntax. They will be written without first-order variables and universal
quantifications, with the "standard" set variables X1, ...,Xn, ... for denoting sets
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of vertices and Y1, ..., Ym, ... for denoting sets of edges. In any subformula ∃Xn.θ,
the formula θ has no free variables in {Xn+1, ...}, and similarly for ∃Ym.θ. The
atomic formulas are of the forms edg(Xi,Xj), in(Yi,Xj) (for undirected graphs),
in1(Yi,Xj) and in2(Yi,Xj) (for directed graphs), and of course, Xi ⊆ Xj ,
Yi ⊆ Yj , Z = ∅, Sgl(Z), Cardp,q(Z) where Z is Xi or Yj . Their meanings, if
not already defined are as follows for a graph G:

in(Yi,Xj) means that Yi and Xj are singletons, respectively {y} and {x},
and that (y, x) ∈ inG,
and similarly for in1(Yi,Xj) and in2(Yi,Xj).

We now discuss the encoding of assignments in terms. Let t be a special
VR-term and G be the concrete graph cval(t) (cf. Definition 2). Its vertices are
the elements of Occ0(t) (they are leaves of t). Its edges are pairs (u, (x, y)),
(u, {x, y}) or (u, {x}) where u is a useful occurrence (cf. Proposition 5) of an
edge addition operation f . Each such occurrence u creates a unique edge or loop
because t is a special VR-term. Hence, the useful occurrences of edge addition
operations can be used to represent edges. They form the set Occ1(t).
Hence, in order to encode {X1, ...,Xn, Y1, ..., Ym}-assignments, we will use,

the signatures F
VRd(n,m)
C and F

VRu(n,m)
C instead of FVRd(n)C and F

VRu(n)
C : the

signature FVRd(n,m)C is obtained from F
VRd(n)
C by replacing every edge addition

operation f by the unary operations (f, w), for all w in {0, 1}m and similarly
for FVRu(n,m)C .
We will use the projections prs as in Theorem 13 and the projections pr0s,

that delete the last s Booleans in the unary operations (f, w). It is clear that a
term t ∗ γ ∈ T (F

VRd(n,m)
C ) such that t is a special VR-term and the occurrences

of edge addition operations in t are all useful, defines a concrete graph cval(t)
and an {X1, ...,Xn, Y1, ..., Ym}-assignment γ such that γ(Xi) is a set of vertices
(for i ∈ [n]) and γ(Yj) is a set of edges (for j ∈ [m]).
However, the terms t are not any terms in T (F

VRd(n,m)
C ). We will denote

by RT (FVRd(n,m)C ) ⊆ T (F
VRd(n,m)
C ) the set of reduced terms, defined as the set

of special VR-terms in which every occurrence of an edge addition operation is
useful. (If a special VR-term is not reduced, it can be transformed into a smaller
equivalent reduced term by deletions of the edge addition operations that are
not useful). Whether t in T (F

VRd(n,m)
C ) is reduced or not does not depend

on the Boolean components of its constant symbols and unary edge addition
operations. In other words, RT (F

VRd(n,m)
C ) = pr0−1m (pr−1n (RT (FVRdC ))).

Let us sketch the construction of an FVRdC -automaton R that recognizes
RT (FVRdC ). Its set of states is {A | A ⊆ C− {⊥}}∪ {Error} with the following
characteristic properties, expressed as in Table 1, for a term t in T (FVRdC ) :

PA ⇔ t ∈ RT (FVRdC ) and A = π1 (t),

PError ⇔ t /∈ RT (FVRdC ).

The transition rules are in Table 3.
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Transition rules Conditions
∅→ ∅
a→ {a}
relabh[A]→ h(A)− {⊥} if h(a) = h(b) with a 6= b, then h(a) = ⊥
add loopa [A]→ A a ∈ A
−−→
adda,b[A]→ A a, b ∈ A
⊕[A,B]→ A ∪B A ∩B = ∅

Table 3: The transition rules of R.

All states except Error are accepting. By replacing in this table every edge
addition operation f by the unary operations (f, w) for w ∈ {0, 1}m and every
constant symbol a by (a, w) for w ∈ {0, 1}n , we obtain an automaton with the
same set of states that recognizes RT (FVRd(n,m)C ). Similar constructions can be
done for RT (FVRu(n,m)C ).
If F is a finite subsignature of FVRd or of FVRu, then it is a subsigna-

ture of FVRdC or of FVRuC for some finite set C, and F (n,m) denotes the cor-
responding subsignature of F

VRd(n,m)
C or of F

VRu(n,m)
C . Let us fix such

F (to simplify notation). For every CMS2 formula ϕ with free variables in
{X1, ...,Xn, Y1, ..., Ym} written with in if it concerns undirected graphs, or in1
and in2 if it concerns directed graphs, we define Lϕ,(X1,...,Xn,Y1,...,Ym) as the set
{t ∗ γ ∈ RT (F (n,m)) | (dcval(t)e, γ) |= ϕ}. The language LP (X1,...,Xn,Y1,...,Ym)

can be defined similarly for a graph property P independently of its logical
expression.

Theorem 27: Let F be a finite subsignature of FVRd or of FVRu. For every
CMS2 graph property P (X1, ...,Xn, Y1, ..., Ym), the language LP (X1,...,Xn,Y1,...,Ym)

is regular and an F -automaton recognizing it can be constructed from a CMS2
formula that defines P .

Proof: As for proving Theorem 13, we will construct by induction on
the structure of ϕ an F -automaton Aϕ,(X1,...,Xn,1,...,Ym) that recognizes the
language Lϕ,(X1,...,Xn,Y1,...,Ym).
1) If ϕ is ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, then one uses the classical constructions of

(product) automata for intersection and union since we have

Lϕ1∧ϕ2,(X1,...,Xn,Y1,...,Ym) = Lϕ1,(X1,...,Xn,Y1,...,Ym) ∩ Lϕ2,(X1,...,Xn,Y1,...,Ym)

and similarly for ∨ with ∪. If ϕ is ¬ϕ1, we construct an automaton that
recognizes L¬ϕ1,(X1,...,Xn,Y1,...,Ym) = RT (F (n,m))− Lϕ1,(X1,...,Xn,Y1,...,Ym).
2) If ϕ is ∃Xn.θ, then we have:

Lϕ,(X1,...,Xn−1,Y1,...,Ym) = pr1(Lθ,(X1,...,Xn,Y1,...,Ym)),

and if ϕ is ∃Ym.θ, we have:
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Lϕ,(X1,...,Xn,Y1,...,Ym−1) = pr01(Lθ,(X1,...,Xn,Y1,...,Ym)).

It is straightforward to obtain from the deterministic F (n,m)-automaton
that recognizes Lθ,(X1,...,Xn,Y1,...,Ym) a nondeterministic automaton for Lϕ,(X1,...,

Xn,Y1,...,Ym), that we determinize to get the desired one.
3) It remains to construct automata for the atomic formulas. Most of the

constructions are straightforward from the definitions, as in Theorem 13. We
only consider the atomic formulas edg(X1,X2) and in(Y1,X1).

The automaton A0 for edg(X1,X2) is close to the automaton A of Theorem
13. Its set of states is (we name the states as for A):

S0 := {0, Error,Ok} ∪ {1(a), 2(a), a(0), ab(0) | a, b ∈ C − {⊥}}.

The meanings of these states are as in Table 1 (Theorem 13) where Ok
replaces all the states a(i) and ab(i) for i ≥ 1 because here, we do not count
edges, we only want to check the existence of at least one edge from the vertex
in V1 to the one in V2. The number of states is k2+3(k+1) where k = |C−{⊥}|.
The transition rules are in Table 4. The missing transitions yield Error. Here
is an example: relaba→⊥[ab(0)]→ Error . The unique accepting state is Ok.

Transition rules Conditions
∅→ 0
(a, 00)→ 0
(a, 10)→ 1(a)
(a, 01)→ 2(a)
(a, 11)→ a(0)
relabh[0]→ 0
relabh[i(a)]→ i(c) i ∈ [2]
relabh[a(0)]→ c(0) c = h(a) 6= ⊥, d = h(b) 6= ⊥,
relabh[ab(0)]→ cd(0)

add loopa [s]→ s s 6= a(0)

add loopa [a(0)]→ Ok
−−→
adda,b[s]→ s s 6= ab(0)
−−→
adda,b[ab(0)]→ Ok
⊕[1(a), 2(b)]→ ab(0)
⊕[2(b), 1(a)]→ ab(0) (possibly a = b)
⊕[s, 0]→ s all s
⊕[0, s]→ s

Table 4: The transition rules of A0.

However, the automaton A0 has been constructed to work correctly on re-
duced terms, not on all terms. The automaton Aedg(X1,X2) is then obtained
by a product with the one that recognizes reduced terms, so that it recog-
nizes L(A0) ∩ RT (FVRd(2,0)C ). Its number of states is thus 2k.O(k2) instead of
k2 + 3(k + 1). In the following remark, we will overcome this difficulty.
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We now construct an automaton B for in1(Y1,X1), intended to work on
reduced terms. Its set of states is :

S00 := {0, Error,Ok} ∪ {1(a) | a ∈ C − {⊥}} ⊆ S0.

Their meanings are described in Table 5, where W1 denotes the value of Y1.
As examples of Error transitions we have:

⊕[Ok, 1(a)]→ Error , (add loopa , 1)[1(b)]→ Error if b 6= a, and

(
−−→
adda,b, 1)[Ok]→ Error.

The unique accepting state is Ok.

State s Property Ps
0 V1 =W1 = ∅
1(a) V1 = {v},W1 = ∅, portcval(t)(v) = a

Ok V1 = {v}, W1 = {e}, in1cval(t)(e, v)
Error All other cases

Table 5: Meanings of the states of B.

Transition rules Conditions
∅→ 0
(a, 0)→ 0
(a, 1)→ 1(a)
relabh[0]→ 0
relabh[Ok]→ Ok
relabh[1(a)]→ 1(b) b = h(a) 6= ⊥
(add loopa , 0)[s]→ s all s
(add loopa , 1)[1(a)]→ Ok

(
−−→
adda,b, 0)[s]→ s all s
(
−−→
adda,b, 1)[1(a)]→ Ok
⊕[s, 0]→ s all s
⊕[0, s]→ s

Table 6: The transition rules of B.

Remark 28 : The above construction associates with each subformula
θ(X1, ...,Xn, Y1, ..., Ym) of the considered formula ϕ an automaton Aθ,(X1,...,Xn,

Y1,...,Ym) that recognizes only reduced terms. This means that each of these au-
tomata repeats the verification that the input term is reduced. One can actually
postpone this verification to the very end.
Assume that for each atomic formula α(X1, ...,Xn, Y1, ..., Ym), we have an

automaton Bα,(X1,...,Xn,Y1,...,Ym) such that

Lα,(X1,...,Xn,Y1,...,Ym) = L(Bα,(X1,...,Xn,Y1,...,Ym)) ∩RT (F (n,m)).
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This means that Bα,(X1,...,Xn,Y1,...,Ym) is constructed so as to works correctly
on reduced terms, and this is what we did above for A0 and B.
Let us build Bϕ,(X1,...,Xn,Y1,...,Ym) for every all formulas ϕ by applying the

general inductive construction described above with, for the negation:

L(B¬ϕ1,(X1,...,Xn,Y1,...,Ym)) = T (F (n,m))− L(Bϕ1,(X1,...,Xn,Y1,...,Ym)).

At the end, for the input formula ϕ(X1, ...,Xn, Y1, ..., Ym), we make the
restriction to reduced terms by defining Aϕ,(X1,...,Xn,Y1,...,Ym) in such a way
that:

L(Aϕ,(X1,...,Xn,Y1,...,Ym)) = L(Bϕ,(X1,...,Xn,Y1,...,Ym)) ∩RT (F (n,m)).

Hence, we use only once and at the end, the restriction to reduced terms.
We claim that L(Aϕ,(X1,...,Xn,Y1,...,Ym)) = Lϕ,(X1,...,Xn,Y1,...,Ym). This is true by
the hypotheses on the automata Bα associated with the atomic formulas and by
the following observations:

(L ∩R) ∩ (M ∩R) = ((L ∩M) ∩R),
(L ∩R) ∪ (M ∩R) = ((L ∪M) ∩R),
R− (L ∩R) = (T − L) ∩R,
pr(L0 ∩R0) ∩R = pr(L0) ∩R,

where L,M,R, ... are sets such that L,M,R ⊆ T and L0, R0 ⊆ T 0, and pr
is a mapping from T 0 to T such that T 0 = pr−1(T ) and R0 = pr−1(R).¤

Tree-width versus special tree-width We now explain why the construc-
tions of automata are easier for bounded special tree-width than for bounded
tree-width.

Definition 29 : Special HR-terms.
We let FHRd be the signature obtained from FVRd by replacing the operation

⊕ by //. This operation symbol will be interpreted as follows: for directed p-
graphs G and H such that, as in Definition 15, π(G) − π1(G) ⊆ {⊥} and
π(H) − π1(H) ⊆ {⊥}, we let G//H be obtained from G ⊕H by the fusion of
any two vertices having the same port label a 6= ⊥. An HR-term is a term t in
T (FHRd) such that:

1) π(t0)− π1(t
0) ⊆ {⊥} for every subterm t0 of t,

2) for every relabelling relabh occurring in t, we have h(⊥) = ⊥,
3) for every operation

−−→
adda,b, add

loop
a that occurs in t, we have a 6= ⊥

and b 6= ⊥,
4) the constant symbol ⊥ has no occurrence in t.
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We denote by HT (FHRd) the set of HR-terms. The notations FVRdC and
F
VRd(n,m)
C extend in the obvious way, yielding sets likeHT (F

HRd(n,m)
C ), that are,

clearly, regular languages. These definitions also extend to undirected graphs,
giving FVRu , FVRuC , FVRu(n,m)C etc... Every graph is the value val(t) of some
term HR-term t, using a large enough set of labels.

Proposition 30 : The tree-width of a graph is the least integer | C− {⊥} |
−1 such that this graph is the value of a term in HT (FHRdC )∪HT (FHRuC ). There
are linear-time algorithms for converting a term t in HT (FHRdC ) ∪ HT (FHRuC )
into a tree-decomposition of width | C − {⊥} | −1 of the graph val(t) and
vice-versa.

Proof: The proof is an easy variant of the proof of Proposition 18. It is
done in detail in [Cou], Chapter 2 (with slightly different definitions).¤

Let us go back to Definition 26, where we discuss the encoding of assignments
in terms. Let t be an HR-term and G be the concrete graph cval(t). Its edges
are in bijection with Occ1(t), defined as for special VR-terms.
However, its vertex set is isomorphic to a quotient of Occ0(t), by the equiva-

lence relation ≈ expressing that two leaves x and y in Occ0(t) have a least com-
mon ancestor u that is an occurrence of //, and that portt(x, u) = portt(y, u) 6=
⊥. This implies that they are fused at some stage and yield the same vertex of
G. Hence, we loose the nice bijection between vertices of val(t) and particular
occurrences of symbols in t. It follows that a set X ⊆ Occ0(t) represents cor-
rectly a set of vertices of val(t) if and only it is saturated for ≈ (is a union
of classes of this equivalence). The automata analogous to Bϕ,(X1,...,Xn,Y1,...,Ym)

would have to check this saturation property, which would increase substancially
their numbers of states.

There is actually another possibility for representing vertices in terms. Let
us assume that G = val(t) is a graph (and not a p-graph), hence that its
vertices are all ⊥-ports. This implies that each vertex corresponds to a unique
occurrence of an operation relaba−→⊥. Such occurrences, let us denote their set
by Occvert1 (t), can be chosen to represent the vertices. In this case, an edge will
be represented by a node in the term that is below the nodes representing its ends.
This is not a difficulty for constructing an automaton for the atomic formulas
in1(Y1,X1), in1(Y1,X1) and in1(Y1,X1) like B in the proof of Theorem 27. These
automata have also k+3 states (where k =| C−{⊥} |), but the construction of
automata for edg(X1,X2) is more complicated. Since edg(X1,X2) is equivalent
(for directed graphs) to ∃Y1(in1(Y1,X1)∧ in2(Y1,X2)), the general construction
can be used, and it produces an automaton with 2O(k

2) states. (The term k2

is due to the use for ∧ of a product of two automata, and the exponentiation
is due to the determinization that is needed because of ∃Y1). However, it is
proved in [Cou], Chapter 6 that every deterministic automaton for edg(X1,X2)
must have at least 2k(k−1) states. Hence, with this representation, an atomic
formula like edg(X1,X2) needs already fairly "large" automata.
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Question: Does there exist alternative encodings of tree-decompositions
of width k by terms (or labelled trees) for which the automata as-
sociated with edg(X1,X2), in1(Y1,X1), in1(Y1,X1) and in1(Y1,X1)
have, say, O(k2) states?

7 Conclusion

Optimizations for the constructions of automata are developped in [Cou], Chap-
ter 6. However, these constructions are difficult if not impossible in practice,
because of the sizes of the automata. This difficulty is not avoidable as proved
by [Wey], [FriGro] and [StoMey]. It is not avoidable for general monadic second-
order formulas, but even for basic graph properties like connectedness, the min-
imal FVRu[k] -automaton has more than 22

k

states ([Cou], Chapter 6). A more
attractive possibility is to avoid "compiling" automata, but to compute (and
recompute) the transitions that are needed for a particular input term. Such
fly-automata are introduced and used in [CouDur].

The main problems left open about clique-width and special tree-width are
the parsing problems. In short, they are the problems of approximating in poly-
nomial time the clique-width of a graph with multiple edges and the special
tree-width of a simple graph. These problems are presented in Definition 8
(Section 2) and at the end of Section 5.
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