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Abstract—Production grids are complex and highly variable
systems whose behavior is not well understood and difficult to
anticipate. The goal of this study is to estimate the impact of
the variability of those infrastructures on the performance of
workflow-based applications. A probabilistic model of workflows
execution time is proposed and evaluated. Results show that the
variability of the EGEE grid infrastructure impacts the execution
time of a particular medical image analysis application by a
factor 2. The model gives interesting insights on the grid behavior
for different application parallelization modes.

I. PERFORMANCE ANALYSIS ON PRODUCTION GRIDS

In many scientific areas, applications with stringent require-

ments for high performance computing, large data sets analysis

and complex computation flows have emerged. Pushed by

these new computational challenges very large scale produc-

tion grids infrastructures have been deployed world-wide. Such

widely distributed systems have been operating 24/7 over

several years now, providing a sustained high end computing

facility that many applications exploit routinely. The expe-

rience gained exploiting these systems shows that they can

hardly be compared to traditional clusters performing on local

area networks. For instance, we showed in a previous work that

setting a timeout value to the jobs is mandatory on production

grids whereas it is useless on most clusters [1]. Such differ-

ences may come from various factors. First, the reliability and

homogeneity of clusters and local networks cannot be assumed

on grids. Second, grids face very variable load patterns and

race conditions originating from the shared exploitation by

large user communities. Finally, the heterogeneity and the

volatility of grid resources further increases the variability.

Consequently, production grids exhibit hard to predict be-

haviors that result in variable overheads imposed to the compu-

tations from the users point of view. For instance, we observed

that over thousands of computation tasks submitted to the

EGEE production grid1 in the same experimental conditions

during months, an average delay of approximately 5 minutes

with a standard deviation of the same order of magnitude (5

minutes) is experienced. For grid applications requiring the

submission of a very large number of short (less than 1 hour

long) jobs in parallel, such overheads are far from being negli-

gible. As a result, applications computation time (makespans)

1Now affiliated to the University of Amsterdam
2Enabling Grids for E-sciencE, http://www.eu-egee.org

are hardly forecastable, which makes performance analysis on

production grids very difficult. In particular, the impact of

the variability of the platform on the application should be

quantified, as some works already suggested that it may have

a strong negative impact on the applications [2].

The objective of this paper is to propose a grid application

makespan model that (i) aims at explaining the performance

of applications on production grids, (ii) allows to study the

impact of grid variability on applications and (iii) can be

used in the future for optimization. Workflow-based loosely

coupled applications that performs well on production grid

infrastructures are considered. The model is validated on the

EGEE grid in real conditions and results are illustrated using

a scientific application dedicated to medical image analysis.

A. Probabilistic modeling

Due to their scale, heterogeneity and overall middleware

complexity, production grids are evolving systems difficult to

model or even to simulate using fine grain approaches. In

production conditions, the middleware characteristics are not

well known: scheduling policies are let to the responsibility

of local system administrators, middleware parameters and

versions may differ from one site to another one. Further-

more, grids typically experience variations in the number of

resources available (new resources provision, system failures

or network interruptions. . . ). Thus, to tackle this complexity,

we introduced a probabilistic model of the latency imposed

to single jobs in [1]. A probabilistic approach provides a

black-box model which as been successfully applied in many

scientific areas to model complex systems [3], [4], [5], [6]. In

this paper, we propose to model the makespan of workflow-

based applications which are representative of a large class of

scientific grid applications. The complexity of the system will

be considered as an alea: R will denote the random variable

associated to the grid overhead and Σ will be the makespan

of the application workflow.

B. Parallel execution of workflows

Workflow-based applications are loosely coupled applica-

tions composed by computation tasks with limited dependen-

cies and typically expressed using a graph ordering a group of

computing services. Workflows have raised a lot of attention

in the grid community over the last years as they provide a



simple and flexible framework for reusing existing codes and

expressing parallel applications [7], [8].

In the reminder of this paper we consider without restriction

that the target application is represented as a graph of functions

(or services) whose input/output parameters (or ports) are

linked with dependencies (see figure 1 for an example). Such

a flow of services is defined independently from the data sets

to process. It should be noted that this model differs from

Directed Acyclic Graphs (DAGs) of tasks that are commonly

used on grids. Still, our model remains valid as DAGs can be

viewed as the instantiation of a flow of services over the data.

Each service in the workflow is executed on the grid and

its execution time is impacted by the grid latency. Moreover,

each service is potentially invoked many times depending on

the number of data segments that need to be processed for

the application. The goal of a grid workflow engine is to

optimize the use of grid resources to execute the application

in a minimal time. Typically, services with no dependencies in

the workflow graph are executed concurrently on different grid

resources: this execution mode is our baseline experimental

set up in the following as it is implemented in all services

workflow managers for grids (e.g. [9], [10], [11], [12]). To

further optimize, different data segments processed by a single

service can be executed concurrently: in this case, we refer

to Data Parallel (DP) execution mode. In addition to DP,

sequentially linked services can be pipelined (different data

segments can be processed by sequentially linked services

concurrently): we refer to Data and Service Parallel (DSP)

execution mode in this case.

II. WORKFLOW MAKESPAN MODELING

In this section, a probabilistic model of a workflow of

services is presented. It yields an estimation of the expectation

and standard-deviation of the makespan of the workflow, given

that the distribution of the grid latency is known.

A. Critical path of the workflow

In a flow of services, a path denotes a set of services linking

an input of the workflow to an output. A path is defined

independently from the data to process: it will be instantiated

at runtime on a set of data segments. The critical path of the

workflow denotes the longest path in terms of execution time.

B. Notations

Let nW denote the number of services on the critical

path of the workflow and nD denote the number of data

segments to be processed (nD corresponds to the degree of

DP that will be achieved). Let i ∈ [0, nW − 1] denote the

index of the ith service of the critical path of the workflow.

Similarly, let j ∈ [0, nD − 1] denote the index of the jth

data segment to be processed by the workflow. Ti,j denotes

the duration in seconds of the processing of the data set j

by the service i. It corresponds to the total time from the job

submission to its completion. Ti,j = ri,j + Ri,j is made of

an application-dependent part ri,j and the grid latency part

Ri,j . ri,j corresponds to the computation time of service i

on the data segment j. It is supposed to be a fixed value

(predictable execution time) by opposition to Ri,j which is a

random variable. Ri,j will model all the sources of variability

coming from the infrastructure. For instance, the variability

coming from the performance of the grid nodes or the network

connection of the execution site will be included in this

variable. To study the impact of the variability of the grid

on the performance of the application, the case where Ri,j is

a fixed value will also be considered in the following.

The goal of the next sections is to express the application

makespan Σ with respect to nD, nW , ri,j and Ri,j and to the

parallelism configuration.

C. Hypotheses

The nD data segments on which the application is iterated

are assumed to be of equal size, which is realistic for applica-

tions such as parameter sweeps. Consequently, the execution

times ri,j of the jobs can be assumed to be independent from

the data: ∀j, ri,j = ri. Performance differences between the

CPUs will be included in Ri,j .If the variability of the execution

times of the services has to be taken into account, one should

also consider the execution times of the services as random

variables. Then, in the following, Ti,j notations should not be

expanded (into ri + Ri,j) and the distribution of this random

variable could be determined with respect to the distributions

of the execution times and of the grid latency Ri,j . Yet, in

this work, we concentrate on the variability introduced by the

grid infrastructure itself rather than on the intrinsic variability

of the algorithms, which is completely application-specific.

Ri,j are assumed to be independent random variables: the

dependencies among the job latencies are neglected. Given the

scale of production grid infrastructures, this hypothesis can

be considered as realistic. What is assumed here is that the

application itself does not impact the grid latency significantly.

Bottlenecks may challenge this hypothesis. For instance, the

submission time of several jobs from the same machine is very

likely to depend on the number of submitted jobs. Taking this

phenomenon into account may not be easy from a general

perspective: understanding how jobs interact with each other

in the whole system seems difficult. Still, for specific steps

such as the submission, some models could be integrated to

take into account the interactions between jobs.

The grid latency is assumed not to depend on the nature

of the submitted jobs. It is true that the queuing time of the

job in the batch of a computing center is highly dependent

on the expected duration of the task. However, as it is done

by the huge majority of grid end-users, the expected wall-

clock time of the job is assumed to be set to its default

value, which is supposed to be much higher to the effective

duration of the submitted jobs. Consequently, the distribution

of the grid latency is assumed to be independent from i.

Similarly, the distribution of the grid latency is supposed to

be independent from the data (i.e the distribution of Ri,j is

independent from j). Assuming that the distribution of the

latency is independent from the service and from the data is not

so critical. Considering applications handling large volumes of



data (i.e applications for which data transfer times would be

of several minutes), one could simply include it into the ri

value. Problems may only arise for applications for which the

data impacts the job life cycle inside the system, i.e disturbs

its submission, scheduling or queuing time. If they ever exist,

such interactions should be of limited importance and still

negligible with respect to the average grid latency. Thus, Ri,j

are assumed to be independent and identically distributed (iid)

random variables.

D. Workflow makespan expression

Under those hypotheses, the expression of the makespan of

the workflow during a DP or DSP execution can be derived.

DP case. All the data segments are processed concurrently

and the execution is synchronized after each service invoca-

tion.

ΣDP =
∑

i<nW

max
j<nD

{Ti,j} =
∑

i<nW

max
j<nD

{ri + Ri,j}

=
∑

i<nW

ri +
∑

i<nW

max
j<nD

{Ri,j} (1)

DSP case. All the data segments are processed concurrently

and the services are pipelined.

ΣDSP = max
j<nD

{

∑

i<nW

Ti,j

}

= max
j<nD

{

∑

i<nW

(ri + Ri,j)

}

=
∑

i<nW

ri + max
j<nD

{

∑

i<nW

Ri,j

}

(2)

E. Deterministic case

If the latencies Ri,j were fixed values, then for every i and

every j, Ri,j = R̄ and the above expressions simplify:

ΣDP = ΣDSP =
∑

i<nW

ri + nW .R̄ (3)

In this case, there is no difference between the DP and DSP

cases. This deterministic model will be used to forecast the

performance of the application in absence of variability of the

latency. It corresponds to a theoretical non-variable system

which has the same average latency as the production grid.

F. Probabilistic case

The goal is to determine the expectation of the makespan

of the workflow E(Σ) and its standard deviation σ(Σ) as a

measure of its variability. In the following, given a random

variable X , fX will denote the probabilistic density function

(pdf) of X and FX its cumulative density function (cdf).

DP case: thanks to the linearity of the expectation operator

and to the fact that ri is a fixed value, equation 1 gives:

E (ΣDP ) =
∑

i<nW

ri + nW E

(

max
j<nD

{Ri,j}

)

Given that the cumulative density function of the random

variable K = maxj<nD
(Ri,j) is FK = FnD

Ri,j
, we finally

have:

E

(

max
j<nD

{Ri,j}

)

= nD

∫

∞

−∞

tfRi,j
(t)FRi,j

(t)nD−1dt,

Thus:

E(ΣDP ) =
∑

i<nW

ri + nW nD

∫

∞

−∞

tfRi,j
(t)FRi,j

(t)nD−1dt (4)

Moreover, given that two jobs are independent, equation 1

gives:

σ (ΣDP )
2

= nW σ

(

max
j<nD

{ri + Ri,j}

)2

And thus, because ri are fixed values:

σ (ΣDP )
2

= nW σ

(

max
j<nD

{Ri,j}

)2

Given that σ(maxj<nD
{Ri,j})

2 = E(maxj<nD
{Ri,j}

2) −
E(maxj<nD

{Ri,j})
2 and that E(X2) =

∫

∞

−∞
t2fX(t)dt, we

have:

σ (ΣDP )
2

= nW σ

(

max
j<nD

{Ri,j}

)2

= nW

[

nD

∫

∞

−∞

t2fR(t)FR(t)nD−1dt

−n2

D

(
∫

∞

−∞

tfR(t)FR(t)nD−1dt

)2
]

(5)

DSP case: The max operator prevents from simplifying the

expressions of the expectation and standard-deviation of the

makespan. Yet, those values can still be computed numerically,

as it will be done in section III.

E(ΣDSP ) =
∑

i<nW

ri + E

(

max
j<nD

{

∑

i<nW

Ri,j

})

(6)

σ(ΣDSP ) = σ

(

max
j<nD

{

∑

i<nW

Ri,j

})

(7)

III. EXPERIMENTAL RESULTS

The goal of this section is to present experimental results

that will be used to:

1) evaluate the relevance of the model presented above to

explain the makespan of the application; and

2) study the impact of the latency variability on the execu-

tion of a workflow on a production grid.

An application to medical image analysis algorithms assess-

ment is first introduced. The results obtained running this

application on the EGEE grid are then presented.



Fig. 1. Bronze standard production application workflow: six ser-
vices are executed on the grid for each image pair to process. The
AccuracyEvaluation service is a lightweight process combining all
former results that is not taken into account here.

A. Medical image analysis application

The application used for these experiments is designed to

evaluate a class of medical image analysis algorithms known

as rigid registration algorithms. It is a compute intensive

optimization procedure that evaluates a bronze standard from

a statistically significant image set [13]. It is workflow-based

and very scalable as the larger the data set to process, the more

accurate the statistical estimate. The simplified application

workflow is illustrated in figure 1. The inputs for this workflow

are pairs of images corresponding to different acquisitions of

a same patient. Up to 126 Magnetic Resonance Image pairs

of the brain were available for the experiments reported here.

B. Experimental conditions

The medical application was executed on different input

data sets sizes, ranging from 12 to 126 image pairs. Each

one of the input image pairs led to 6 job submissions on the

grid. Thus, the amount of tasks submitted ranged from 72 to

756. We used the MOTEUR workflow manager developed in

our group to run the application [12]. It enables the execution

of flows of services on the EGEE grid both in DP and DSP

modes. With more that 30’000 CPUs distributed over 200

sites and more than 5’000 registered users, EGEE is a very

large scale shared infrastructure. The workflow executions

were not simultaneous. Submitting all the executions simul-

taneously would not have been possible without introducing

strong biases in the results. Indeed, the submission middleware

would have become a bottleneck and it is very likely that

the executions would have disturbed each other. Changes in

the grid status (number of available sites, average load. . . )

may thus happen between those runs. They are captured by

the fitting of the parameters of the latency distribution that is

adapted to the execution conditions, as developed below.

On a production grid infrastructure, setting a timeout to

tasks is mandatory because a small fraction of tasks are

likely to remain blocked for hours in a waiting queue or

even to get lost: the timeout value prevents the application

from facing outliers. Because of that, and taking into account

failures that are likely to occur, tasks need to be resubmitted if

necessary. For example, on the EGEE grid, the tasks success

source

150s

10s

sink

600s

Fig. 2. Considering this workflow, if Ri,j are assumed Gaussian with
µ = 300 s and σ = 200 s, and if a single data segment is processed,
then the critical path of the workflow is the plain one which is expected to be
900 s (300 s for the expected latency + 600 s for the execution) whereas the
expectation of the dashed one is only 760 s (2 × 300 s + 160 s). But as soon
as the number of data segments is greater or equal to 3, then the critical path
of the workflow becomes the dashed one: for 3 data segments, the expectation
of the dashed path is 1098 seconds whereas it is 1069 seconds for the plain
path (using equation 4).

rate was around 84% at the time of those experiments. In

those experiments, the timeout value was arbitrarily set to

1 hour (which is far greater than the services wall-time ri)

and no retry was performed in order to prevent the makespan

to be influenced by resubmissions that are not modeled.

Thus, timed-out jobs are neglected. A strategy to optimize

the timeout value is described in [1].

C. Model computation

To compute the probabilistic model presented in sec-

tion II-F, the required parameters are (i) the deterministic part

of the running time of each service on a single data set ri and

(ii) the mean µ and standard deviation σ of the grid latency.

The ri values were obtained by benchmarking the workflow

services during various run and averaging the results. In the

experiment presented here, µ and σ are estimated a posteriori,

from the logs of the execution, in order to keep off the

problem of estimating up-to-date parameters. Indeed, the goal

of this experiment is not to obtain an up-to-date model of the

distribution of the grid latency but rather to validate a model of

the application, assuming that the distribution of the latency is

known. µ and σ were thus evaluated from the execution trace.

Estimating them a priori requires a dedicated grid monitoring

system, which is out of this paper scope.

The first step required for the computation of the model is

to determine the critical path of the workflow. Because of the

variability of the latency, the expected critical path depends on

nD, as suggested by figure 2. Thus, we determined the critical

path of the workflow separately for each workflow run.

The value of the makespan obtained from the deterministic

model is an estimate of the performance that could be obtained

in absence of variability. As suggested by equation 3, it is
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Fig. 3. Comparison of the makespan of the application in the experimental
and model cases. Top: DP case. Bottom: DSP case. The DP case is less
robust to the latency distribution tail, which explains its weaker performance.
The impact of the variability of the latency can be noticed by comparing the
deterministic (bottom dashed green curves) case with the experimental (plain
red) one. Variability leads to a factor 2 performance drop on this application.

computed by considering that the latency is a fixed value (the

average value of the observed latency).

D. Results

Figure 3 displays the experimental results for DP and DSP

executions. On both graphs, the experimental data is depicted

in plain red. Probabilistic models are represented with squares

and deterministic ones with crosses. For the experimental and

deterministic cases, a linear regression is superimposed. For

the probabilistic cases, intervals corresponding to [µ−3σ, µ+
3σ] are also drawn.

IV. MODEL EVALUATION AND PERFORMANCE ANALYSIS

A. Metrics for the analysis

To analyze performances, the first relevant metric from the

user point of view is the speed-up, measured as the ratio of

the makespan over the sequential execution time. The most

interesting speed-up value is the maximal one obtained on

the application, which in this case is the one obtained for the

largest input data set.

To have a finer interpretation of the results, the global be-

havior of the application makespan with respect to the number

of input data sets can be approximated with straight lines

estimated through a linear regression. Those fitted straight

lines are also plotted on figure 3. The relative error of this

approximation with respect to the experimental data is 7.8%

for the DSP case and 11.6% for the DP one.

The y-intercept and slope of the fitted lines can then

be considered as metrics. The y-intercept value, expressed

in seconds, measures the latency of the application on this

infrastructure. This value corresponds to the nominal latency

of the grid added to the execution time of a single data set by

the application workflow: it is the incompressible amount of

time required to access the infrastructure. The slope of the

fitted line, expressed in seconds by jobs, is related to the

throughput of the application. This value measures the data

scalability of the infrastructure, that is to say its ability to

process huge data sets with the same level of performance.

The values of those metrics are reported in table I. The

two first columns of this table correspond to the experimental

values for the DP and DSP cases. The two next ones cor-

respond to the values computed with the probabilistic model

of section II-F, from measured mean and standard-deviation

of the latency. The two following columns correspond to the

values computed with the deterministic model of section II-E.

Those values correspond to the ones that would have been

obtained if the infrastructure were not variable.

B. Relevance of the probabilistic model

First, from a qualitative point of view, the results shown

on figure 3 exhibit some singular behaviors. For instance,

even if the global trend of the curves is to increase with

the number of input image pairs, one can notice some local

decreases, as between 50 and 75 input images for the DSP

case and between 75 and 100 input images for the DP one.

It is correctly explained by the model, thanks to the fitting of

the parameters (mean and standard-deviation of the latency) to

the experimental data. Actually, those local decreases can be

explained by a diminution of the latency mean and standard-

deviation between those values which do not correspond to

simultaneous executions, as already mentioned.

Another singular behavior are the measures done for 50
input images pairs. Indeed, the DP case is there faster than

the DSP one. Here again, this behavior can be explained by

changes of the grid status between those two runs: it would not

have happened if the execution were simultaneously submitted.

However, the probabilistic model is again able to explain this

behavior thanks to the a posteriori fitting of the Gaussian

distribution to the observed one.

From a quantitative point of view, and as figure 3 shows,

the probabilistic model is quite relevant and able to explain

the experimental results (on this figure, experimental results

are displayed in plain red and values from the probabilistic

model are depicted with squares). The mean relative error

of the probabilistic model with respect to the experimental

data is 6.7% for the DSP case and 8.4% for the DP one.

The fact that this error is greater in the DP case than in the

DSP one is consistent because the makespan of the application

is more affected by distribution tails in the DP case than in

the DSP one. Indeed, in the former case, the processing of

every data segment is depending on the processing of all the



Experiment Probabilistic Model Deterministic Model
DP DSP DP(eq 4) DSP(eq 6) DP(eq 3) DSP(eq 3)

y-intercept 4778.0 3628.2 4921.6 4002.4 2195.2 2214.5
(seconds)

Slope 71.7 31.7 72.2 26.0 28.6 17.4
(s/data sets)

Max speed-up 7.0 13.2 6.5 13.5 15.9 21.7

TABLE I
METRICS VALUES. THE RELEVANCE OF THE PROBABILISTIC MODEL CAN BE NOTICED BY COMPARING COLUMNS 4 AND 5 TO COLUMNS 2 AND 3. THE

IMPACT OF THE VARIABILITY OF THE LATENCY ON THE APPLICATION CAN BE QUANTIFIED BY COMPARING COLUMNS 6 AND 7 TO COLUMNS 2 AND 3.

others because the execution is synchronized after each service

invocation. It is also worth noticing that all the experimental

values stay inside the [µ − 3σ, µ + 3σ] interval. It shows

that the model is able to provide bounds for the error it

makes with respect to the experimental case. The observed

error basically indicates how realistic our assumptions are. In

particular, assuming that job latencies are i.i.d variables seems

reasonable here.

The speed-up figures measured and displayed in table I

(7.0 and 13.2 in the DP and DSP cases respectively) are

very close to the probabilistic model estimates (6.5 and 13.5

respectively), showing that MOTEUR efficiently enables the

workflow, data and service parallelism without introducing a

significant performance loss.

C. Impact of the service parallelism

It has been explained in section II-F that in a deterministic

system, the DP and DSP cases lead to identical performance.

Considering the maximal experimental speed-up values, the

DSP case was 1.8 times faster than the DP one. The y-intercept

metric is 1.3 times higher in the DP case than in the DSP one.

The slope ratio comparing those two cases is 2.3.

The fact that service parallelism does speed the execution

up can be explained by the service parallelism making the

application less sensitive to distribution tails. If no variability

was possible (deterministic model), the impact of service

parallelism would indeed be lower: the maximal speed-up ratio

would be 1.4, the y-intercept ratio would be 1.0 and the slope

ratio would be 1.6. It confirms the behavior described above:

the more variable the infrastructure, the more interesting the

service parallelism.

The impact of service parallelism is higher on the slope

than on the y-intercept value: for the experimental case, table I

shows that service parallelism reduces the slope with a factor

2.3, whereas it only leads to a factor 1.3 on the y-intercept.

It is consistent that the benefit yielded by service parallelism

mainly affects the data scalability of the application: the higher

the number of submitted jobs, the higher the probability to lie

in the distribution tail.

However, even in case of a non variable platform, there is

still an impact of service parallelism on the slope of the straight

lines and thus on the maximal speed-up, whereas there is no

more on the y-intercept value. This can be explained by the

fact that service parallelism reduces the mean grid latency due

to sequential procedures such as the submission time. Indeed,

if service parallelism is not present, waves of simultaneous job

submissions occur, whereas submissions are more spread over

time in case of service parallelism. This explains the impact

of service parallelism on the scalability of the application.

D. Impact of variability

The impact of the variability of the grid latency on the

makespan of the application is represented by the distance

between the dashed green and plain red curves on figure 3.

Considering the values of table I, variability led to a maximum

speed-up reduction factor of 2.4 for the DP case and 1.6
for the DSP one. If the infrastructure were deterministic, we

would obtain a maximal speed-up of 21.7 in the DSP case,

whereas it is only 13.2 there. Considering the y-intercept

metric, variability leads to an increased factor of 2.24 for the

DP case and this factor is 1.8 for the DSP one. Variability

also introduces a 2.5 increase factor on the slope metric for

the DP case and a 1.5 one for the DSP case. Variability has

more impact on the DP case than on the DSP one. Indeed, as

already mentioned before, the DP case is far less robust than

the DSP one.

The estimates made for a deterministic system show that

an additional speed-up in the order of 2 can be expected by

adopting strategies to reduce the system variability.

E. Analysis of the grid’s latency

The total mean latency introduced by the grid is slightly

growing with the number of input data sets, as displayed on

figure 4. This figure plots the mean latency obtained for the DP

and DSP cases and identifies the different sources of latency,

namely submission, scheduling and queuing times and the

overhead added to the wall-time. These values were obtained

by subtracting the average benchmarked wall-time to the av-

erage actual wall-time of the tasks. The slow latency increase

shows that the large infrastructure is far from saturation.

Table II displays the mean values obtained for each entity

of the infrastructure. The most important source of latency is

the queuing time, as it is easily understandable on a multi-

users platform. Then comes the overhead on the wall-time,

that includes data transfers and performance of the running

hosts. Submission and scheduling times are the less important

sources of overhead. The latency coming from the load of

the infrastructure is distributed among those four entities.

Yet, most of it may be included in the queuing latency. The

latency coming from the wall-time of the jobs covers the



Fig. 4. Mean overhead for each grid’s component. The standard deviation of the total latency is plotted on the corresponding curve. Left: DP. Right: DSP.

Entity Mean latency (s)

Submission 182
Scheduling 110

Queuing 308
Walltime 279

Total 880

TABLE II
MEAN GRID OVERHEAD FOR EACH COMPONENT

heterogeneity of the machines of the grid. Indeed, the services

have been benchmarked on a particular machine and the

performance of the grid worker nodes is unknown. All those

values have been measured with the grid information system.

They are thus highly dependent on its accuracy. In particular,

too small update frequencies may disturb those measures. Yet,

applications also rely on this information system so that those

values are representative of what could be measured from the

applications.

The variability of the overhead is hardly interpretable. The

standard deviation of the total overhead varies from 390 s to

890 s but it does not exhibit global trends.

V. CONCLUSION

The probabilistic model of workflows makespan presented

in this paper captures the overall grid complexity through a

simple random latency variable. The makespan expectation

and standard deviation were derived for two different paral-

lelization modes (DP and DSP) that are commonly used for

scientific workflows. The model validity was demonstrated on

a medical image analysis application, using prior estimation

of the grid latency distribution function. Variability is a source

of performance loss. Extrapolating the model to a theoretical

deterministic infrastructure, it was shown that a speed-up

factor of the order of 2 can be expected on our application

by reducing the impact of the grid variability.

In the future, the model could be used to anticipate the

expected makespan of applications and design optimization

strategies. For this use, the grid latency has to be evaluated

prior to the application runs. Due to variable workload con-

ditions over time, an update mechanism for this evaluation

has to be set up. A first step could be to study the grid over a

significantly long period of time in order to determine whether

latency observations for run n+1 could be induced from run n.

VI. RELATED WORK

The probabilistic modeling of applications has been investi-

gated for quite a long time. However, the sources of variability

were not the same and the application areas thus significantly

differed from this paper. Statistical investigations on grid

systems have only been introduced in the last years. A broad

survey of such methods is reported in Feitelson’s in progress

book2 which synthesizes many of his papers [4], [14]. Yet, as

far as we know, such methods have only been introduced from

the infrastructure’s point of view so far. For instance, statistical

attempts have been done to model the job inter arrival time

of a cluster of the grid. The idea of considering the whole

grid as a black box introducing a random latency on the jobs

submitted by the user is original.

Probabilistic approaches to performance analysis have been

used for quite a long time in parallel and distributed appli-

cations. Gelenbe et al [15] and Mussi and Nain [6] already

considered the execution time of a task-graph as a random vari-

able and determined its distribution from the graph parameters

and topology. Even if the motivating problem of those works

is very different to ours (in [15], the variability is related to

the topology of the task graph and in [6], only task trees are

considered), the probabilistic tools employed are very similar,

reinforcing the idea that they are adequate to model this kind

of problem.

2http://www.cs.huji.ac.il/˜feit/wlmod/



Later on, Gautama et al [5] noticed that directly using the

pdf to determine the execution time of the application leads to

heavy computations preventing from any practical application.

They thus proposed an approach based on the four first

moments of the distribution. The authors also take into account

more complex program patterns. However, parallel operators

raise problems in this framework and density functions have

to be approximated with generalized lambda distributions,

characterized by four parameters only [16]. Assuming that, the

moments of the execution time of the graph are expressed from

the ones of the tasks. Results concerning normal distributions

show that the error made by the approximation remains under

1% for 1000 parallel tasks. However, only low mean and

standard deviation values are presented due to numerical

instabilities.

Close to this approach, Schopf and Berman use stochas-

tic values, defined by their mean and standard deviation to

model the execution time of an application [17], [2]. They

define arithmetic operations using the arithmetic on normal

distributions. As in Gautama’s work, the definition of the max
operation, that is critical in a parallel execution is not obvious

and has to be “supplied by the model builder, scheduler or

user”. The application model presented in this work seems

to be quite specific whereas using a workflow representation

allows us to describe any workflow-based application in a

more generic way.

Works such as [18] and inside references propose perfor-

mance analysis methods for task scheduling into embedded

systems, considering probabilistic models of task execution

times. In this work, the authors model task execution by a

generalized continuous probability distribution and propose

a method not restricted to any specific scheduling policy.

They consider both execution time and memory aspects.

Their method is based on the construction of an underlying

stochastic process and its analysis. Even if this approach is

entirely probabilistic and makes no assumption on the nature

of the probability function of the execution time, which well

suits with our hypotheses, they assume all the tasks to be

executed concurrently on a single processor.

In practice, the probabilistic approaches mentioned in the

previous paragraphs have never been applied to production

grid infrastructures at the scale we are demonstrating here.

Even the recent work of Schopf and Berman described above

exhibits very different orders of magnitude to ours. Results

are showed on a cluster environment whereas the EGEE

grid on which we conducted our experiments is much wider.

Consequently, variability in [2] is about 100 seconds whereas

it can reach 900 seconds in our case. In our case, variability

is related to the grid latency itself, which does not occur in

such proportion on smaller platforms.

General considerations about features and architecture re-

quired for an efficient production grid (particularly focusing

on data transfers) are discussed in [19] from the experience of

the EU DataGrid project. This work focus on the large-scale

multi-users grid that we are also targeting here. However, no

model to explain the infrastructure’s behavior is proposed.
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