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Chapter 1

Interval analysis, constraint propagation,
applications

Foreword

This part of the book gathers a selection of papers from the third international
workshop on INTerval analysis, Constraint Propagation, and applications (IntCP 2006)
held at Cité des Congrès, Nantes (France) on September 25th, 2006.

The two most appealing features of interval analysis and numerical constraint
propagation, when used to solve numerical problems, are completeness and rigor.
Completeness means the ability to find all solutions, whereas rigor is the ability to
control the rounding errors due to floating-point computation. Completeness and rigor
are essential in numerous applications such as engineering design, robotics, control,
logistics, manufacturing, chemical and biological sciences and computer-aided design
to name a few. The problems in these domains involve equations, inequalities, differ-
ential equations and sometimes an objective function on variables taking their values
in the set of real numbers.

The multidisciplinary nature of constraint propagation and the general framework
offered by constraint programming give rise to a unique combination of theoretical
and experimental research providing bridges between separate, but often complemen-
tary areas. However, while interval based constraint propagation solvers have proved
particularly efficient in solving challenging instances of nonlinear numerical prob-
lems, they do not yet have enough appeal in many practical areas. One of the reasons

Chapter written by Christophe JERMANN and Yahia LEBBAH and Djamila SAM-HAROUD.
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24 Future and trends of Constraint Programming

is that they generally provide representation of the solution set that are either pro-
hibitively verbose or poorly informative. Another reason is that they are sometimes
too inefficient, especially to address real-time applications like interactive control or
animation. Recent advances have shown that these limitations are not intrinsic since
constraint propagation can be considerably improved using techniques from interval
analysis and local/global optimization.

The goal of IntCP 2006 was to emphasize the multidisciplinary nature of these re-
searches and reach out a number of communities which are increasingly interested in
interval analysis and constraint propagation. Nine papers were accepted for presenta-
tion during the workshop (http://liawww.epfl.ch/Events/IntCP2006). Their content re-
flects the trends both towards the combination of techniques from different areas, and
towards more demanding real life applications: nonlinear differential equations, ad-
vanced relaxations for global optimization, interval disjunction for continuous shaving
based reduction and for search, continuous MaxCSP, reduction methods for robotics,
and hybrid systems. Our selection contains three representative papers chosen from
these nine presentations. The first paper on radio antennas deployment, introduces
an interesting approach to model and solve a numerical sub-problem within a con-
straint programming framework. The second paper shows that numerical injectivity
can be handled rigorously via interval analysis. The third paper presents an interval
constraint propagation framework to handle hybrid systems where occur both discrete
and continuous changes.

We hope that this workshop has helped in growing the maturity of interval analysis
and constraint propagation. We would like to thank the program and referee commit-
tees who worked under tight deadlines.

Christophe Jermann,
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Djamila Sam-Haroud
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Chapter 2

Modeling and solving of a radio antennas
deployment support application

2.1. Introduction

The new theatre of operations requires an ever growing number of telecommuni-
cation systems to share a limited frequency spectrum. As a consequence, the task of
assigning frequencies becomes more and more difficult for operators taking care of
the deployment of mobile units.

Deployment support of radio antennas is a crossbreeding between a classical radio
link frequency assignment problem [AAR 03] (RLFAP) and a location analysis prob-
lem. In a classical RLFAP, the position of all antennas is known beforehand, and deter-
mines statically the set of constraints that apply on frequencies used for the communi-
cation links. This contrasts with our problem that we call LocRLFAP (for location
and RLFAP), where the links to be established between different antennas is fixed,
but the position of some antennas has to be found in a way that optimizes the overall
frequency usage while respecting all physical constraints.

Outline of the chapter: Section 2.2 gives two finite and mixed continuous domain
models of the application, and compares their performance. Section 2.3 introduces a
new continuous Euclidean distance global constraint. Section 2.4 presents how this
constraint can fit into the applications’ model and what computational and qualitative
improvements this global constraint enables.

Chapter written by MichaelHEUSCH.
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26 Future and trends of Constraint Programming

2.2. Two simple models for the application

After having introduced a simple discrete model of our problem, we motivate why
we wish to shift it to mixed domains. We then describe the search algorithm we use
and analyse its performance on our experiments.

2.2.1. A first finite domain model

Call S0, . . . , Sn the set of sites that host antennas and fij the discrete frequency
used to establish a link from Si to Sj . For two sites Si and Sj positioned at (xi, yi) and
(xj , yj), the square of the Euclidean distance between them is given by dist(Si, Sj) =
(xi − xj)

2 + (yi − yj)
2.

The set of available frequencies is discrete and discontinuous. Discrete constraints
applied solely to frequencies are the following.

– On each site, the frequency used by a transmitter must be at an absolute value
distance from the frequencies of the receivers:

∀(i, j, k) / i �= j, i �= k, |fij − fki| > Δtr

– An absolute value constraint applies on all bidirectional links:

∀(i, j) ∈ Ed, |fij − fji| = Δb

We now list all Euclidean distance based constraints.

– For security and interference reasons, a minimum distance must be enforced
between any two sites:

∀(i, j) / i �= j, dist(Si, Sj) ≥ dm (2.1)

– If there is a link from Si to Sj , reachability of the link implies a maximum
distance constraint:

∀(i, j) / i �= j, dist(Si, Sj) ≤ dM (2.2)

– Two levels of compatibility are imposed between links established from remote
or near sites ∀(i, j, k, l), i �= j, i �= k, j �= l:

dist(Si, Sj) ≥ dl ∨ |fik − flj | > Δl (2.3)

dist(Si, Sj) ≥ dL ∨ |fik − flj | > ΔL (2.4)

The purpose of the optimization problem is to minimize the maximal frequency
used by all links while respecting all operational constraints.
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2.2.2. Shifting the model to mixed domains

Eclair [LAB 98], the finite domains constraint solver we use to tackle this problem,
allows us to model all these discrete constraints with constructs that ensure equiva-
lence with the mathematical model. Euclidean distance constraints can be discretized
and decomposed using square and linear term constraints. Position variables are given
by domain bounds, and the filtering algorithms that deal with the absolute value con-
straints take advantage of enumerated domain variables.

However, as Euclidean distance constraints are fundamentally continuous, it is in-
teresting to see the advantage of reformulating this problem into a mixed model. When
doing this with interval constraints, the mathematical model can be preserved and all
that changes is the consistency algorithm used to solve the constraints on continuous
variables. We achieve this with a generic HC4[BEN 99] local consistency algorithm
to propagate Euclidean distance constraints, whereas the other constraints remain han-
dled by the discrete constraint solver. The only mixed discrete-continuous constraints
of our model are disjunctions as in [2.4]. Both model components (discrete and con-
tinuous) obey a fixed point semantics which is governed by synchronization of these
disjunctions.

2.2.3. Description of the search algorithm

After testing chronological order, minimum domain variable selection, and the
heuristics proposed in [BES 96] we developed a new strategy. For frequency variables
we choose the variable with smallest domain and the greatest number of attached
constraints (in case of ties); for postitions we choose the variable with the largest
domain first. This heuristic proved to perform the best on our examples. Also, as our
model is mostly under-constrained on positions, one can slightly improve the search
algorithm when exploring the positions subtree by using a heuristic introduced by
Gelle [GEL 03]. This value selection heuristic refines the dichotomic search principle
we used previously. In addition to splitting each domain in two parts at each choice
point, it first explores the value at the middle of the domain. By orienting the search
towards a point at the center of the box, one hopes to select a region where one is most
likely to find a solution.
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2.2.4. Analysis of the performance on progressive deployment problems

We compared both models performance on a set of six test instances1 that represent
networks with between 5 and 10 sites 2. One familiar with the RLFAP shall notice
that the LocRLFAP is much more difficult to solve: not only does it contain a great
number of disjunctions, but the number of constraints also grows much faster for a
same number of sites.

We consider scenarios where part of the sites locations is relaxed. We did not
study all 2n possible cases but rather a chronological progressive relaxation from the
problem where all sites are fixed. We first loosen up S0, then S0 and S1, etc. up to
the case where all sites are freed. When sites 0 to i out of 10 sites are relaxed we
call the scenario L0..i

10 . We give the computational results of the instances with 9 and
10 sites on Tables 2.1 and 2.2. Remarkably, the difficulty to solve the LocRLFAP

discrete model hybrid model
Instance Timems Fails Timems Fails

L∅9 3120 9192 5430 9196
L0

9 830 3270 1890 3265
L0..1

9 930 3319 1990 3306
L0..2

9 1410 6754 3880 6725
L0..3

9 1420 6768 3870 6733
L0..4

9 430 655 760 644
L0..5

9 440 646 750 634
L0..6

9 140 370 360 422
L0..7

9 70 140 285050 75737
L0..8

9 90 148 240 168

Table 2.1. Analysis of the solving of the instance with 9 sites

varies strongly and non-monotonously according to the number of relaxed site posi-
tions. On the example with 9 sites, one can observe differences of up to three orders
of magnitude between the easiest and the most difficult instances. Except from L0..7

9 ,
the difficulty is generally analogous between the discrete and hybrid models. For this
particular case, almost all backtracks (precisely 75146 out of 75737) take place in the
continuous part of the search tree; this suggests that the local-consistency enforced
by HC4 on the continuous distance constraints is not sufficient to efficiently solve the

1. For confidentiality reasons, we could not use real numerical data. However, Thales has pro-
vided us with a slightly simplified testbed that it considers realistic and representative of the
LocRLFAP’s difficulty.

2. All experimentations are performed on a 1.6Ghz Pentium M-735 laptop with 512Mb RAM.
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discrete model hybrid model
Instance Timems Fails Timems Fails

L∅10 86.540 156.487 136.350 156.489
L0

10 2.894.490 8.422.085 7.034.800 8.397.394
L0..1

10 465.510 641.425 893.360 585.919
L0..2

10 210.940 253.606 358.930 253.204
L0..3

10 143.240 162.252 238.950 161.624
L0..4

10 11.720 16.146 17.110 12.639
L0..5

10 11.670 16.040 17.630 12.756
L0..6

10 3.330 8.529 8.590 9.058
L0..7

10 - - 4.420 4.324
L0..8

10 - - - -
L0..9

10 - - - -

Table 2.2. Analysis of the solving of the instance with 10 sites

problem. In six instances out of ten, the hybrid model reaches the optimum with a
few backtracks less, but the gap isn’t sufficient to make the computations faster. This
difference in the number of fails could be explained by the fact that in the discrete
case, one sometimes gets near to a real-number points solution, but that one is brought
to reject it due to the restriction to integer solutions. With an equivalent number of
backtracks, the hybrid resolution is between one and three times slower. If one ex-
cludes the outlier L0..7

9 and the instance where all sites are fixed3, solving times are
on average 2.4 times slower. These experimentations generally show us that a naive
hybridization of our application’s model is of little help, as it allows solving only one
additional test case while it basically always hampers the computation times.

2.3. Introducing the distn constraint

Euclidean distance constraints are of fundamental incidence in the core of our
problem formulation. A constraint that considers all constraints of the problem glob-
ally rather than considering each member of a clique distance constraints separately
can therefore be advantageous to model our application more efficiently.

Euclidean Distance constraints appear in many application domains of CP, ranging
from deployment problems to robotics, spatial databases and chemistry. 2B-consis-
tency type methods [BEN 99] attain a poor filtering [BAT 05] on Euclidean distance
constraints, and stronger consistency techniques [LHO 93, FAL 94] not applicable on

3. ForL∅
9, the LocRLFAP has no real justification and one could as well choose a model without

disjunctions.
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problems involving many such constraint instances. Different means have therefore
been considered [PES 99, LEB 02, KRI 02, BAT 05, HEU 03] to enhance the usability
of constraint solvers. None of these is however adapted to variable distances.

We use a continuous n-ary global constraint proposed in [HEU 03, HEU 06] that
considers the interdistance relations between n points. The syntax of this constraint
is given by: distn([P1, . . . , Pn], Vi,j) where the Pi = (Xi, Yi) is the Cartesian prod-
uct of domain variables, Vi,j is a symmetric n × n matrix of nonnegative variables,
constrained to be equal to the Euclidean distance between the Pi. Domains may be
discrete or continuous. This constraint holds iff for all pi = (xi, yi), pj = (xj , yj) and
vi,j we have dist(pi, pj) = vi,j . To use this constraint to model plain (non variable)
minimal distance constraints, one can simply use an upper bound equal to +∞ for
all domains of the Vi,j . Conversely, it suffices to set a lower bound equal to 0 for all
domains of the Vi,j to model solely maximal distance constraints.

The continuous filtering of the constraints is done by an extension to an algo-
rithm developed to solve Circle Packing problems [MAR 05]. It defines forbidden
regions with a geometric reasoning and approximates them by representing domains
with polygons. This allows us to reinforce the consistency level by considering n
constraints simultaneously. Also, all computations are made reliable by using interval
arithmetic [NEU 90] extensively, thus no feasible point is lost. An iteration of the
algorithm considers each polygon in turn and operates in polynomial time. For effi-
ciency reasons, we don’t use a fixed point semantics and the algorithm is stopped after
a fixed number of iterations. When working with discrete variables, floating point
polygons are reduced to integer bounds and the algorithm is restarted until a fixed
point is reached. We refer the reader to [HEU 06] for more details.

2.4. Modeling the application with the distn constraint

We show howwe can use distn to improve both our simple discrete and hybrid con-
straint models. We then analyze the numerical results of our solving of the LocRLFAP
on instances with 9 and 10 sites and finally we examine what qualitative improvements
this further provides.

2.4.1. Revised model of the application

One weakness of the previous model is that distance constraints involved in the
disjunctions [2.1] and [2.1] are disconnected from those appearing in the clique of
inter-distance constraints [2.4]. For all i �= j, i �= k, j �= l we have:



Modeling and solving of a radio antennas deployment support application 31

dist(Si, Sj) ≥ dL ∨ | f[i, k]− f[l, j] | > ΔL

dist(Si, Sj) ≥ dl ∨ | f[i, k]− f[l, j] | > Δl

dist(Si, Sj) ≥ m

dist(Si, Sj) ≤ M if there is a link from Sito Sj

Writing the whole deployment problem with a disconnected set of elementary Eu-
clidean distance constraints doesn’t manage to handle the domain’s semantics. As a
consequence, the filtering achieved on the variables giving the sites’ positions is too
low to enable an efficient solving of the given model. We address this problem by
using the global constraint we introduced.

The distn constraint can be used for the application while maintaining a mathe-
matical equivalence between the mathematical and the constraint model. It enables
to give a tighter formulation to both the reachability and minimal interdistance con-
straints. Moreover, it enhances the integration of the constraint in the disjunctive na-
ture of the model, as it allows us to link the inter-distance constraints with the “distant
compatibility” constraints.

For each couple (i, j), i �= j let’s introduce a variable v[i,j] that expresses the
Euclidean distance between Si and Sj . The minimum and maximum distance con-
straints of [2.1] and [2.2] can be expressed simply by setting the distance variable’s
domain to Domain(v[i, j]) = [ mi,j, Mi,j ] with for all i �= j, v[i, j] = v[j, i]. It now
remains to connect the distance constraints appearing in the hybrid disjunctions [2.4]
to the global constraint. One can do this by gathering the whole set of distance con-
straints of the application and writing for all i �= j, i �= k, j �= l:

v[i, j] ≥ dl ∨ | f[i, k]− f[l, j] | > Δl

v[i, j] ≥ dL ∨ | f[i, k]− f[l, j] | > ΔL

distn([S1, . . . , Sn] , v[i, j])

This allows us to have a bidirectional communication between the distance constraints
appearing in the distance constraints and those required by reachability and minimum
distance constraints.

– If an absolute value constraint is violated, the new lower bound for the minimal
inter-distance will directly influence the whole lot of distance relations in distn.

– If the whole set of distance constraints considered globally in distn doesn’t al-
low instantiating the left branch of a disjunction, the corresponding absolute value
constraint is immediately enforced.
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2.4.2. Numerical results when solving the LocRLFAP with distn

The solving times and number of backtracks obtained for instances with 9 and 10
sites using this new model are given on Tables 2.3 and 2.4.

discrete model hybrid model

Instance Timems Fails Timems Fails

L∅
9 3120 9192 5540 9196

L0
9 1570 3284 2150 3278

L0..1
9 1580 3403 1910 2744

L0..2
9 1280 1851 2040 2096

L0..3
9 1300 1763 2100 2022

L0..4
9 2140 716 2180 698

L0..5
9 2690 707 2550 702

L0..6
9 780 266 530 389

L0..7
9 410 117 640 215

L0..8
9 690 117 830 237

Table 2.3. Solving of the 9 sites instances with the discrete and hybrid models using distn.

discrete model hybrid model

Instance Timems Fails Timems Fails

L∅
10 85.620 156.487 138.370 156.489

L0
10 351.020 852.318 150.170 87.144

L0..1
10 124.620 115.307 123.340 73.451

L0..2
10 239.700 147.809 325.530 163.440

L0..3
10 237.950 131.582 337.970 147.716

L0..4
10 28.310 16.830 28.420 13.758

L0..5
10 29.960 16.698 29.660 13.760

L0..6
10 11.360 8.052 3.210 1.931

L0..7
10 - - 6.310 4.264

L0..8
10 - - 218.220 100.298

L0..9
10 - - 369.300 140.592

Table 2.4. Solving of the 10 sites instances with the discrete and hybrid models using distn.

On the example with 9 sites, when comparing these results with those obtained
with elementary constraints, one can notice that distn allows us to divide the number of
backtracks by two on average for the nine deployment instances, both in the hybrid and
discrete models, but the cost of calling the global constraint impedes that computations
get 2 (resp. 1.2) slower on the discrete (resp. hybrid) models. One no longer observes
the irregularity we had on L0..7

9 and we get a speedup of two orders of magnitude on
this instance, therefore when summing all results for hybrid instances, one divides the
number of backtracks by 8 and gains a time factor of 20.

On the examples with 10 sites, when we compare the seven instances of deploy-
ment that we manage to solve in both models, the hybrid model requires 63% less
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backtracks than the discrete model, but does solve only 3% faster. However, on three
other instances, the hybrid model manages to solve the scenario in less than 10 min-
utes, whereas the discrete model doesn’t manage to obtain even a feasible solution in
more than one hour. Comparing again these last results with those obtained with ele-
mentary constraints, one observes that distn allows to divide the number of backtracks
by 18.8 (resp. 7.4) in the hybrid case (resp. discrete) and to divide the computation
times by 8.6 (resp. 3.7) on an average of seven instances.

2.4.3. Qualitative analysis of the results

Although it requires greater computational effort, with a qualitative point of view,
relaxing the problem from the RLFAP model to the LocRLFAP one enables to save
up to 63% of used frequencies. The most interesting conclusion on our new hybrid
model is its twofold advantage:

– It allows us to obtain solutions saving frequencies compared to a discrete model:
we get a result better by 15% on L0

10. We can not claim anything for the three last
instances that we did not manage to solve in a discrete space.

– We manage to solve the whole of our instances with this model while no solution
is found in more than one hour in a discrete search space

2.5. Conclusion

We have defined a simple constraint model for a mobile radio antennas deployment
support application and evaluated it on several test instances, both on discrete and
on mixed finite and continuous domains. They enable to solve the smallest models
satisfactorily but are unable to scale to the greater ones, even with an improved search
algorithm. We have remodeled the application by proposing a novel continuous global
constraint maintaining variable Euclidean distance constraints. In particular we have
seen in how far this constraint addresses the disjunctive nature of the deployment
problem. The association of a discrete-continuous hybrid search space with this ad-
vanced model and a new variable selection heuristic enable to solve our complete
set of test problems. These results have more generally shown the interest that both
continuous global constraints and the hybridization of finite domain and interval con-
straints can present to improve the solving performance of complex combinatorial
problems where a complete discretization is customarily used. Moreover, our tests
have highlighted some scenario where a modeling by hybrid constraints enables a
qualitative advantage in the sense that better optima become reachable than in a fully
discretized model.

Acknowledgements: This work has greatly benefited from discussions with Fré-
déric Benhamou, Frédéric Goualard and Juliette Mattioli.
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Chapter 3

Guaranteed numerical injectivity test via
interval analysis

3.1. Introduction

The purpose of this paper is to present a new method based on guaranteed numer-
ical computation able to verify that a function f : X ⊂ Rn → Rm satisfies

∀x1 ∈ X , ∀x2 ∈ X , x1 �= x2 ⇒ f(x1) �= f(x2). (3.1)

To our knowledge, there does not exist any numerical method able to perform this
injectivity test and moreover, the complexity of the algebraic manipulations involved
often makes fail the formal calculus (especially when the function is not polynomial).
Presently, in the context on structural identifiability, Braems and al. have presented
in [BRA 01] an approximated method that verifies the injectivity around ε namely
ε-injectivity. It consists in verifying the following condition

∀x1 ∈ X ,∀x2 ∈ X , |x1 − x2| > ε⇒ f(x1) �= f(x2), (3.2)

which can be view as an approximation of the condition (3.1).

Note that, many problems could be formulated as the injectivity verification of a
function. For example, concerning the identification of parametric models, the prob-
lem of proving the structural identifiability amounts to check injectivity [E.W 90,
BRA 01]. Other applications can be cited: For instance, consider the robotic arm with
two degrees of freedom (θ1 ∈ [0, π

2 ], θ2 ∈ [−π, π]) represented in Figure 3.1(right).

Chapter written by Sébastien LAGRANGE and Nicolas DELANOUE and Luc JAULIN.
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Figure 3.1. A point in the configuration space and its corresponding robot configuration.

Each point (θ1, θ2) of the configuration space is associated with a robot position
(y1, y2) by the function

f : (θ1, θ2)→

�
y1

y2

�

=

�
2cos(θ1) + 1.5cos(θ1 + θ2)
2sin(θ1) + 1.5sin(θ1 + θ2)

�

(3.3)

(See Figure 3.1). Now, a basic question is to know whether several pairs (θ1, θ2) lead
to identical position (y1, y2) of the robot ending. This problem amounts to test the
function f (defined in (3.3)) for injectivity.

This paper provides an efficient algorithm, based on interval analysis, able to check
that a differentiable function is injective. The paper is organized as follows. Section
3.2 presents interval analysis. In Section 3.3, a new definition of partial injectiv-
ity makes possible the use of interval analysis techniques to test injectivity and to
get a guaranteed answer. Section 3.4 presents an algorithm able to test a given dif-
ferentiable function for injectivity. Finally, in order to show the efficiency of the
algorithm, two illustrative examples are provided. A solver called ITVIA (Injec-
tivity Test Via Interval Analysis) implemented in C++ is made available at http:
//www.istia.univ-angers.fr/~lagrange/.

3.2. Interval analysis

This section introduces some notions of interval analysis to be used in this paper.
A vector interval or a box [x] of Rn is defined by

[x] = [x, x] = {x ∈ Rn | x ≤ x ≤ x} , (3.4)

where x and x are two elements of Rn and the partial order ≤ is understood compo-
nentwise. The set of all bounded boxes of Rn is denoted by IRn as in [JAU 01].
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Figure 3.2. Inclusion function [f ] of a function f .

Remark 1 By extension, one defines an interval matrix [M ] = [M,M ] as the set of
the matrices of the form :

[M ] = {M ∈ Rn×m |M ≤M ≤M} (3.5)

and IRn×m denoted the set of all interval matrices of Rn×m. The properties of punc-
tual matrices can naturally be extended to interval matrices. For example, [M ] is full
column rank if all the matricesM ∈ [M ] are full column rank.

To bisect a box [x] means to cut it along a symmetry plane normal to a side of
maximal length. The length of this side is the width of [x]. A bisection of [x] generates
two non-overlapping boxes [x1] and [x2] such that [x] = [x1]∪ [x2]. The hull box [X ]
of a bounded subset X ∈ Rn is the smallest box of IRn that contains X .

Interval arithmetic defined in [MOO 66] provides an effective method to extend all
concepts of vector arithmetic to boxes.
Let f : Rn → Rm be a vector function; the set-valued function [f ] : IRn → IRm is
a inclusion function of f if, for any box [x] of IRn, it satisfies f([x]) ⊂ [f ]([x]) (see
Figure 3.2). Note that f([x]) is usually not a box contrary to [f ]([x]). Moreover, since
[f([x])] is the hull box of f([x]), one has

f([x]) ⊂ [f([x])] ⊂ [f ]([x]). (3.6)

The computation of an inclusion function [f ] for any analytical function f can be ob-
tained by replacing each elementary operator and function by its interval counterpart
[MOO 66, NEU 90].

Example 2 An inclusion function for f(x1, x2) = x2
1+cos(x1x2) is [f ]([x1], [x2]) =

[x1]
2 + cos([x1][x2]). For instance, if [x] = ([−1, 1], [0, π

2 ]) then the box [f ]([x]) is
computed as follows:

[f ]([−1, 1], [0, π
2 ]) = [−1, 1]2 + cos([−1, 1]× [0, π

2 ]) = [0, 1] + cos([−π
2 ,

π
2 ])

= [0, 1] + [−1, 1] = [−1, 2].
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Figure 3.3. Despite the fact that f|[x1] and
f|[x2] are injection, f is not an injection.

Figure 3.4. Graphs of functions f1,f2 and f3.

3.3. Injectivity

Recall that this paper proposed to build an effective method to test differentiable
function f : X ⊂ Rn → Rm for injectivity. The main idea of the divide-and-conquer
algorithm to be proposed is to partition X into subsets Xi where f restricted to Xi

(denoted f|Xi
) is an injection. However, as illustrated in Figure 3.3, injectivity is not

"preserve by the union operation" i.e.�
f|X1

is an injection and f|X2
is an injection

�
� f|X1∪X2

is an injection.
Thus, the injectivity cannot directly be used in our algorithm. That is why we are going
to consider a concept akin to injectivity, namely the partial injectivity, that will be
preserved by the union operation. The following subsections present the fundamental
results that we will be used in the algorithm able to test function for injectivity.
First, we introduce the definition of the partial injectivity and give some illustrative
examples. Then, we propose theorem which give a sufficient condition to test function
for partial injectivity.

3.3.1. Partial Injectivity

Let us introduce the definition of partial injectivity of a function.

Definition 1 Consider a function f : X ⊂ Rn → Rm and any set X1 ⊂ X . The
function f is a partial injection of X1 over X , noted (X1,X )-injective, if ∀x1 ∈
X1,∀x ∈ X ,

x1 �= x⇒ f (x1) �= f (x) . (3.7)

Remark 3 Trivially, if f is (X ,X )-injective then f is an injection over X .

Example 4 Consider the three functions of Figure 3.4. The functions f1 and f2 are
([x1] , [x])-injective (although f2 is not [x]-injective) whereas f3 is not.
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Proposition 5 Consider a function f : X ⊂ Rn → Rm and X1, . . . ,Xp a collection
of subsets of X . We have

∀i, 1 ≤ i ≤ p, f is (Xi,X )− injective ⇔ f is (

p�

i=1

Xi,X )− injective. (3.8)

Proof. (⇒) One has ∀xi ∈ Xi,∀x ∈ X , xi �= x ⇒ f (xi) �= f (x). Hence ∀x̌ ∈
(∪iXi) ,∀x ∈ X , x̌ �= x ⇒ f (x̌) �= f (x), i.e. f is (∪iXi,X )-injective. (⇐) Trivial.

Remark 3 and Proposition 5 ensure the correctness of the divide-and-conquer al-
gorithm to be present in Section 3.4.

3.3.2. Partial Injectivity Condition

In this paragraph, a fundamental theorem, which gives a sufficient condition of
partial injectivity, is presented. First, let us introduce a generalization of the Mean
Value Theorem1.

Theorem 6 (Generalized Mean Value Theorem) Consider a differentiable function
f : X ⊂ Rn → Rm. Let ∇f be its Jacobian matrix and [x] ⊂ X . One has

∀x1, x2 ∈ [x],∃Jf ∈ [∇f([x])] such that f(x2)− f(x1) = Jf · (x2 − x1), (3.9)

where [∇f([x])] denotes the hull box of ∇f([x]).

Proof. According to Mean-Value Theorem applied on each components fi : Rn → R
of f (1 ≤ i ≤ m ) and since the segment seg(x1, x2) belongs to [x], we have

∃ξi ∈ [x] such that fi(x2)− fi(x1) = ∇fi(ξi) · (x2 − x1). (3.10)

Taking Jfi = ∇fi(ξi), we get

∃Jfi ∈ ∇fi([x]) such that fi(x2)− fi(x1) = Jfi · (x2 − x1). (3.11)

1. Let f : X ⊂ Rn → R, f ∈ C1. If x1, x2 ∈ X such that the segment between x1 and x2,
noted seg(x1, x2), is included in X . Then, there exists ξ ∈ seg(x1, x2) such that

f(x2)− f(x1) = ∇f(ξ) · (x2 − x1).
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Figure 3.5. Graph of f : R → R2. Figure 3.6. Illustration of the set [∇f([x])].

Thus

∃Jf ∈ (∇f1 ([x]) , . . . ,∇fm ([x]))
T
such that f(x2)− f(x1) = Jf · (x2 − x1).

(3.12)
i.e., since (∇f1 ([x]) , . . . ,∇fm ([x]))

T
⊂ [∇f([x])] (see (3.6)),

∃Jf ∈ [∇f([x])] such that f(x2)− f(x1) = Jf · (x2 − x1).

Example 7 Consider the function

f :

�
R → R2

x → (y1, y2)
T . (3.13)

depicted in Figure 3.5. Figure 3.6 represents the set ∇f([x]) of all derivatives of f
(drawn as vectors) and its hull box [∇f([x])]. One can see that the vector Jf defined
in (3.9) belongs to [∇f ([x])] (but Jf /∈ ∇f ([x])) as forecasted by Theorem 6.

Now, the following theorem introduces a sufficient condition of partial injectivity.
This condition will be exploited in next section in order to design a suitable algorithm
that test injectivity.

Theorem 8 Let f : X ⊂ Rn → Rm be a differentiable function and [x1] ⊂ [x] ⊂ X .
Set [x̃] =

�
f−1 (f ([x1])) ∩ [x]

�
. If the interval matrix [∇f ([x̃])] is full column rank

then f is ([x1] , [x])-injective.

Proof. The proof is by contradiction. Assume that f is not ([x1],[x])-injective then

∃x1 ∈ [x1] , ∃x2 ∈ [x] such that x1 �= x2 and f (x1) = f (x2) . (3.14)

Now, since f(x1) = f(x2), one has x2 ∈ f−1 (f ([x1])) ∩ [x] and trivially x1 ∈
f−1 (f ([x1]))∩[x]. Therefore, since (f−1 (f ([x1]))∩[x]) ⊂

�
f−1 (f ([x1])) ∩ [x]

�
=
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[x̃] (see Equation (3.6)), one has x1, x2 ∈ [x̃].
Hence, (3.14) implies

∃x1, x2 ∈ [x̃] , such that x2 �= x1 and f (x1) = f (x2) . (3.15)

To conclude, according to Theorem 6, ∃x1, x2 ∈ [x̃], ∃Jf ∈ [∇f ([x̃])] such that

x1 �= x2 and 0 = f(x2)− f(x1) = Jf · (x2 − x1), (3.16)

i.e. ∃Jf ∈ [∇f ([x̃])] such that Jf is not full column rank and therefore the (interval)
matrix [∇f ([x̃])] is not full column rank.

3.4. ITVIA Algorithm

This section presents the Injectivity Test Via Interval Analysis (ITVIA) algorithm
designed from Proposition 5 and Theorem 8. ITVIA (defined in Algorithm 2) uses
the divide-and-conquer strategy to check a given differentiable function f : [x] ⊂
Rn → Rm for injectivity. Algorithm 1 is a sub-algorithm of 2 that checks (a sufficient
condition of) partial injectivity.
- Algorithm 1 checks if the interval matrix

�
∇f

��
f−1 (f ([x1])) ∩ [x]

���
is full rank.

In the positive case, according to Theorem 8, the function f is ([x1], [x])-injective.
Therefore, Algorithm 1 can be viewed as a test for partial injectivity.
- Algorithm 2 divides the initial box [x] into a paving {[xi]}i such that, for all i,
the function f is ([xi], [x])-injective. Then, since [x] = (∪i[xi]) and according to
Proposition 5, f is [x]-injective.

In Algorithm 1, a set inversion technique [GOL 05, JAU 01] is first exploited to
characterize a box [x̃] that contains [f−1(f([x1])) ∩ [x]]. Secondly, an evaluation of
[∇f ]([x̃]) is performed in order to test its rank2. Thus, since [∇f([x̃])] ⊂ [∇f ]([x̃])
and according to Theorem 8, one can test whether f is ([x1], [x])-injective.
Algorithm 2 creates a paving of the initial box [x] such that, for all i, the function f is
([xi] , [x])-injective. Therefore, if the algorithm terminates, then f is an injection.
By combination of these two algorithms, we can prove that a function is injective over
a box [x]. A solver, called ITVIA, developed in C++ is made available and tests the
injectivity of a given function f : R2 → R2 (or f : R → R2) over a given box [x].

3.5. Examples

In this section, two examples are provided in order to illustrate the efficiency of
the solver ITVIA presented in previous section. We are going to check the injectivity
of two functions f : R2 → R2 over a given box [x].

2. Several techniques exist to test an interval matrix for full ranking. If it is square, the sim-
plest way consists in verifying that the determinant (which is an interval) not contains zero.
Otherwise (i.e. f : Rn → Rm), the Interval Gauss Algorithm could be used [NEU 90].
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Algorithm 1 Partial_Injectivity_Test

Require: f ∈ C1, [x] the initial box and [x1] ⊂ [x].
Ensure: A boolean :

- true : f is ([x1], [x])-injective,
- false : f may or not be partially injective.

1: Initialization : Lstack := {[x]}, [x̃] := ∅.
2: while Lstack �= ∅ do
3: Pop Lstack into [w].
4: if [f ] ([w]) ∩ [f ] ([x1]) �= ∅ then
5: if width([w]) > width([x1]) \\ To avoid useless splitting of [w] ad infinitum

then
6: Bisect [w] into [w1] and [w2].
7: Stack [w1] and [w2] in Lstack.
8: else
9: [x̃] = [[x̃] ∪ [w]].

10: end if
11: end if
12: end while
13: if [∇f ]([x̃]) is full rank then
14: Return true \\ "f is ([x1], [x])-injective"
15: else
16: Return False \\ "Failure"
17: end if

Algorithm 2 Injectivity_Test_Via_Interval_Analysis

Require: f a C1 function and [x] the initial box.
1: Initialization : L := {[x]}.
2: while L �= ∅ do
3: Pull [w] in L.
4: if Partial_Injectivity_Test(f, [x] , [w]) = False then
5: Bisect [w] into [w1] and [w2].
6: Push [w1] and [w2] in L.
7: end if
8: end while
9: Return "f is injective over [x]".
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Figure 3.7. Graph of the function f
defined in (3.17)

Figure 3.8. Bisection of [x] obtained by ITVIA
for the function f defined in (3.17). All the grey
boxes have been proved partially injective.

3.5.1. Spiral function

Consider the function f , depicted in Figure 3.7, defined by

f :

R2 → R2

�
x1

x2

�

→

�
y1

y2

�

=




x1 sin(x1) + x2

x1 sin(x1)−cos(x1)√
x2
1+1

x1 cos(x1) + x2
sin(x1)+x1 cos(x1)√

x2
1+1



 (3.17)

and test its injectivity over the box [x] =
�
[0, 10], [0, 4

10 ]
�T

. After less than 0.1 sec on
a Pentium 1.7GHz, ITVIA proved that f is injective over [x]. The initial box [x] has
been divided in a set of sub-boxes where f is partially injective. Figure 3.8 shows the
successive bisections of [x] made by ITVIA.

3.5.2. Ribbon function

Consider the ribbon function f (depicted in Figure 3.9) defined by

f :
R2 → R2

�
x1

x2

�

→

�
y1

y2

�

=

�
x1

2 + (1− x2) cos (x1)
(1− x2) sin (x1)

�
(3.18)

and get interest with its injectivity over the box [x] = ([−1, 4] ,
�
0, 1

10

�
)T . Since the

ribbon overlapping, one can see that f is not injective over [x]. After 3 seconds, the
solver ITVIA is stopped (before going to end). It returns the solution presented in
Figure 3.10. The function f has been proved to be a partial injection on the gray
domain over [x], whereas the white domain corresponds to the indeterminate domain
where ITVIA was not able to prove the partial injectivity. Indeed, the indeterminate
domain corresponds to the non injective zone of f where all points are mapped in the
overlapping zone of the ribbon.
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Figure 3.9. Graph of the function f
defined in (3.18).

Figure 3.10. Partition of the box [x]
obtained by ITVIA for the function f defined
in (3.18). In gray, the partial injectivity domain
and, in white, the domain where the f is not

proved partially injective.

3.6. Conclusion

In this paper, we have presented a new algorithm, based on interval analysis, able
to test differentiable functions for injectivity. In case of functions f : R → R2 and
f : R2 → R2, a C++ solver is available. From a given function f and a given
box [x], the solver divides [x] in two domains : a partially injective domain and a
indeterminate domain (where the function may or not be injective). Of course, when
the indeterminate domain is empty, the function is proved injective over [x].
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Chapter 4

An Interval-based Approximation Method for
Discrete Changes in Hybrid cc

4.1. Introduction

Hybrid systems are systems consisting of continuous and discrete changes. Figure
4.1 (a) illustrates a simple hybrid system in which a particle falls down by gravity
and bounces off the ground. While the particle’s falling is modeled by differential
equations, the bouncing is governed by equations describing discrete changes.

Hybrid cc (Hybrid concurrent constraint programming) [GUP 95], a composi-
tional and declarative language based on constraint programming, has been proposed
as a high-level development tool of hybrid systems for simulation, animation and de-
sign. Below is a description of the hybrid system in Figure 4.1 (a) (See Section 4.2 for
the syntax and implementation):

y = 10, y’ = 0, // initial conditions
hence {

cont(y), // height is continuous
if y > 0 then y’’ = -10, // free fall
if y = 0 then

y’ = -0.5 * prev(y’) // bounce
}

In our experience of modeling a number of hybrid systems using Hybrid cc, how-
ever, we have encountered several difficulties. Figure 4.1 (b) shows a further execution

Chapter written by Daisuke ISHII, Kazunori UEDA and Hiroshi HOSOBE.
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t = 0 t = 1.414...

y

t

(a) (b)

Figure 4.1. (a) A bouncing particle and (b) An unexpected result

result of the above example. As the distance between the particle and the ground gets
closer, the particle moves in an unexpected way1. The problem is due to the compu-
tation of discrete changes in the current implementation of Hybrid cc (Section 4.3).
After the particle loses energy and its height stays within � (to tolerate numerical er-
rors), the implementation ignores discrete changes, and as the result the particle goes
underground.

The contribution of this paper is to develop a method for obtaining (guaranteed)
approximate solutions of discrete changes in hybrid systems. As we discuss in Section
4.3, our goal is to bring correct techniques to a number of issues such as reliable
simulation, reachability analysis and backward computation in hybrid systems with
Hybrid cc. Our approach is based on interval arithmetic (Section 4.4). The proposed
method detailed in Section 4.5 aims to enclose trajectories of hybrid systems by tight
intervals or boxes without losing any solutions. We experimented and evaluated the
effect of the method (Section 4.6).

4.2. An overview of Hybrid cc

4.2.1. The Hybrid cc language

The formal operational semantics of Hybrid cc is described in [GUP 95]. The basic
syntax for processes in Hybrid cc is shown in Table 4.1, where we denote processes
by A and constraints by C. Computation in Hybrid cc is performed by processes
interacting with the constraint store. A process if C then A triggers discrete changes
when an ask condition C is entailed by the current constraint store. If C is entailed,
the process is reduced to A. Otherwise, the process is ignored. If the entailment of C
cannot be determined at the moment, the process is suspended.

1. This kind of phenomenon that causes an infinite number of discrete changes in a finite length
of time is known as Zeno behavior.
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C Add the constraint C
if C then A If C holds, reduce to A
A, A Parallel composition
hence A Execute A at every instant after now
cont(C) Declare that C is continuous over time
prev(C) The value of C before entering a phase

Table 4.1. The basic syntax of Hybrid cc processes

4.2.2. Implementation of Hybrid cc

The implementation of the Hybrid cc interpreter is detailed in [CAR 98]. The
interpreter handles a Hybrid cc process by alternating point phases and interval phases
as follows:
Step 1 Computation starts from a point phase.

Step 2 In the point phase, the interpreter performs reductions of processes such as the
propagation of arithmetic constraints. The computation of the point phase ends
at a stable point, where all constraints have been propagated and all possible
reductions have been completed.

Step 3 After the point phase, the computation proceeds to an interval phase. Each
expression henceA, which is passed from Step 2, is reduced toA and processed.
All the processes are reduced until a stable point is reached as in Step 2. The
resulting constraint store consists of constraints on the derivatives of variables
(i.e., ODEs), conditions for discrete changes and constraints to be reduced in
the future.

Step 4 Integration of the arithmetic constraints that were told in the previous step is
processed until one of the conditions changes its status.

Step 5 If there are no processes left in the constraint store, the computation termi-
nates. Otherwise, go to Step 2.

The arithmetic constraint solvers in the implementation handle nonlinear equa-
tions (NLEs) and ordinary differential equations (ODEs). In the implementation, the
following approaches are adopted:

– The computation by the solvers is based on interval arithmetic to model uncer-
tainty in the parameters.

– The NLE solver takes an arithmetic constraint which can be rewritten in the
implicit form f(x) = 0. Solving of the constraint is done by interval pruning of each
variable in the constraint. In the implementation, the following four pruning operators
are adopted: (1) use of indexicals, (2) splitting of intervals, (3) the Newton-Raphson
method, (4) the Simplex method (optional).

– The ODE solver uses the Runge-Kutta-Fehlberg method which numerically in-
tegrates with adaptive step-sizes. The solver reduces equations of arbitrary form to an
explicit form by propagating equations in each step of integration.
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– The ODE solver stops the integration at the breakpoint at which any state of
constraints in the constraint store is changed. To take care of an overshoot from the
breakpoint, the solver backtracks until an exact solution within a constant � is found.

4.3. The objective of the paper

We are developing systems for handling physical simulations and animations based
on Hybrid cc. For example, we want to simulate a billiard table on which a number of
balls roll and collide with other balls or table edges. The goal is to obtain trajectories
of the balls from a description written in Hybrid cc that directly reflects the laws of
elementary physics.

However, the current implementation of Hybrid cc has several limitations in the
reliability aspect as follows:

– Although the implementation supports interval arithmetic, it does not use in-
terval arithmetic to handle discrete changes such as if C then A, based on interval
arithmetic.

– The ODE solver detects discrete changes during the integration with an ad hoc
method. To work around computation errors, the detection allows for a tolerance �,
but this may result in qualitatively different trajectories.

The goal of this paper is to propose a reliable method for computing trajectories in
Hybrid cc. Our method obtains valid and tight interval enclosures of discrete changes,
corresponding to Step 4 in Section 4.2.2. By combining the proposed method and
other known techniques for reliable computing, we will be able to guarantee the accu-
racy of trajectories, as well as to verify the reachable area of objects. We also expect
to apply the method to problems such as backward computation of trajectories.

4.4. Background of interval arithmetic

To describe our method based on interval arithmetic [MOO 66], the following no-
tions and definitions are used.

4.4.1. Basic notions of interval arithmetic

F denotes the set of machine-representable floating-point numbers, I denotes the
set of intervals over R whose bounds are in F , and I denotes an interval in I. lb(I)
denotes the lower bound, ub(I) denotes the upper bound, and w(I) denotes the width
of I . D denotes the set of boxes over Rn whose bounds are in F , and D denotes a
box in D. Given a real r and a subset A of Rn, r̄ denotes the smallest interval in I
containing r, and �A the smallest box inD containingA. If g is a function,G denotes
the interval extension of g.
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4.4.2. ODE solving based on interval arithmetic

There have been several techniques for solving ODEs based on interval arithmetic
or constraint propagation; see [LOH 92, NED 99, DEV 98, CRU 03] for example. A
solution of an ODE system O with the initial value u(t0) = u0 is a function s∗(t) :
R → Rn satisfyingO and the initial conditions s∗(t0) = u0. Also the solution ofO is
denoted as the function s(t0, u0, t) : R×Rn×R → Rn such that s(t0, u0, t) = s∗(t).
An interval solution ofO is an interval extension S of s. A boxB is an a priori bound
of a solution s with respect toO, [t0, t1] andD, if for all t in [t0, t1], S(t0, D, t) ⊆ B.

LEMMA.– (Continuity of the solution of ODEs) Let f be continuous over an open set
E over R×Rn with the property that for every (t0, u0) in E, the initial value problem
{u� = f(t, u), u(t0) = u0} has a unique solution u(t) = s(t0, u0, t). Let T (t0, u0)
be the maximal interval in which u(t) = s(t0, u0, t) exists. Then s is continuous over
{(t0, u0, t) | (t0, u0) ∈ E, t ∈ T (t0, u0)}.

4.5. The proposed method

Two algorithms TRACE and PRUNEANDMERGE compose our method. By pro-
cessing Step 2 and Step 3 in Section 4.2.2 using interval arithmetic, we obtain an
ODE systemO which has an initial valueD0 and an initial time T0. The main TRACE

algorithm computes trajectories with respect to O. TRACE simulates the continuous
evolution of the system until an ask condition C is entailed. PRUNEANDMERGE al-
gorithm computes the precise enclosure of the point of a discrete change.

4.5.1. Assumptions on the proposed method

We consider problems that satisfy the following assumptions:

– Any ODE system O has the form u� = f(t, u) (f is continuous) and a unique
solution.

– Any ask condition C is an arithmetic constraint of the form fd = 0, where fd is
a continuous function fd : Rn → R and is invariant over time.

Also, in this paper, we investigate the method under the following additional as-
sumptions that simplify the problems:

– We consider problems with a single variable and assume they cause only one
discrete change at one time. It is a topic of future study to improve the method in this
paper to handle more general cases.

– The solution s(t0, u0, t) of O either increases or decreases monotonically over
any interval Td whose width is equal to w(T0) and which Td includes td satisfying
fd(s(t0, u0, td)).
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4.5.2. TRACE algorithm

We give the TRACE algorithm in Figure 4.2, and illustrate its basic idea in Figure
4.3. TRACE computes a trajectory with respect toO and ensures a set of step solutions
S. The main idea is to obtain the “lower bound” of the trajectory, which is computed
from the initial valueD0 at lb(T0), and to shift it by w(T0) over time. At the beginning
of the loop (line 6), TRACE obtains the one-step solution of the trajectory consisting
of an a priori boundBt,h and a tight solutionDt+h. Interval solutions of ODEs can be
obtained using existing techniques, e.g. [NED 99]. TRACE preserves several a priori
bounds of the width w(T0) in a buffer Q (line 12), and obtains the step solution by
taking the union of elements in Q (line 15). Figure 4.3 (a) illustrates the idea. Note
that we assume the step size h is equal to w(T0). Although boundary trajectories do
not enclose an envelope created by shifting an extremal value in a trajectory (consider
Figure 4.3 (b)), TRACE can safely enclose the envelope since a priori bounds are
preserved in Q.

TRACE detects a time point of a discrete change by evaluating the ask condition C
in each step of the loop (lines 7 and 9). We can use the existing interval-based method
like [Van 97] to evaluate ask conditions. TRACE preserves step solutions in the buffer
Q, from Bl in which C is first entailed to a step where C is overshot (line 8). Figure
4.3 (c) illustrates the idea. As a result, Q encloses an area of a discrete change, and
we obtain an output Bresult by passingQ to the PRUNEANDMERGE algorithm. Below
is a soundness theorem of the method:

THEOREM.– Assume the assumptions in Section 4.5.1 hold. Assume there exists t ∈ R
such that for all u ∈ D0, fd(s(t0, u, t)) > 0 holds. Assume there exists t� ∈ R such
that for all u ∈ D0, fd(s(t0, u, t

�)) < 0 holds. Then, for all u ∈ D0, there exists
td ∈ R between t and t� such that the ask condition fd(s(t0, u, td)) = 0 is entailed.

PROOF.– For each u in D0, fd(s(t0, u, t)) > 0 and fd(s(t0, u, t
�)) < 0 hold. Since

fd is continuous, there exists a solution sd ∈ Rn such that fd(sd) = 0 holds between
s(t0, u, t) and s(t0, u, t

�). Since s is continuous by Lemma in Section 4.4.2, and also
since s increases or decreases monotonically, there exists a unique time td between t
and t� such that s(t0, u, td) = sd holds.

4.5.3. PRUNEANDMERGE algorithm

We give the PRUNEANDMERGE algorithm in Figure 4.4. Figure 4.5 illustrates
an application of the algorithm to an expanded example in which a 2-dimensional
variable over the x and y axes and a nonlinear condition C are used. Note that Figure
4.5 (a) corresponds to Figure 4.3 (c), and is overwritten by the computation result of
PRUNEANDMERGE. We apply a branch and prune algorithm to the time component
of an area of a discrete change based on the following hull consistency (line 1):
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Require: an ODE system O, initial time T0, initial value D0, step size h, an ask
condition C

Ensure: a set S of step solutions, an area of a discrete change Bresult

1: t := lb(T0)
2: D := D0

3: Q := a buffer to preserve a trajectory for several steps
4: Bl := ∅
5: loop
6: (Bt,h, Dt+h) := do a step computation w.r.t. O, t, D, h
7: if C(Dt+h) is entailed then
8: Bl := Bt,h

9: else if C(Dt+h) is overshot then
10: break
11: end if
12: put (Bt,h, Dt+h) to the tail of Q
13: remove a redundant element from the top of Q
14: D := Dt+h

15: S := S ∪ {the sum of solutions in Q for w(T0)}
16: t := t + h
17: end loop
18: Bresult := PRUNEANDMERGE(Q,O, C,w(T0))
19: return Bresult

Figure 4.2. TRACE algorithm
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Figure 4.3. Solving of an ODE system with an ask condition by TRACE
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Require: a buffer of solutions Q, an ODE system O, an ask condition C, width w
Ensure: a box Bresult

1: B := �{branch and prune Q w.r.t. O, C}
2: B� := enlarge B for w
3: Bresult := prune B�

D w.r.t. C
4: return Bresult

Figure 4.4. PRUNEANDMERGE algorithm
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Figure 4.5. Pruning of an area of a discrete change by PRUNEANDMERGE

DEFINITION.– (Hull consistency of a time interval of a discrete change) A time in-
terval Td of a discrete change with respect to an ODE system O and an ask con-
dition fd = 0 (Fd is an interval extension of fd) is hull-consistent with respect to
Td = [tl, tu], if the condition

(Fd(Dl) > 0̄ ∧ Fd(Du) < 0̄) ∨ (Fd(Dl) < 0̄ ∧ Fd(Du) > 0̄)

holds, where Dl = S(t0, D0, tl) and Du = S(t0, D0, tu).

Figure 4.5 (a) and (b) illustrates the result of the bisection method. The result is
merged by obtaining the box enclosure (line 1). The algorithm enlarges B by w at
line 2, as TRACE shifts trajectories for w(T0) (= w). Moreover, we can prune B� by
solving the condition C over the (x, y)-component (line 3, Figure 4.5 (c)).

4.6. Experimental results

We evaluated the effect of the proposed method by simulating the example in Sec-
tion 4.1. In the simulation, we used the existing interval-based solvers; VNODE-LP
[NED 06] for ODEs and Elisa [GRA 05] for NLEs. Table 4.2 shows the initial value,
the solution at t = 2 after the first bounce (t =

√
2), and the solution at t = 3 after the
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t (a) Direct computation (b) Proposed method (c) Theoretical solution

0 [ 10.00000, 10.00000 ] [ 10.00000, 10.00000 ] 10
2 [ 2.424746, 2.427454 ] [ 2.426262, 2.426676 ] 2.426406. . .
3 [0.4398578, 0.4739294] [0.4559554, 0.4613689] 0.4594154. . .

Table 4.2. Experimental results

second bounce (t = 2
√

2). We solved ODEs with the step size of 0.0001. We can see
an improvement in accuracy by comparing the results obtained by (a) direct interval
computation without refinements and (b) our method. We can also make sure that the
results enclose the theoretical solution (c).

4.7. Related work

Techniques for modeling and verification of hybrid systems based on constraint
logic programming have been proposed. Hickey and Wittenberg [HIC 04] presented
an approach using the CLP(F) language, which can describe analytic relations be-
tween real variables and functions. CLP(F) supports interval arithmetic. However
suppression of interval divergence in computing discrete changes is not considered.
Urbina [URB 96] proposed a method using the CLP(R) language. Computations in
the method are not based on intervals, and solutions are not accurate. Moreover, only
linear numerical constraints are supported.

Various safety verification techniques for hybrid systems, which compute reach-
able state space represented by intervals, have been developed. Some of the tech-
niques use box representation of continuous parts of state space to check how a tra-
jectory moves over their boundaries [STU 97, HEN 00]. Ratschan and She [RAT 05]
proposed methods to refine the box representation using constraint propagation tech-
niques. Refinement is done by adding constraints describing continuous and discrete
changes. In these techniques hybrid systems are modeled based on hybrid automata.

4.8. Conclusion

We proposed a method for obtaining interval enclosures of discrete changes in hy-
brid systems. After relaxing the assumptions in Section 4.5.1, we will next implement
the proposed method in the Hybrid cc interpreter. The improved interpreter provides
a reliable framework to model and control variety of hybrid systems that occur in
real-life applications.
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