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approximation of diffusions with unbounded drift

Denis Villemonais∗

November 29, 2010

Abstract

We study the existence and the exponential ergodicity of a general interacting

particle system, whose components are driven by independent diffusion processes

with values in an open subset of Rd, d ≥ 1. The interaction occurs when a particle

hits the boundary: it jumps to a position chosen with respect to a probability

measure depending on the position of the whole system.

Then we study the behavior of such a system when the number of particles goes

to infinity. This leads us to an approximation method for the Yaglom limit of multi-

dimensional diffusion processes with unbounded drift defined on an unbounded open

set. While most of known results on such limits are obtained by spectral theory

arguments and are concerned with existence and uniqueness problems, our approx-

imation method allows us to get numerical values of quasi-stationary distributions,

which find applications to many disciplines. We end the paper with numerical illus-

trations of our approximation method for stochastic processes related to biological

population models.

Key words : diffusion process, interacting particle system, empirical process, quasi-
stationary distribution, Yaglom limit.
MSC 2000 subject : Primary 82C22, 65C50, 60K35; secondary 60J60

1 Introduction

Let D ⊂ R
d be an open set with a regular boundary (see Hypothesis 1). The first

part of this paper is devoted to the study of interacting particle systems (X1,...,XN),
whose components X i evolve in D as diffusion processes and jump when they hit the
boundary ∂D. More precisely, let N ≥ 2 be the number of particles in our system. Let us
consider N independent d-dimensional Brownian motions B1,...,BN and a jump measure
J (N) : ∂(DN ) 7→ M1(D

N), where M1(D
N) denotes the set of probability measures on

DN . We build the interacting particle system (X1,...,XN) with values in DN as follows.
At the beginning, the particles X i evolve as independent diffusion processes with values
in D defined by

dX
(i)
t = dBi

t + q
(N)
i (X

(i)
t )dt, X

(i)
0 ∈ D, (1)
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where q
(N)
i is locally Lipschitz on D, such that the diffusion process doesn’t explode in

finite time. When a particle hits the boundary, say at time τ1, it jumps to a position
chosen with respect to J (N)(X1

τ1-
,...,XN

τn-). Then the particles evolve independently with
respect to (1) until one of them hits the boundary and so on. In the whole study, we
require the jumping particle to be attracted away from the boundary by the other ones
during the jump (in the sense of Hypothesis 2 on J (N) in Section 2.2). We emphasize
the fact that the diffusion processes which drive the particles between the jumps can
depend on the particles and their coefficients aren’t necessarily bounded (see Hypothesis
1). This construction is a generalization of the Fleming-Viot type model introduced in
[5] for Brownian particles and in [20] for diffusion particles. Diffusions with jumps from
the boundary have also been studied in [3], with a continuity condition on J (N) that isn’t
required in our case, and in [19], where fine properties of a Brownian motion with rebirth
have been established.

In a first step, we show that the interacting particle system is well defined, which
means that accumulation of jumps doesn’t occur before the interacting particles system
goes to infinity. Under additional conditions on q

(N)
i and D, we prove that the interacting

particle system doesn’t reach infinity in finite time almost surely. In a second step, we give
suitable conditions ensuring the system to be exponentially ergodic. The whole study is
made possible thanks to a coupling between (X1,...,XN) and a system of N independent
1-dimensional reflected diffusion processes. The coupling is built in Section 2.3.

Assume that D is bounded. For all N ≥ 2, let J (N) be a jump measure and (q
(N)
i )1≤i≤N

a family of drifts. Assume that the conditions for existence and ergodicity of the interact-
ing process are fulfilled for all N ≥ 2. Let MN be its stationary distribution. We denote by
XN the associated empirical stationary distribution, which is defined by XN = 1

N

∑N
i=1 δxi

,
where (x1,...,xN ) ∈ DN is distributed following MN . Under some bound assumptions on

(q
(N)
i )1≤i≤N,2≤N (see Hypothesis 4), we prove in Section 2.4 that the family of random

measures XN is uniformly tight.
In Section 3, we study a particular case: q

(N)
i = q doesn’t depend on i,N and

J (N)(x1,...,xN ) =
1

N − 1

∑

j 6=i

δxj
, xi ∈ ∂D. (2)

It means that at each jump time, the jumping particle is sent to the position of a particle
chosen uniformly between the N − 1 remaining ones. In this situation, we identify the
limit of the family of empirical stationary distributions (XN)N≥2. This leads us to an
approximation method of limiting conditional distributions of diffusion processes absorbed
at the boundary of an open set of Rd, studied by Cattiaux and Méléard in [7] and defined
as follows. Let U∞ ⊂ R

d be an open set and P
∞ be the law of the diffusion process

defined by the SDE
dX∞

t = dBt + ∇V (X∞
t )dt, X∞ ∈ U∞ (3)

and absorbed at the boundary ∂U∞. Here B is a d-dimensional Brownian motion and
V ∈ C2(U∞,R). We denote by τ∂ the absorption time of the diffusion process (3). As
proved in [7], the limiting conditional distribution

ν∞ = lim
t→∞

P
∞
x (X∞

t ∈ .|t < τ∂) (4)

exists and doesn’t depend on x ∈ U∞, under suitable conditions which allow the drift ∇V
and the set U∞ to not fulfill the conditions of Section 2 (see Hypothesis 5 in Section 3).
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This probability is called the Yaglom limit associated with P
∞. It is a quasi-stationary

distribution for the diffusion process (3), which means that P
∞
ν∞(X∞

t ∈ dx|t < τ∂) = ν∞
for all t ≥ 0. We refer to [6, 23, 25] and references therein for existence or uniqueness
results on quasi-stationary distributions in other settings.

Yaglom limits are an important tool in the theory of Markov processes with absorb-
ing states, which are commonly used in stochastic models of biological populations, epi-
demics, chemical reactions and market dynamics (see the bibliography [29, Applications]).
Indeed, while the long time behavior of a recurrent Markov process is well described by
its stationary distribution, the stationary distribution of an absorbed Markov process is
concentrated on the absorbing states, which is of poor interest. In contrast, the limiting
distribution of the process conditioned to not being absorbed when it is observed can ex-
plain some complex behavior, as the mortality plateau at advanced ages (see [1] and [32]),
which leads to new applications of Markov processes with absorbing states in biology (see
[24]). As stressed in [28], such distributions are in most cases not explicitly computable.
In [7], the existence of the Yaglom limit is proved by spectral theory arguments, which
doesn’t allow us to get its explicit value. The main motivation of Section 3 is to prove an
approximation method of ν∞, even when the drift ∇V and the domain U∞ don’t fulfill
the conditions of Section 2.

The approximation method is based on a sequence of interacting particle systems
defined with the jump measures (2), for all N ≥ 2. In the case of a Brownian motion
absorbed at the boundary of a bounded open set (i.e. q = 0), Burdzy et al. conjectured
in [4] that the unique limiting measure of the sequence (XN)N∈N is the Yaglom limit ν∞.
This has been confirmed in the Brownian motion case (see [5], [18] and [26]) and proved
in [16] for some Markov processes defined on discrete spaces. New difficulties arise from
our case. For instance, the interacting particle process introduced above isn’t necessarily
well defined, since it doesn’t fulfill the conditions of Section 2. To avoid this difficulty, we
introduce a cut-off of U∞ near its boundary. More precisely, let (Um)m≥0 be an increasing
family of regular bounded subsets of U∞, such that ∇V is bounded on each U∞ and
such that U∞ =

⋃

m≥0 U∞. We define an interacting particle process (Xm,1,...,Xm,N ) on

each subset UN
m , by setting q

(N)
i = ∇V and D = Um in (1). For all m ≥ 0 and N ≥ 2,

(Xm,1,...,Xm,N) is well defined and exponentially ergodic. Denoting by Xm,N its empirical
stationary distribution, we prove that

lim
m→∞

lim
N→∞

Xm,N = ν∞.

We conclude in Section 3.3 with some numerical illustrations of our method applied to
the 1-dimensional Wright-Fisher diffusion conditioned to be absorbed at 0, to the Logistic
Feller diffusion and to the 2-dimensional stochastic Lotka-Volterra diffusion.
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2 A general interacting particle process with jumps

from the boundary

2.1 Construction of the interacting process

Let D be an open subset of Rd, d ≥ 1. Let N ≥ 2 be fixed. For all i ∈ {1,...,N}, we
denote by P

i the law of the diffusion process X(i), which is defined on D by

dX
(i)
t = dBi

t − q
(N)
i (X

(i)
t )dt, X

(i)
0 = xi ∈ D (5)

and is absorbed at the boundary ∂D. Here B1,...,BN are N independent d-dimensional
Brownian motions and q

(N)
i = (q

(N)
i,1 ,...,q

(N)
i,d ) is locally Lipschitz. We assume that the

process is absorbed in finite time almost surely and that it doesn’t explode to infinity in
finite time almost surely.

The infinitesimal generator associated with the diffusion process (5) will be denoted

by L(N)
i , with

L(N)
i =

1

2

d
∑

j=1

∂2

∂x2j
− q

(N)
i,j

∂

∂xj

on its domain D
L
(N)
i

.

For each i ∈ {1,...,N}, we set

Di = {(x1,...,xN ) ∈ ∂(DN ), such that xi ∈ ∂D, and, ∀j 6= i, xj ∈ D}.

We define a system of particles (X1,...,XN) with values in DN , which is càdlàg and whose
components jump from

⋃

i Di. Between the jumps, each particle evolves independently of
the other ones with respect to P

i.
Let J (N) :

⋃N
i=0Di → M1(D) be the jump measure, which associates a probability

measure J (N)(x1,...,xN ) on D to each point (x1,...,xN ) ∈ ⋃N
i=1Di. Let (X1

0 ,...,X
N
0 ) ∈ DN

be the starting point of the interacting particle process (X1,...,XN), which is built as
follows:

• Each particle evolves following the SDE (5) independently of the other ones, until
one particle, say X i1 , hits the boundary at a time which is denoted by τ1. On the
one hand, we have τ1 > 0 almost surely, because each particle starts in D. On
the other hand, the particle which hits the boundary at time τ1 is unique, because
the particles evolves as independent Itô’s diffusion processes in D. It follows that
(X1

τ1-
,...,XN

τ1-
) belongs to Di1.

• The position of X i1 at time τ1 is then chosen with respect to the probability measure
J (N)(X1

τ1-
,...,XN

τ1-
).

• At time τ1 and after proceeding to the jump, all the particles are in D. Then the
particles evolve with respect to (5) and independently of each other, until one of
them, say X i2 , hits the boundary, at a time which is denoted by τ2. As above, we
have τ1 < τ2 and (X1

τ2-
,...,XN

τ2-
) ∈ Di2.

• The position of X i2 at time τ2 is then chosen with respect to the probability measure
J (N)(X1

τ2-
,...,XN

τ2-
).
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• Then the particles evolve with law P
i and independently of each other, and so on.

The law of the interacting particle process with initial distribution m ∈ M1(D
N) will

be denoted by PN
m , or by PN

x if m = δx, with x ∈ DN . The associated expectation will
be denoted by EN

m , or by Ex if m = δx. For all β > 0, we denote by Sβ = inf{t ≥
0, ‖(X1,...,XN)‖ ≥ β} the first exit time from {x ∈ DN , ‖x‖ < β}. We set S∞ =
limβ→∞ Sβ.

The sequence of successive jumping particles is denoted by (in)n≥1, and

0 < τ1 < τ2 < ...

denotes the strictly increasing sequence of jumping times (which is well defined for all
n ≥ 0 since the process is supposed to be absorbed in finite time almost surely). Thanks
to the non-explosion assumption on each P

i, we have τn < S∞ for all n ≥ 1 almost surely.
We set τ∞ = limn→∞ τn ≤ S∞. The process described above isn’t necessarily well defined
for all t ∈ [0,S∞[, and we need more assumptions on D and on the jump measure J (N)

to conclude that τ∞ = S∞ almost surely.
In the sequel, we denote by φD the Euclidean distance to the boundary ∂D:

φD(x) = inf
y∈∂D

‖y − x‖2, for all x ∈ D.

For all r > 0, we define the collection of open subsets Dr = {x ∈ D, φD(x) > r}. For all
β > 0, we set Bβ = {x ∈ D, ‖x‖ < β}.

Hypothesis 1. There exists a neighborhood U of ∂D such that

1. the distance φD is of class C2 on U,

2. for all β > 0,
inf

x∈U∩Bβ , i∈{1,...,N}
L(N)

i φD(x) > −∞.

In particular, Hypothesis 1 implies

‖∇φD(x)‖2 = 1, ∀x ∈ U. (6)

Remark 1. For example, the first part of Hypothesis 1 is fulfilled if D is an open set
whose boundary is of class C2 (see [12, Theorem 4.3]). It is also satisfied by the rectangle
with rounded corner defined in Section 3.3.3.

The following assumption ensures that the jumping particle is attracted away from
the boundary by the other ones.

Hypothesis 2. There exists a non-decreasing continuous function f (N) : R+ → R+

vanishing at 0 and strictly increasing in a neighborhood of 0 such that, ∀i ∈ {1,...,N},

inf
(x1,...,xN)∈Di

J (N)(x1,...,xN )({y ∈ D, φD(y) ≥ min
j 6=i

f (N)(φD(xj))}) ≥ p
(N)
0 ,

p
(N)
0 > 0 is a positive constant.
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Informally, f (N)(φD) is a kind of distance from the boundary and we assume that at
each jump time τn, the probability of the event ”the jump position X in

τn is chosen farther
from the boundary than at least one another particle” is bounded below by a positive
constant p

(N)
0 .

Remark 2. Hypothesis 2 is very general and allows a lot of choices for J (N)(x1,...,xN ).
For instance, for all µ ∈ M1(D), one can find a compact set K ⊂ D such that µ(K) > 0.

Then J (N)(x1,...,xN ) = µ fulfills the assumption with p
(N)
0 = µ(K) and f (N)(φD) =

φD ∧ d(K,∂D).
Hypothesis 2 also includes the case studied by Grigorescu and Kang in [20], where

J (N)(x1,...,xN ) =
∑

j 6=i

pij(xi)δxj
, ∀(x1,...,xN ) ∈ Di.

with
∑

j 6=i pij(xi) = 1 and inf i∈{1,...,N},j 6=i,xi∈∂D pij(xi) > 0. In that case, the particle on the
boundary jumps to one of the other ones, with positive weights. It yields that Hypothesis
2 is fulfilled with p

(N)
0 = 1 and f (N)(φD) = φD. In Section 3, we will focus on the particular

case

J (N)(x1,...,xN ) =
1

N − 1

∑

j=1,...,N, j 6=i

δxj
, ∀(x1,...,xN ) ∈ Di.

That will lead us to an approximation method of the Yaglom limit (4).

Finally, given a jump measure J (N) satisfying Hypothesis 2 (with p
(N)
0 and f (N)), any

σ(N) :
⋃N

i=0Di → M1(D) and a constant α(N) > 0, the jump measure

J (N)
σ (x1,...,xN ) = α(N)J (N)(x1,...,xN ) + (1 − α(N))σ(N)(x1,...,xN ), ∀(x1,...,xN ) ∈ Di,

fulfills the Hypothesis 2 with p
(N)
0,σ = α(N)p

(N)
0 and f

(N)
σ (φD) = f (N)(φD).

Finally, we give a condition which ensures the exponential ergodicity of the process.
In particular, this condition is satisfied if D is bounded and fulfills Hypothesis 1.

Hypothesis 3. There exists α > 0, t
(N)
0 > 0 and a compact set K

(N)
0 ⊂ D such that

1. the distance φD is of class C2 on D \D2α and

inf
x∈D\D2α, i∈{1,...,N}

L(N)
i φD(x) > −∞.

2. for all i ∈ {1,...,N}, we have

p
(N)
1 =

N
∏

i=1

inf
x∈Dα/2

P
i
x(X

(i)

t
(N)
0

∈ K
(N)
0 ) > 0.

Theorem 2.1. Assume that Hypotheses 1 and 2 are fulfilled. Then the process (X1,...,XN)
is well defined, which means that τ∞ = S∞ almost surely.

If Hypothesis 2 and the first point of Hypothesis 3 are fulfilled, then τ∞ = S∞ = +∞
almost surely.
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If Hypotheses 2 and 3 are fulfilled, then the process (X1,...,XN) is exponentially ergodic,
which means that there exists a probability measure MN on DN such that,

||PN
x ((X1

t ,...,X
N
t ) ∈ .) −MN ||TV ≤ C(N)(x)

(

ρ(N)
)t
, ∀x ∈ DN , ∀t ∈ R+,

where C(N)(x) is finite, ρ(N) < 1 and ||.||TV is the total variation norm. In particular,
MN is a stationary measure for the process (X1,...,XN).

The main tool of the proof is a coupling between (X1
t ,...,X

N
t )t∈[0,Sβ ] and a system of

N independent one-dimensional diffusion processes (Y β,1
t ,...,Y β,N

t )t∈[0,Sβ ], for each β > 0.
The system is built in order to satisfy

0 ≤ Y β,i
t ≤ φD(X i

t) a.s.

for all t ∈ [0,τ∞ ∧ Sβ] and each i ∈ {1,...,N}. We build this coupling in Subsection 2.2
and we conclude the proof of Theorem 2.1 in Subsection 2.3 .

In Subsection 2.4, we assume that D is bounded and that, for all N ≥ 2, we’re given
J (N) and a family of drifts (q

(N)
i )1≤i≤N , such that Hypotheses 1, 2 and 3 are fulfilled.

Moreover, we assume that α in Hypothesis 3 doesn’t depend on N . Under some suitable
bounds on the family (q

(N)
i )1≤i≤N, N≥2, we prove that the family of empirical distributions

(XN)N≥2 is uniformly tight. It means that, ∀ǫ ≥ 0, there exists a compact set K ⊂ D
such that E(XN(D \K)) ≤ ǫ for all N ≥ 2. In particular, this implies that (XN)N≥2 is
weakly compact, thanks to [22]. Let us recall that a sequence of random measures (γN)N
on D converges weakly to a random measure γ on D, if E(γN(f)) converges to E(γ(f))
for all continuous bounded functions f : D → R. This property will be crucial in Section
3.

2.2 Coupling’s construction

Proposition 2.2. Assume that Hypothesis 1 is fulfilled and fix β > 0. Then there exists
a > 0, a N-dimensional Brownian motion (W 1,...,WN) and positive constants Q1,...,QN

such that, for each i ∈ {1,...,N}, the reflected diffusion process with values in [0,a] defined
by the reflection equation (cf. [9])

Y β,i
t = Y β,i

0 +W i
t −Qit+ Li,0

t − Li,a
t , Y

β,i
0 = min(a,φD(X i

0)) (7)

satisfies
0 ≤ Y β,i

t ≤ φD(X i
t) ∧ a a.s. (8)

for all t ∈ [0,τ∞ ∧ Sβ[ (see Figure 1). In (7), Li,0 (resp. Li,a) denotes the local time of
Y β,i at {0} (resp. {a}).

Remark 3. If the first part of Hypothesis 3 is fulfilled, then the proof remains valid with
β = ∞ and a = α (where α > 0 is defined in Hypothesis 3). This leads us to a coupling
between X i and Y ∞,i, valid for all t ∈ [0,τ∞ ∧ S∞[= [0,τ∞[.

Proof of Proposition 2.2 : The set Bβ \ U is a compact subset of D, then there exists
a > 0 such that Bβ \U ⊂ D2a. In particular, we have Bβ \D2a ⊂ U , so that φD is of class
C2 in Bβ \D2a.
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Figure 1: The particle X1 and its coupled reflected diffusion process Y 1

Fix i ∈ {1,...,N}. We define a sequence of stopping times (θin)n such that X i
t ∈ Bβ\D2a

for all t ∈ [θi2n,θ
i
2n+1[ and X i

t ∈ Da for all t ∈ [θi2n+1,θ
i
2n+2[. More precisely, we set (see

Figure 2)

θi0 = inf {t ∈ [0,+ ∞[, X i
t ∈ Bβ \Da} ∧ τ∞ ∧ Sβ,

θi1 = inf {t ∈ [t0, + ∞[, X i
t ∈ D2a} ∧ τ∞ ∧ Sβ,

and, for n ≥ 1,

θi2n = inf {t ∈ [ti2n−1,+ ∞[, X i
t ∈ Bβ \Da} ∧ τ∞ ∧ Sβ,

θi2n+1 = inf {t ∈ [ti2n, + ∞[, X i
t ∈ D2a} ∧ τ∞ ∧ Sβ.

The sequence (θin) is non-decreasing and goes to τ∞ ∧ Sβ almost surely.
Let γi be a 1-dimensional Brownian motion independent of the process (X1,...,XN)

and of the Brownian motion (B1,...,BN ). We set

W i
t = γit, for t ∈ [0,θi0[,

and, for all n ≥ 0,

W i
t = W i

θi2n
+

∫ t

θi2n

∇φD(X i
s-) · dBi

s for t ∈ [θi2n,θ
i
2n+1[,

W i
t = W i

θi2n+1
+ (γit − γiθi2n+1

) for t ∈ [θi2n+1,θ
i
2n+2[,

where
∫ t

θi2n
∇φD(X i

s-) · dBi
s has the law of a Brownian motion between times θi2n and θi2n+1,

thanks to (6). The process (W 1,...,WN) is yet defined for all t ∈ [0,τ∞ ∧ Sβ[. We set

W i
t = W i

τ∞∧Sβ−
+ (γit − γiτ∞∧Sβ

) for t ∈ [τ∞ ∧ Sβ,+ ∞[

It is immediate that (W 1,...,WN) is a N -dimensional Brownian motion.
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Figure 2: Definition of the sequence of stopping times (θin)n≥0

Fix i ∈ {1,...,N}. Thanks to Hypothesis 2, there exists Q
(N)
i ≥ 0 such that

inf
x∈Bβ\D2a

L(N)
i φD(x) ≥ −Q(N)

i .

Let us prove that the reflected diffusion process Y β,i defined by (7) fulfills inequality (8)
for all t ∈ [0,τ∞ ∧ Sβ[.

We set ζ = inf
{

0 ≤ t < τ∞ ∧ Sβ, Y
β,i
t > φD(X i

t)
}

and we work conditionally to ζ <

τ∞ ∧ Sβ. By right continuity of the two processes,

0 < φD(X i
ζ) ≤ Y β,i

ζ ≤ a a.s.

One can find a stopping time ζ ′ ∈]ζ,τ∞ ∧ Sβ[, such that X i doesn’t jump between ζ and

ζ ′ and such that Y β,i
t > 0 and X i

t ∈ Bβ \D2a for all t ∈ [ζ,ζ ′] almost surely.
Thanks to the regularity of φD onBβ\D2a, we can apply Itô’s formula to (φD(X i

t))t∈[ζ,ζ′],
and we get, for all stopping time t ∈ [ζ,ζ ′],

φD(X i
t) = φD(X i

ζ) +

∫ t

ζ

∇φD(X i
s) · dBi

s +

∫ t

ζ

L(N)
i φD(X i

s)ds.

But ζ and ζ ′ lie between an entry time of X i to Bβ \Da and the following entry time to
D2a. It yields that there exists n ≥ 0 such that [ζ,ζ ′] ⊂ [θi2n,θ

i
2n+1[. We deduce that

φD(X i
t) − Y β,i

t = φD(X i
ζ) − Y β,i

ζ +

∫ t

ζ

(L(N)
i φD(X i

s) +Q
(N)
i )ds− Li,0

t + Li,0
ζ + Li,a

t − Li,a
ζ ,

where L(N)
i φD(X i

s) + Q
(N)
i ≥ 0, (Li,a

s )s≥0 is increasing and Li,0
t = Li,0

ζ , since Y β,i doesn’t
hit 0 between times ζ and t. It follows that, for all t ∈ [ζ,ζ ′],

φD(X i
t) − Y β,i

t ≥ φD(X i
ζ) − Y β,i

ζ

≥ φD(X i
ζ−) − Y β,i

ζ− ≥ 0.
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where the second inequality comes from the positivity of the jumps of φD(X i) and from
the left continuity of Y β,i, while the third inequality is due to the definition of ζ . Then
φD(X i)− Y β,i stays non-negative between times ζ and ζ ′, what contradicts the definition
of ζ . Finally, ζ = τ∞ ∧ Sβ almost surely, which means that the coupling inequality (8)
remains true for all t ∈ [0,τ∞ ∧ Sβ [.

2.3 Proof of Theorem 2.1

Proof that (X1,...,XN) is well defined under Hypotheses 1 and 2. Let N ≥ 2 be the size
of the interacting particle system and fix arbitrarily its starting point x ∈ DN . Thanks to
the non explosiveness of each diffusion process P

i, the interacting particle process can’t
escape to infinity in finite time after a finite number of jumps. It yields that τ∞ ≤ S∞

almost surely.
Fix β > 0 such that x ∈ Bβ and define the event Cβ = {τ∞ < Sβ}. Assume that Cβ

occurs with positive probability. Conditionally to Cβ, the total number of jumps is equal
to +∞ before the finite time τ∞. There is a finite number of particles, then at least one
particle makes an infinite number of jumps before τ∞. We denote it by i0 (which is a
random index).

For each jumping time τn, we denote by σi0
n the next jumping time of i0, with τn <

σi0
n < τ∞. Conditionally to Cβ, we get σi0

n − τn → 0 when n → ∞. For all C2 function f
with compact support in ]0,2a[, the process f(φD(X i0)) is a continuous diffusion process
with bounded coefficients between τn and σi0

n -, then

sup
t∈[τn,σ

i0
n [

|f(φD(X i0
t ))| = sup

t∈[τn,σ
i0
n [

|f(φD(X i0
t )) − f(φD(X i0

σ
i0
n -

))| −−−→
n→∞

0, a.s.

Since the process φD(X i0) is continuous between τn and σi0
n −, we conclude that φD(X i0

τn)
doesn’t lie above the support of f , for n big enough almost surely. But the support of
f can be chosen arbitrarily close to 0, it yields that φD(X i0

τn) goes to 0 almost surely
conditionally to Cβ.

Let us denote by (τ i0n )n the sequence of jumping times of the particle i0. We denote
by An the event

An =
{

∃i 6= i0 | φD(X i

τ
i0
n

) ≤ f (N)(φD(X i0

τ
i0
n

))
}

,

where f (N) is the function of Hypothesis 2 . We have, for all 1 ≤ k ≤ l,

P

(

l+1
⋂

n=k

Ac
n

)

= E

(

E

(

l+1
∏

n=k

1Ac
n
| (X1

t ,...X
N
t )

0≤t<τ
i0
l+1

))

= E

(

l
∏

n=k

1Ac
n
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

)

,

where, by definition of the jump mechanism of the interacting particle system,

E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

= J (N)(X1

τ
i0
l+1

,...,XN

τ
i0
l+1

)
(

Ac
l+1

)

≤ 1 − p
(N)
0 ,

10



by Hypothesis 2. By induction on l, we get

P

(

l
⋂

n=k

Ac
n

)

≤ (1 − p
(N)
0 )l−k, ∀1 ≤ k ≤ l.

Since p
(N)
0 > 0, it yields that

P

(

⋃

k≥1

∞
⋂

n=k

Ac
n

)

= 0.

It means that, for infinitely many jumps τn almost surely, one can find a particle j such
that f (N)(φD(Xj

τn)) ≤ φD(X i0
τn). Because there is only a finite number of other particles,

one can find a particle, say j0 (which is a random variable), such that

f (N)(φD(Xj0
τn)) ≤ φD(X i0

τn), for infinitely many n ≥ 1.

In particular, limn→∞

(

φD(X i0
τn),f (N)(φD(Xj0

τn))
)

= (0,0) almost surely. But (f (N))−1 is
well defined and continuous near 0, then

lim
n→∞

(

φD(X i0
τn),φD(Xj0

τn)
)

= (0,0) a.s.

Using the coupling inequality of Proposition 2.2, we deduce that

Cβ ⊂
{

lim
t→τ∞

(Y β,i0
t ,Y β,j0

t ) = (0,0)

}

.

Then, conditionally to Cβ, Y β,i0 and Y β,j0 are independent reflected diffusion processes
with bounded drift, which hit 0 at the same time. This occurs for two independent
reflected Brownian motions with probability 0, and then for Y β,i0 and Y β,j0 too, by the
Girsanov’s Theorem. That implies Px(Cβ) = 0.

We have proved that τ∞ ≥ Sβ almost surely for all β > 0, which leads to τ∞ ≥ S∞

almost surely. Finally, we get τ∞ = S∞ almost surely.
If the first part of Hypothesis 3 is fulfilled, one can defined the coupled reflected

diffusion Y ∞,i, which fulfills inequality (8) with a = α and for all t ∈ [0,τ∞∧S∞[= [0,τ∞[.
Then the same proof leads to

{τ∞ < +∞} ⊂
{

lim
t→τ∞

(Y ∞,i0
t ,Y ∞,j0

t ) = (0,0)

}

.

Finally, we deduce that τ∞ = ∞ almost surely.

Remark 4. One could wonder if the previous coupling argument can be generalized,
replacing (5) by uniformly elliptic diffusion processes. In fact, such arguments lead to the
definition of Y i as the reflected diffusion Y i

t =
∫ t

0
φ(X i

s)dW
i
s − Qit + L0

t − Lα
t , where φ is

a regular function. In our case of a drifted Brownian motion, φ is equal to 1 and Y i is a
reflected drifted Brownian motion independent of the others particles. But in the general
case, the Y i are general orthogonal semi-martingales. It yields that the generalization of
the previous proof reduces to the following hard problem (see [31, Question 2, page 217]
and references therein): ”Which are the two-dimensional continuous semi-martingales

11



for which the one point sets are polar ?”. Since this question has no general answer, it
seems that the previous proof doesn’t generalize immediately to general uniformly elliptic
diffusion processes.

We emphasize the fact that the proof of the exponential ergodicity can be generalized
(as soon as τ∞ = S∞ = +∞ is proved), using the fact that (Y 1

t ,...,Y
N
t )t≥0 is a time changed

Brownian motion with drift and reflection (see [31, Theorem 1.9 (Knight)]). This time
change argument has been developed in [20], with a different coupling construction. This
change of time can also be used in order to generalize Theorem 2.3 below, as soon as the
exponential ergodicity is proved.

Proof of the exponential ergodicity. It is sufficient to prove that there exists n ≥ 1, ǫ > 0
and a non-trivial probability ϑ on DN such that

Px((X1

nt
(N)
0

,...,XN

nt
(N)
0

) ∈ A) ≥ ǫϑ(A), ∀x ∈ K0, A ∈ B(DN), (9)

with K0 =
(

K
(N)
0

)N

, where t
(N)
0 and K

(N)
0 are defined in Hypothesis 3, and such that

sup
x∈K0

Ex(κτ
′

) <∞, (10)

where κ is a positive constant and τ ′ = min{n ≥ 1, (X1

nt
(N)
0

,...,XN

nt
(N)
0

)n∈N ∈ K0} is the

return time to K0 of the Markov chain (X1

nt
(N)
0

,...,XN

nt
(N)
0

)n∈N. Indeed, Down, Meyn and

Tweedie proved in [13, Theorem 2.1 p.1673] that if the Markov chain (X1

nt
(N)
0

,...,XN

nt
(N)
0

)n∈N

is aperiodic (which is obvious in our case) and fulfills (9) and (10), then it is geometrically
ergodic. But, thanks to [13, Theorem 5.3 p.1681], the geometric ergodicity of this Markov
chain is a sufficient condition for (X1,...,XN ) to be exponentially ergodic.

We assume without loss of generality that K
(N)
0 ⊂ Dα/2 (where α is defined in Hy-

pothesis 3). Let us set

ϑ(A) =

∏N
i=1 infx∈Dα/2

P
i(X

(i)

t
(N)
0

∈ A ∩K(N)
0 )

∏N
i=1 infx∈Dα/2

Pi(X
(i)

t
(N)
0

∈ K
(N)
0 )

.

Thanks to Hypothesis 3, ϑ is a non-trivial probability measure. Moreover, (9) is clearly

fulfilled with n = 1 and ǫ =
∏N

i=1 infx∈Dα P
i(X

(i)

t
(N)
0

∈ K
(N)
0 ).

Let us prove that ∃κ > 0 such that (10) holds. One can define the N -dimensional dif-
fusion (Y ∞,1,...,Y ∞,N) reflected on {0,α} and coupled with (X1,...,XN), so that inequality
(8) is fulfilled for all t ∈ [0, + ∞[ and a = α. For all x0 ∈ DN , we have by the Markov
property

Px0((X
1

2t
(N)
0

,...,XN

2t
(N)
0

) ∈ KN
0 ) ≥ Px0(X

i

t
(N)
0

∈ Dα/2,∀i) inf
x∈DN

α/2

Px(X i

t
(N)
0

∈ K
(N)
0 ,∀i)

≥ Px0(X
i

t
(N)
0

∈ Dα/2,∀i)
N
∏

i=1

inf
x∈Dα/2

Px(X i

t
(N)
0

∈ K
(N)
0 )

≥ Px0(X
i

t
(N)
0

∈ Dα/2,∀i)p(N)
1 ,

12



where p
(N)
1 > 0 is defined in Hypothesis 3. It yields that

Px0((X
1

2t
(N)
0

,...,XN

2t
(N)
0

) ∈ KN
0 ) ≥ p

(N)
1 Px0(φD(X i

t
(N)
0

) > α/2,∀i)

≥ p
(N)
1

N
∏

i=1

PY ∞,i
0

(Y ∞,i

t
(N)
0

> α/2),

thanks to Proposition 2.2. A comparison argument shows that PY ∞,i
0

(Y ∞,i

t
(N)
0

> α/2) ≥
P0(Y

∞,i > α/2). Then

inf
x0∈D

Px0((X
1

2t
(N)
0

,...,XN

2t
(N)
0

) ∈ KN
0 ) ≥ p

(N)
1

N
∏

i=1

P0(Y
∞,i

t
(N)
0

> α/2) > 0,

thanks to the strict positivity of the density of the law of Y ∞,i

t
(N)
0

, for all i ∈ {1,...,N}. Using

the Markov property, we get, ∀n ≥ 1,

P (τ ′ ≥ 2nt
(N)
0 ) ≥ (1 − inf

x0∈D
Px0((X

1

2t
(N)
0

,...,XN

2t
(N)
0

) ∈ KN
0 ))P (τ ′ ≥ 2(n− 1)t

(N)
0 )

≥ (1 − inf
x0∈D

Px0((X
1

2t
(N)
0

,...,XN

2t
(N)
0

) ∈ KN
0 ))n,

where 0 < infx0∈D Px0((X
1

2t
(N)
0

,...,XN

2t
(N)
0

) ∈ KN
0 ) ≤ 1. It yields that there exists κ > 0

such that (10) is fulfilled.

2.4 Uniform tightness of the empirical stationary distributions

In this part, the open set D is supposed to be bounded. Assume that a jump measure
J (N) and a family of drifts (q

(N)
i )i=1,...,N are given for each N ≥ 2.

Hypothesis 4. Hypotheses 1 and 2 are fulfilled for each N ≥ 2 and Hypothesis 3 is
fulfilled with the same α for each N ≥ 2. Moreover, there exists r > 1 such that

sup
N≥2

1

N

N
∑

i=1

r(Q
(N)
i )2 < +∞,

where Q
(N)
i = − infx∈D\Dα L(N)

i φD(x).

For allN ≥ 2, we denote by mN ∈ M1(D
N) the initial distribution and by µN(t,dx) the

empirical distribution of the N -particles process defined by the jump measure J (N) and
the family (q

(N)
i )i∈{1,...,N}. Its stationary distribution is denoted by MN and its empirical

stationary distribution is denoted by XN :

XN =
1

N

N
∑

i=1

δxi

where (x1,...,xN ) is a random vector in DN distributed following MN .
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Theorem 2.3. Assume that Hypothesis 4 is fulfilled. For all sequence of measures mN ∈
M1(D

N) and all t > 0, the family of random measures
(

µN(t,dx)
)

N≥2
is uniformly tight.

In particular, the family of empirical stationary distributions
(

XN
)

N≥2
is uniformly tight.

Proof. Let us consider the process (X1,...,XN) starting with a distribution mN and its
coupled process (Y ∞,1,...,Y ∞,N). For all t ∈ [0,τ∞[, we denote by µ′N(t,dx) the empirical
measure of (Y ∞,1

t ,...,Y ∞,N
t ). By the coupling inequality (8), we get

µN(t,Dc
r) ≤ µ′N(t,[0,r]), ∀r ∈ [0,α].

Using the Markov property, we deduce that, for all s < t,

EX1
s ,...,X

N
s

(

µN(t− s,Dc
r)
)

≤ EY ∞,1
s ,...,Y∞,N

s

(

µ′N(t− s,Dc
r)
)

a.s.

Then, by a comparison argument,

EX1
s ,...,X

N
s

(

µN(t− s,Dc
r)
)

≤ E0,...,0

(

µ′N(t− s,Dc
r)
)

a.s.

≤ 1

N

N
∑

i=1

P0(Y
∞,i
t−s ≤ r) a.s. (11)

Thanks to the Girsanov’s Theorem, we have

P0(Y
∞,i
t−s ≤ r) = E0

(

δwi
t−s+Li,α

t−s−Li,0
t−s

([0,r])eQ
(N)
i wi

t−s−(Q
(N)
i )2(t−s)

)

e
3
2
(Q

(N)
i )2(t−s),

where (w1,...,wN) is a N -dimensional Brownian motion. By the Cauchy Schwartz inequal-
ity, we get

P0(Y
∞,i
t−s ≤ r) ≤

√

E0

(

(

δwi
t−s+Li,α

t−s−Li,0
t−s

([0,r])
)2
)

E0

(

(

eQ
(N)
i wi

t−s−(Q
(N)
i )2(t−s)

)2
)

,

≤
√

E0

(

δwi
t−s+Li,α

t−s−Li,0
t−s

([0,r])
)

where the second inequality occurs, since 0 ≤ δwi
t−s+Li,α

t−s−Li,0
t−s

([0,r]) ≤ 1 almost surely and

the process e2Q
N
i wi

t−2(Q
(N)
i )2t is the Doléans exponential of 2Q

(N)
i wi

t, whose expectation is
1. Taking the expectation in (11), it yields that

EmN

(

µN(t,Dc
r)
)

≤
√

P0

(

δwi
t−s+Li,α

t−s−Li,0
t−s

([0,r])
) 1

N

N
∑

i=1

e
3
2
(Q

(N)
i )2(t−s), ∀0 < s < t.

Thanks to Hypothesis 4, there exists s0 ∈]0,t[ such that 1
N

∑N
i=1 e

3
2
(Q

(N)
i )2(t−s0) is uniformly

bounded in N ≥ 2. But P0

(

δwi
t−s0

+Li,α
t−s0

−Li,0
t−s0

([0,r])
)

goes to 0 when r → 0, so that the

family of random measures (µN(t,dx))N≥2 is uniformly tight.
If we set mN equal to the stationary distribution MN , then we get by stationarity that

XN is distributed as µN(t,.), for all N ≥ 2 and t > 0. Finally, the family of empirical
stationary distributions (XN)N≥2 is uniformly tight.
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3 Yaglom limit’s approximation

We consider now the particular case J (N)(x1,...,xN ) = 1
N−1

∑N
k=1,k 6=i δxk

: at each jump
time, the particle which hits the boundary jumps to the position of a particle chosen
uniformly between the N − 1 remaining ones. We assume moreover that q

(N)
i = q doesn’t

depend on i,N . In this framework, we are able to identify the limiting distribution of the
empirical stationary distribution sequence, when the number of particles tends to infinity.
This leads us to an approximation method of the Yaglom limits (4), including cases where
the drift of the diffusion process isn’t bounded and where the boundary is neither regular
nor bounded.

Let U∞ be an open domain of R
d, with d ≥ 1. We denote by P

∞ the law of the
diffusion process defined on U∞ by

dX∞
t = dBt −∇V (X∞

t )dt, X∞
0 = x ∈ U∞ (12)

and absorbed at the boundary ∂U∞. Here B is a d-dimensional Brownian motion and
V ∈ C2(U∞,R). We assume that Hypothesis 5 below is fulfilled, so that the Yaglom limit

ν∞ = lim
t→+∞

P
∞
x (X∞

t ∈ .|t ≤ τ∂) , ∀x ∈ U∞ (13)

exists and doesn’t depend on x, as proved by Cattiaux and Méléard in [7, Theorem B.2].
We emphasize the fact that this hypothesis allows the drift ∇V of the diffusion process
(12) to be unbounded and the boundary ∂U∞ to be neither of class C2 nor bounded. In
particular, the results of the previous section aren’t available in all generality for diffusion
processes with law P

∞.

Hypothesis 5. We assume that

1. P
∞
x (τ∂ < +∞) = 1,

2. ∃C > 0 such that G(x) = |∇V |2(x) − ∆V (x) ≥ −C > −∞, ∀x ∈ U∞,

3. G(R) → +∞ as R → ∞, where

G(R) = inf {G(x); |x| ≥ R and x ∈ U∞} ,

4. There exists an increasing sequence (Um)m≥0 of bounded open subsets of U∞, such
that the boundary of Um is of class C2 for all m ≥ 0, and such that

⋃

m≥0 Um = U∞.

5. There exists R0 > 0 such that

∫

U∞∩{d(x,∂U∞)>R0}

e−2V (x)dx <∞ and

∫

U∞∩{d(x,∂U∞)≤R0}

(
∫

U∞

pU∞

1 (x,y)dy

)

e−V (x)dx <∞.

Here pU∞

1 is the transition density of the diffusion process (12) with respect to the
Lebesgue measure.
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According to [7], the second point implies that the semi-group induced by P
∞ is ultra-

contractive. The assumptions 1-4 imply that the generator associated with P
∞ has a

purely discrete spectrum and that its minimal eigenvalue −λ∞ is simple and negative.
The last assumption ensures that the eigenfunction associated with −λ∞ is integrable
with respect to e−2V (x)dx. Finally, Hypothesis 5 is sufficient for the existence of the
Yaglom limit (13).

Remark 5. For example, it is proved in [7] that Hypothesis 5 is fulfilled by the Lotka-
Volterra system studied numerically in Subsection 3.3.3. Up to a change of variable, this
system is defined by the diffusion process with values in U∞ = R

2
+, which satisfies

dY 1
t = dB1

t +

(

r1Y
1
t

2
− c11γ1 (Y 1

t )
3

8
− c12γ2Y

1
t (Y 2

t )
2

8
− 1

2Y 1
t

)

dt

dY 2
t = dB2

t +

(

r2Y
2
t

2
− c22γ2 (Y 2

t )
3

8
− c21γ1Y

2
t (Y 1

t )
2

8
− 1

2Y 2
t

)

dt

(14)

and is absorbed at ∂U∞. Here B1,B2 are two independent one-dimensional Brownian
motions and the parameters of the diffusion process fulfill condition (30).

In order to define the interacting particle process of the previous section, we work with
diffusion processes defined on Um, m ≥ 0. More precisely, for all m ≥ 0, we denote by
P

m the law of the diffusion process defined on Um by

dXUm
t = dBt − qm(XUm

t )dt, XUm
0 = x ∈ Um (15)

and absorbed at the boundary ∂Um. Here B is a d-dimensional Brownian motion and
qm : Um 7→ R is a continuous function. We denote by Lm the infinitesimal generator of the
diffusion process with law P

m. For all m ≥ 0, the diffusion process with law P
m clearly

fulfills the conditions of Section 2. For all N ≥ 2, let (Xm,1,...,Xm,N ) be the interacting
particle process defined by the law P

m between the jumps and by the jump measure
J (m,N)(x1,...,xN ) = 1

N−1

∑N
k=1,k 6=i δxk

. By Theorem 2.1, this process is well defined and
exponentially ergodic.

For all m ≥ 0 and all N ≥ 2, we denote by µm,N(t,dx) the empirical distribution of
(Xm,1

t ,...,Xm,N
t ), by Mm,N the stationary distribution of (Xm,1,...,Xm,N ) and by Xm,N the

associated empirical stationary distribution.
We are now able to state the main result of this section.

Theorem 3.1. Assume that Hypothesis 5 is satisfied and that qm = ∇V 1Um
for all m ≥ 0.

Then
lim

m→∞
lim

N→∞
Xm,N = ν∞,

in the weak topology of random measures, which means that, for all bounded continuous
function f : U∞ 7→ R+,

lim
m→∞

lim
N→∞

E(Xm,N(f)) = ν∞(f).

In Section 3.1, we fix m ≥ 0 and we prove that the sequence (Xm,N)N≥2 converges to
a deterministic probability νm when N goes to infinity. In particular, we prove that νm
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is the Yaglom limit associated with P
m, which exists by [7]. In Section 3.2, we conclude

the proof, proceeding by a compactness/uniqueness argument: we prove that (νm)m≥0 is
a uniformly tight family and we show that each limiting probability of the family (νm)m≥0

is equal to the Yaglom limit ν∞. The last Section 3.3 is devoted to numerical illustrations
of Theorem 3.1.

3.1 Convergence of (Xm,N)N≥2, when m ≥ 0 is fixed

Proposition 3.2. Let m ≥ 0 be fixed and let qm : Um 7→ R be a continuous function.
Assume that µm,N(0,dx) converges in the weak topology of random measure to a random
probability measure µm with values in M1(Um), when N → ∞. Then, for all T ≥ 0,
µm,N(T,dx) converges in the weak topology of random measure to P

m
µm

(XT ∈ .|XT ∈ Um)
when N goes to infinity.

Moreover, if there exists νm ∈ M1(Um) such that

νm = lim
t→∞

P
m
µ

(

XUm
t ∈ .|XUm

t ∈ Um

)

, ∀µ ∈ M1(Um), (16)

then the sequence of empirical stationary distributions (Xm,N)N≥2 converges to νm in the
weak topology of random measures when N goes to infinity.

Remark 6. In Proposition 3.2, νm is the Yaglom limit and the unique quasi-stationary
distribution associated with P

m. For instance, each of the two following conditions is
sufficient for the existence of such a measure:

1. If qm = 1Um
∇V , by [7]. This is the case of Theorem 3.1.

2. If qm belongs to C1,α(Um) with α > 0, by [17].

Proof of Proposition 3.2. We set

νm,N (t,dx) =

(

N − 1

N

)AN
t

µm,N(t,dx),

where AN
t =

∑∞
n=1 1τn≤t denotes the number of jumps before time t. Intuitively, we

introduce a loss of 1/N of the total mass at each jump, in order to approximate the
distribution of the diffusion process (15) without conditioning. We will come back to the
study of µm,N and the conditioned diffusion process by normalizing νm,N .

From the Itô’s formula applied to the semi-martingale µm,N(t,ψ) = 1
N

∑N
i=1 ψ(Xm,i

t ),
where ψ ∈ C2(Um,R), we get

µm,N(t,ψ) = µm,N(0,ψ) +

∫ t

0

µm,N(s,Lmψ)ds+ Mc,N(t,ψ) + Mj,N(t,ψ)

+
1

N − 1

∑

0≤τn≤t

µm,N(τn-,ψ), (17)

where Mc,N(t,ψ) is the continuous martingale

1

N

N
∑

i=1

d
∑

j=1

∫ t

0

∂ψ

∂xj
(Xm,i

s )dBi,j
s
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and Mj,N(t,ψ) is the pure jump martingale

1

N

N
∑

i=1

∑

0≤τ in≤t

(

ψ(Xm,i
τ in

) − N

N − 1
µm,N(τ in-,ψ)

)

.

Applying the Itô’s formula to the semi-martingale νm,N(t,ψ), we deduce from (17) that

νm,N (t,ψ) = νm,N (0,ψ) +

∫ t

0

νm,N (s,Lmψ)ds+

∫ t

0

(

N − 1

N

)AN
s

dMc,N(s,ψ)

+
∑

0≤τn≤t

(νm,N (τn,ψ) − νm,N (τn-,ψ)).

Where we have

νm,N(τn,ψ) − νm,N (τn-,ψ) =

(

N − 1

N

)AN
τn
(

µm,N(τn,ψ) − µm,N(τn-,ψ)
)

+ µm,N(τn-,ψ)

(

(

N − 1

N

)AN
τn

−
(

N − 1

N

)AN
τn-

)

.

But

µm,N(τn,ψ) − µm,N(τn-,ψ) =
1

N − 1
µm,N(τn-,ψ) + Mj,N(τn,ψ) −Mj,N(τn-,ψ)

and

(

N − 1

N

)AN
τn

−
(

N − 1

N

)AN
τn-

= − 1

N − 1

(

N − 1

N

)AN
τn

.

Then

νm,N(τn,ψ) − νm,N (τn-,ψ) =

(

N − 1

N

)AN
τn
(

Mj,N(τn,ψ) −Mj,N(τn-,ψ)
)

.

=
N − 1

N

(

N − 1

N

)AN
τn-
(

Mj,N(τn,ψ) −Mj,N(τn-,ψ)
)

.

That implies

νm,N(t,ψ) − νm,N (0,ψ) =

∫ t

0

νm,N (s,Lmψ)ds+

∫ t

0

(

N − 1

N

)AN
s

dMc,N(s,ψ)

+
N − 1

N

∑

0≤τn≤t

(

N − 1

N

)AN
τn-
(

Mj,N(τn,ψ) −Mj,N(τn-,ψ)
)

.

It yields that, for all smooth functions Ψ(t,x) vanishing at the boundary of Um,

νm,N (t,Ψ(t,.)) − νm,N (0,Ψ(0,.)) =

∫ t

0

νm,N (s,
∂Ψ(s,.)

∂s
+ LmΨ(s,.))ds

+N c,N(t,Ψ) + N j,N(t,Ψ),
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where N c,N(t,Ψ) is the continuous martingale

1

N

N
∑

i=1

d
∑

j=1

∫ t

0

(

N − 1

N

)AN
s ∂Ψ

∂xj
(s,Xm,i

s )dBi,j
s

and N j,N(t,Ψ) is the pure jump martingale

1

N

N
∑

i=1

∑

0≤τ in≤t

(

N − 1

N

)AN
τin-
(

Ψ(τ in,X
i
τ in

) − N

N − 1
µm,N(τ in-,Ψ(τ in-,.))

)

.

Let T > 0 be fixed. For all δ > 0, define Ψδ(t,x) = Pm
T−tP

m
δ f(x), where f ∈ C2(Um)

and (Pm
s )s≥0 is the semigroup associated with P

m : Pm
s f(x) = Ex(f(XUm

s )). Then Ψδ

vanishes on the boundary, is smooth, and fulfills

∂

∂s
Ψδ(s,x) +

1

2
∆Ψδ(s,x) + qm(x)∇Ψδ(s,x) = 0,

thanks to Kolmogorov’s equation (see [14, Proposition 1.5 p.9]). It yields that

νm,N (t,Ψδ(t,.)) − νm,N(0,Ψδ(0,.)) = N c,N(t,Ψδ) + N j,N(t,Ψδ). (18)

Since
(

N−1
N

)AN
s ≤ 1 a.s., we get

E
(

N c,N(T,Ψδ)2
)

≤ T

N
‖∇Ψδ‖2∞

≤ T

N

cm
√

(T − t + δ) ∧ 1
‖f‖2∞

(19)

where cm > 0 is a positive constant. The last inequality comes from [30, Theorem 4.5]
on gradient estimates in regular domains of Rd. The jumps of the martingale Mj,N(t,Ψδ)
are smaller than 2

N
‖Ψδ‖∞, then

E

[

∑

0≤τn≤T

(

N − 1

N

)2Aτn-
(

Mj,N(τn,Ψ
δ(τn,.)) −Mj,N(τn-,Ψδ(τn-,.))

)2

]

≤ 4

N2
‖Ψδ‖2∞E

[

∑

0≤τn≤T

(

N − 1

N

)2Aτn-
]

≤ 4

N
‖Ψδ‖2∞.

Then

E
(

N j,N(Ψ,T )2
)

≤ 4

N
‖Ψ‖2∞ ≤ 4

N
‖f‖2∞. (20)

Taking t = T and δ = 1
N

, we get from (18), (19) and (20) that

√

E

(

∣

∣

∣
νm,N (t,Pm

1
N

f) − νm,N(0, Pm
T+ 1

N

f)
∣

∣

∣

2
)

≤
√

cmT + 4√
N

‖f‖∞.
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Assume that f vanishes at ∂Um, so that f belongs to the domain of Lm. Then ‖Pm
1
N

f −
f‖∞ ≤ 1

N
‖Lmf‖∞ and we have

√

E
(

|νm,N (T,f) − νm,N (0, Pm
T f)|2

)

≤
√

cmT + 4√
N

‖f‖∞ +
2

N
‖Lmf‖∞ N→∞−−−→ 0. (21)

By assumption, the family of random probabilities (νm,N (0,.))N≥2 = (µm,N(0,.))N≥2 con-
verges to µm. We deduce from (21) that

E
(

νm,N (T,f)
)

−−−→
N→∞

E (µm(Pm
T f)) , (22)

for all f ∈ C2(Um) vanishing at boundary. But the family
(

νm,N(T,.)
)

N≥2
is uniformly

tight by Theorem 2.3 . It yields from (22) that its unique limiting distribution is µm(Pm
T .).

In particular,

(

νm,N (T,Um),νm,N (T,.)
) law−−−→

N→∞
(µm(Pm

T 1Um),µm(Pm
T .)) .

But µm(Pm
T 1Um) never vanishes almost surely, so that

µm,N(T,.) =
νm,N (T,.)

νm,N(T,Um)

law−−−→
N→∞

µm(Pm
T .)

µm(Pm
T 1Um)

= P
m
µm

(XUm
T ∈ .|XUm

T ∈ Um). (23)

The family of random probabilities (Xm,N)N≥0 is uniformly tight, by Theorem 2.3.
Let Xm be one of its limiting probabilities. By definition, there exists a strictly increasing
map ϕ : N 7→ N, such that Xm,ϕ(N) converges in distribution to Xm when N → ∞. By
stationarity, Xm,ϕ(N) has the same law as µm,ϕ(N)(T,.), which converges in distribution
to P

m
X (XUm

T ∈ .|XUm
T ∈ Um), thanks to (23). But P

m
Xm(XUm

T ∈ .|XUm
T ∈ Um) converges

almost surely to νm when T → ∞, by (16). We deduce from this that Xm has the same
law as νm. As a consequence, the unique limiting probability of the uniformly tight family
(Xm)N is νm, which allows us to conclude the proof of Proposition 3.2.

3.2 Convergence of the family (νm)m≥0

Proposition 3.3. Assume that Hypothesis 5 is fulfilled and that qm = ∇V 1Um
. Then the

sequence (νm)m≥0 converges weakly to the Yaglom limit ν∞ when m→ ∞.

Remark 7. Since qm = ∇V 1Um
, the operator Lm is symmetric with respect to the

measure e−2V (x)dx, but this isn’t directly used in the proof of Proposition 3.3. We mainly
use inequalities from [7] that are implied by the ultra-contractivity of P∞ and the third
point of Hypothesis 5. However, it seems hard to generalize this last hypothesis and its
implications to diffusions with non-gradient drifts.

Proof of Proposition 3.3. For all m ≥ 0 and m = ∞, it has been proved in [7] that −Lm∗

has a simple eigenvalue λm > 0 with minimal real part, where Lm∗ is the adjoint operator
of Lm. The corresponding normalized eigenfunction ηm is strictly positive on Um, belongs
to C2(Um,R) and fulfills

Lm∗ηm = −λmηm and

∫

Um

ηm(x)2dσ(x) = 1, (24)
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where
dσ(x) = e−2V (x)dx.

The Yaglom limit νm is given by

dνm =
ηm1Umdσ

∫

Um
ηm(x)dσ(x)

, ∀m ≥ 0 or m = ∞.

In order to prove that (νm)m≥0 converges to ν∞, we show that (λm)m≥0 converges to λ∞.
Then we prove that (ηm1Umdσ)m≥0 is uniformly tight. We conclude by proving that every
limiting point ηdσ is a nonzero measure proportional to η∞dσ.

For all m ≥ 0 or m = ∞, the eigenvalue λm of −Lm∗ is given by (see for instance [34,
chapter XI, part 8])

λm = inf
φ∈C∞

0 (Um), 〈φ,φ〉σ,m=1
〈Lm∗φ,φ〉σ,m.

where C∞
0 (Um) is the vector space of infinitely differentiable functions with compact

support in Um and 〈f,g〉σ,m =
∫

Um
f(u)g(u)dσ(u). For all φ ∈ C∞

0 (U∞), the support of
φ belongs to Um for m big enough, then C∞

0 (U∞) =
⋃

m≥0C
∞
0 (Um) since the reverse

inclusion is clear. Moreover, if φ ∈ C∞
0 (Um), then L∞∗φ(x) = Lm∗φ(x) for all x ∈ Um.

Finally,

λ∞ = inf
m≥0

inf
φ∈C∞

0 (Um), 〈φ,φ〉σ,m=1
〈Lm∗φ,φ〉σ,m

= lim
m≥0

ց λm.

Let us show that the family (ηm1Umdσ)m≥0 is uniformly tight. Fix an arbitrary positive
constant ǫ > 0 and let us prove that one can find a compact set Kǫ ⊂ U∞ which fulfills

∫

U∞\Kǫ

ǫm1Umdσ ≤ ǫ, ∀m ≥ 0. (25)

Let R0 be the positive constant of the fifth part of Hypothesis 5. For all compact set K,
we have

∫

U∞\K

ηm1Umdσ =

∫

{d(x,∂Um)>R0}∩Um\K

ηmdσ +

∫

{d(x,∂Um)≤R0}∩Um\K

ηmdσ.

From the proof of [7, Proposition B.6], we have on the one hand

∫

{d(x,∂Um)>R0}∩Um\K

ηmdσ ≤
√

∫

{d(x,∂U∞)>R0}∩U∞\K

e−2V (x)dx,

which is smaller than ǫ/2 for a good choice of K, say K ′
ǫ, since the integral at the right-

hand side is finite by Hypothesis 5. On the other hand

∫

{d(x,∂Um)≤R0}∩Um\K

ηmdσ ≤ eC/2eλmκ

∫

{d(x,∂U∞)≤R0}∩U∞\K

(
∫

U∞

pU∞

1 (x,y)dy

)

dx, (26)

where κ = supm≥0 ‖ηme−V ‖∞ < ∞ thanks to [7], and λm ≤ λ∞ for all m ≥ 0. But
the integral on the right-hand side is well defined by Hypothesis 5, then one can find a
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compact set K ′′
ǫ such that (26) is bounded by ǫ/2. We set Kǫ = K ′

ǫ ∪K ′′
ǫ so that (25) is

fulfilled. Since inequality (25) occurs for all ǫ > 0, the family (ηmdσ)m≥0 is uniformly tight.
Moreover, ηmdσ has a density with respect to the Lebesgue measure, which is bounded by
κe−V , uniformly in m ≥ 0. Then it is uniformly bounded on every compact set, so that
every limiting distribution is absolutely continuous with respect to the Lebesgue measure.

Let ηdσ be a limiting measure of (ηmdσ)m≥0. For all φ ∈ C∞
0 (U∞,R), the support of

φ belongs to Um for m big enough, then

〈η,L∞φ〉σ,∞ = lim
m→∞

〈ηm,Lmφ〉σ,m
= lim

m→∞
〈Lm∗ηm, φ〉σ,m

= lim
m→∞

−λm 〈ηm, φ〉σ,m
= −λ∞ 〈η, φ〉σ,∞ .

Thanks to the elliptic regularity Theorem, η is of class C2 and fulfills L∞∗η = −λ∞η. But
the eigenvalue λ∞ is simple, then η is proportional to η∞. Let β ≥ 0 be the non-negative
constant such that η = βη∞. In particular, there exists an increasing function φ : N 7→ N

such that ηφ(m)dσ converges weakly to βη∞dσ.
Let us prove that β is positive. For all compact subset K ⊂ U∞, we have

β
〈

η∞,e
V
1K

〉

σ,∞
= lim

m→∞

〈

ηφ(m),1Ke
V
〉

σ,φ(m)

≥ lim
m→∞

1

κ

〈

ηφ(m),1Kηφ(m)

〉

σ,φ(m)

≥ 1

κ

(

1 − sup
m≥0

〈

ηm,1Um\Kηm
〉

σ,m

)

, (27)

where κ = supm≥0 ‖ηme−V ‖∞ <∞. For all m ≥ 0 and all R > 0,

〈

ηm,1Um\Kηm
〉

σ,m
≤ 1

G(R)

〈

ηm,1|x|≥RGηm
〉

σ,m
+
〈

ηm,1{|x|<R}\Kηm
〉

σ,m
, (28)

where G and G are defined in Hypothesis 5. Let us prove that 〈ηm,Gηm〉σ,m is uniformly
bounded in m ≥ 0. For all x ∈ Um, (24) leads to

1

2
G(x)ηm(x) = λmηm(x) +

1

2
eV (x)∆(ηme

−V )(x).

Then

〈ηm,Gηm〉σ,m = λm 〈ηm,ηm〉σ,m +
1

2

∫

Um

ηm(x)e−V (x)∆(ηme
−V )(x)dx

= λm −
∫

Um

|∇ηm(x)e−V (x)|2dx

≤ λ1,

where the second equality is a consequence of the Green’s formula (see [2, Corollary
3.2.4]). But G(R) goes to +∞ when R → ∞, then there exists R1 > 0 such that
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1
G(R1)

〈

ηm,1|x|≥R1
Gηm

〉

σ,m
≤ 1

4
. Since κ = supm≥0 ‖ηme−V ‖∞ < ∞, we deduce from (28)

that
〈

ηm,1Um\Kηm
〉

σ,m
≤ 1

4
+ κ2

∫

U∞

1{|x|<R1}\Kdx.

But one can find a compact subset K1 ⊂ U∞ such that
∫

U∞

1{|x|<R1}\K1dx ≤ 1
4κ2 , then we

have from (27)

β 〈η0,1K〉σ ≥ 1

2κ
.

It yields that β > 0 and Proposition 3.3 follows.

3.3 Numerical simulations

3.3.1 The Wright-Fisher case

The Wright-Fisher with values in ]0,1[ conditioned to be absorbed at 0 is the diffusion
process driven by the SDE

dZt =
√

Zt(1 − Zt)dBt − Ztdt, Z0 = z ∈]0,1[,

and absorbed when it hits 0 (1 is never reached). Huillet proved in [21] that the Yaglom
limit of this process exists and has the density 2−2x with respect to the Lebesgue measure.
In order to apply Theorem 3.1, we define P

∞ as the law of X∞
. = arccos(1 − 2Z.). Then

P
∞ is the law of the diffusion process with values in U∞ =]0,π[, driven by the SDE

dX∞
t = dBt −

1 − 2 cosX∞
t

2 sinX∞
t

dt, X∞
0 = x ∈]0,π[,

absorbed when it hits 0 (π is never reached). One can easily check that this diffusion
process fulfills Hypothesis 5. We denote by ν∞ its Yaglom limit.

For all m ≥ 1, we define Um =] 1
m
,π − 1

m
[. Let P

m and νm be as in Section 3. We
proceed to the numerical simulation of the N -interacting particle system (Xm,1,...,Xm,N)
with m = 1000 and N = 1000. This leads us to the computation of E(Xm,N), which is
an approximation of ν∞. After the change of variable Z. = 2 cos(X.), we see on Figure
3 that the simulation is very close to the expected result (2 − 2x)dx, which shows the
efficiency of the method.

3.3.2 The logistic case

The logistic Feller diffusion with values in ]0,+∞[ is defined by the stochastic differential
equation

dZt =
√

ZtdBt + (rZt − cZ2
t )dt, Z0 = z > 0, (29)

and absorbed when it hits 0. Here B is a 1-dimensional Brownian motion and r,c are
two positive constants. In order to use Theorem 3.1, we make the change of variable
X. = 2

√
Z.. This leads us to the study of the diffusion process with values in U∞ =]0,+∞[,

which is absorbed at 0 and satisfies the SDE

dX∞
t = dBt −

(

1

2X∞
t

− rX∞
t

2
+
c(X∞

t )3

4

)

dt, X∞
0 = x ∈]0, + ∞[.
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Figure 3: E(Xm,N) in the Wright-Fisher case

We denote by P
∞ its law. Cattiaux et al. proved in [6] that Hypothesis 5 is fulfilled

in this case. Then the Yaglom limit ν∞ associated with P
∞ exists and one can apply

Theorem 3.1 with Um =] 1
m
,m[ for all m ≥ 1. For all N ≥ 2, we denote by P

m the law of
the diffusion process restricted to Um and by Xm,N the empirical stationary distribution
of the N -interacting particle process associated with P

m.
We’ve proceeded to the numerical simulation of the interacting particle process for a

large number of particles and a large value of m. This allows us to compute E(Xm,N),
which gives us a numerical approximation of ν∞, thanks to Theorem 3.1.

In the numerical simulations below, we set m = 10000 and N = 10000. We compute
E(Xm,N) for different values of the parameters r and c in (29). The results are graphically
represented in Figure 4. As it could be wanted for, greater is c, closer is the support of
the QSD to 0. We thus numerically describe the impact of the linear and quadratic terms
on the Yaglom limit.

3.3.3 Stochastic Lotka-Volterra Model

We apply our results to the stochastic Lotka-Volterra system with values in D = R
2
+

studied in [7], which is defined by the following stochastic differential system

dZ1
t =

√

γ1Z1
t dB

1
t +

(

r1Z
1
t − c11(Z

1
t )2 − c12Z

1
t Z

2
t

)

dt,

dZ2
t =

√

γ2Z2
t dB

2
t +

(

r2Z
2
t − c21Z

1
t Z

2
t − c22(Z

2
t )2
)

dt,

where (B1,B2) is a bi-dimensional Brownian motion. We are interested in the process
absorbed at ∂D.

More precisely, we study the process X∞ = (Y 1,Y 2) = (2
√

Z1
. /γ1,2

√

Z2
. /γ2), with

values in U∞ = R
2
+, which satisfies the SDE (14) and is absorbed at ∂U∞. We denote its

law by P
∞. The coefficients are supposed to satisfy

c11,c21 > 0, c12γ2 = c21γ1 < 0 and c11c22 − c12c21 > 0. (30)
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Figure 4: E(Xm,N) for the diffusion process (29), with different values of r and c

In [7], this case was called the weak cooperative case and the authors proved that it
is a sufficient condition for Hypothesis 5 to be fulfilled. Then the Yaglom limit ν∞ =
limt→+∞P

∞
x (X∞ ∈ .|t < τ∂) is well defined and we are allowed to apply Theorem 3.1.

For each m ≥ 1, we define Um as it is described on Figure 5. With this definition, it is
clear that all conditions of Theorems 2.1 and 3.1 are fulfilled.

We choose m = 10000 and we simulate the long time behavior of the interacting
particle process with N = 10000 particles for different values of c12 and c21. The values
of the other parameters are r1 = 1 = r2 = 1, c11 = c22 = 1, γ1 = γ2 = 1. The results are
illustrated on Figure 6. One can observe that a greater value of the cooperating coefficients
−c12 = −c21 leads to a Yaglom limit whose support is further from the boundary and
covers a smaller area. In other words, the more the two populations cooperate, the bigger
the surviving populations are.
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Figure 5: Definition of Um

Figure 6: Empirical stationary distribution of the interacting particle process for different
values of c12 = c21
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