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ABSTRACT

The separation of under-determined convolutive audio mixtures
is generally addressed in the time-frequency domain where the
sources exhibit little overlap. Most previous approaches rely on
the approximation of the mixing process by complex-valued mul-
tiplication in each frequency bin. This is equivalent to assuming
that the spatial covariance matrix of each source, that is the co-
variance of its contribution to all mixture channels, has rank 1.
In this paper, we propose to represent each source via a full-rank
spatial covariance matrix instead, which better approximates re-
verberation. We also investigate a possible parameterization of
this matrix stemming from the theory of statistical room acoustics.
We illustrate the potential of the proposed approach over a stereo
reverberant speech mixture.

Index Terms— Audio source separation, under-determined
mixtures, reverberation, spatial covariance models

1. INTRODUCTION

Most audio signals are mixtures of several sound sources such as
speech, music, and background noise. The observed multichannel
signal x(t) can be expressed as

J
x(t) =D _si™(t) M

j=1
where s;mg(t) is the spatial image of source j. When the mixture

results from the recording of .J static point sources via [ static mi-
crophones, this quantity can be modeled via the convolutive mix-

ing process
SME(t) = hy(r)s;(t—7) @)

where s;(t) is the j-th source signal and h;(7) is the vector of
mixing filter coefficients modeling the acoustic path from source j
to all microphones. Source separation consists of recovering either
the source signals or their spatial images given the mixture signal.
This problem is particularly difficult in the under-determined case,
i.e. when the number of sources J is larger than the number of
mixture channels /.

Most existing approaches transform the signals into the time-
frequency domain via the short-time Fourier transform (STFT) and
approximate the convolutive mixing process by a complex-valued
mixing matrix in each frequency bin. Source separation can then
be achieved by estimating the mixing matrices in all frequency
bins and deriving the source STFT coefficients under some sparse
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prior distribution. Popular algorithms include binary masking [1]
or £1-norm minimization [2].

In [3], a different framework was proposed whereby the vec-
tor s"#(n, f) of STFT coefficients of each spatial source image
at time frame n and frequency bin f is modeled as a zero-mean
Gaussian variable with covariance matrix

Rsij_mg (n, f) = vi(n, f)R;(f)

where v; (n, f) is a scalar time-varying variance and R;( f) a time-
invariant matrix encoding the spatial properties of the source. As-
suming that the sources are uncorrelated, the vector x(n, f) of
STFT coefficients of the mixture signal is also zero-mean Gaus-
sian with covariance matrix

3

Ra(n, f) =D _vi(n /) Ry(F). @

The parameters v;(n, f) and R;(f) of the model are estimated
in the maximum likelihood (ML) sense. The spatial images of
all sources are then obtained in the minimum mean square error
(MMSE) sense by Wiener filtering

S8 (n, ) = vi(n, R, (f)Rx ' (n, £)x(n, £). (5

This framework was applied to the separation of instantaneous
audio mixtures in [4] and shown to provide better separation per-
formance than ¢,-norm minimization. Recently, the covariance
model (3) was also applied to the separation of convolutive audio
mixtures via multichannel nonnegative matrix factorization (NMF)
in [5]. However, the mixing process was approximated by complex-
valued multiplication in each frequency bin, resulting in a rank-1
approximation of the spatial covariance matrix of each source.

In the following, we investigate the modeling of each source
by a full-rank spatial covariance matrix instead. This generaliza-
tion was shown to improve flexibility of the model for astronom-
ical data in [6]. We argue that it provides a better approxima-
tion of reverberation within audio recordings and study a possi-
ble full-rank parameterization stemming from the theory of sta-
tistical room acoustics [7]. We demonstrate the potential of the
proposed approach by considering the separation of a reverberant
speech mixture in a semi-blind context, where the source spatial
covariance matrices R; (f) are known. We also compute a perfor-
mance upper-bound for each model.

The structure of the rest of the paper is as follows. We present
rank-1 and full-rank spatial covariance models in Section 2 and
explain how to estimate the source variances v;(n, f) in Section
3. We evaluate the separation performance achieved by all models
on speech data in Section 4 and conclude in Section 5.
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2. SPATIAL COVARIANCE MODELS

We investigate four spatial source models with different degrees
of flexibility. For simplicity, we focus our presentation on stereo
(I = 2) signals, although the models can also be defined for I > 2
channels.

2.1. Rank-1 convolutive model

Most existing approaches to audio source separation approximate
the convolutive mixing process (2) by the complex-valued multi-
plication s (n, f) = h;(f)s;(n, f) where h;(f) is the Fourier
transform of the mixing filters h;(7) and s;(n, f) is the STFT of
sj(t). The covariance matrix of sijmg(n, f) is then given by (3)
where v;(n, f) is the variance of s;(¢) and R;(f) is equal to the
rank-1 matrix

R;(f) = h;(H)hj' (f) (©6)
with 7 denoting matrix conjugate transposition. In the following,
we assume that the vectors h; (f) associated with different sources
J are not collinear.

2.2. Rank-1 anechoic model

In the particular case where the recording environment is anechoic,
each mixing filter h;;(7) is the combination of a delay and a gain.
The FFT of the mixing filters h;(f) is then denoted as a;(f) and
specified by the distance 7;; between each source j and each mi-
crophone i. More precisely,

e n(mj)e_Q’:”fTU
aj (f) - (K(rzj)efmrrfv—gj (7)
where
1 Tij
Ii(’l"ij) = m and Tij = — (8)
©J

are respectively the mixing gains and delays for source j with
sound velocity ¢ [7].

2.3. Full-rank direct+diffuse model

The above rank-1 models rely on an approximation of the actual
mixing process, whereby the sound of source j as recorded on
the microphones comes from a single spatial position at each fre-
quency f, as specified by h;(f). In practice, reverberation in-
creases the spatial spread of each source, due to echoes at many
different positions on the walls of the recording room.

The theory of statistical room acoustics assumes that the spa-
tial image of each source is composed of two uncorrelated parts:
a direct part modeled by a;(f) and a reverberant part. The spatial
covariance R,; (f) of source j is then a full-rank matrix defined as
the sum of the covariance of the direct part and the covariance of
the reverberant part [7]

R;(f) aj(f)af(f)+afev<\1/(<il7f) \P(%f)> ®

where o2, is the power of the reverberant part and ¥(d, f) is a
function of microphone distance d and frequency f. This model
assumes that the reverberation recorded at both microphones has
the same power but is correlated as characterized by W(d, f). This
model was employed for single source localization in [7] but its use
for the separation of multiple sources has not yet been investigated.
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Assuming that the reverberant part is diffuse, i.e. its intensity
is uniformly distributed over all possible directions, its normalized
cross-correlation is real-valued and shown in [8] to be equal to

sin(27rfd/c).

v, f) == (10)

Furthermore, the power of the reverberant part within a rectangular
room is given by o7, = 43%/(A (1 — %)) where A is the total
wall area and 3 the wall reflection coefficient computed from the
room reverberation time via Eyring’s formula [7].

2.4. Full-rank unconstrained model

In practice, the assumption that the reverberant part is diffuse is
rarely satisfied. Indeed, early echoes containing more energy are
not uniformly distributed on the walls of the recording room, but
at certain positions depending on the position of the source and the
microphones. When performing some simulations in a rectangular
room, we observed that (10) is valid on average when considering
a large number of sources at different positions, but generally not
valid for each source considered independently.

Therefore, we also investigate the modeling of each source via
an unconstrained spatial covariance matrix R;(f) whose coeffi-
cients are not related a priori. Since this model is more general
than (6) and (9), it allows more flexible modeling of the mixing
process and is expected to improve separation performance of real-
world convolutive mixtures. However the estimation of its param-
eters may be more difficult in a blind context.

3. ESTIMATION OF THE MODEL PARAMETERS

In order to use the models for blind source separation, we would
need to estimate the source variances v;(n, f) and their spatial
parameters h; (f), 7, 0oy, d or R;(f) from the mixture signal
only. Recent evaluations of state-of-the-art algorithms [9] have
shown that the estimation of spatial parameters remains difficult
for real-world reverberant mixtures, due in particular to the ex-
istence of multiple local maxima in the ML criterion and to the
source permutation problem arising when the model parameters at
different frequencies are assumed to be independent. In the follow-
ing, we investigate the potential separation performance achiev-
able via each model in a semi-blind context, where the spatial
covariance matrices R;(f) are known but the source variances
v;(n, f) are blindly estimated from the observed mixture. We also
compare the models in an oracle context, where both the spatial
covariance matrices R (f) and the source variances v;(n, f) are
known. The resulting performance figures provide upper bounds
of the separation performance achievable in a blind context.

3.1. Blind estimation of the source variances

From now on, we assume that the spatial covariance matrices R;; (f)

are known. Let us denote by ﬁx(n7 f) the empirical covariance
matrix of the mixture signal x(n, f) in the time-frequency point
(n, f). This quantity can be computed by averaging over some
time-frequency neighborhood of that point as [4]

En’,f/ U)(n/ -n, f/ - f)x(n',f’)x(ﬂ,f’)H
Zn’,f’w(nlin7f/7f)

Rx(n, f) =
11)
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where w is a bi-dimensional window specifying the shape of the
neighborhood. The estimation of the source variances v;(n, f) in
the ML sense is equivalent to minimizing the sum over all time-
frequency points (n, f) of the Kullback-Leibler (KL) divergence
Dir(Rux(n, f)|Rx(n, f)) between two zero-mean Gaussian dis-
tributions with covariance matrices Ry (2, f) and R (n, f) de-
fined in (11) and (4) respectively with

Dxr(RIR) = %[tr(R’lf{) “logdet(RTIR) — 1. (12)
This criterion is defined only when R and R are both full-rank
matrices. It is always nonnegative and equal to zero if and only if
R=R.

This minimization with respect to the source variances was
performed iteratively using the expectation-mazimization (EM) al-
gorithm in [3] and a faster conjugate gradient algorithm in [6]. We
observed that the resulting source separation performance is quite
sensitive to the initial parameter values, since both algorithms may
converge to a local minimum of the criterion. The issue of finding
an appropriate initialization was addressed in [4] for rank-1 instan-
taneous models. We now extend this approach to rank-1 and full-
rank convolutive models. To simplify the notation, we omit time
and frequency indexes hereafter, since the estimation of the source
variances is achieved separately in each time-frequency point.

We choose the initial source variances v; as the global mini-
mum of the KL divergence under the constraint that at most two
sources are active in the considered time-frequency point, i.e.

Jj1, j2 such that v; = 0 V5 ¢ {j1, j2}. (13)

‘We compute this global minimum via a non-iterative approach. We
distinguish two cases: either this global minimum involves a single
active source or it involves two active sources. Let us consider first
the case when the global minimum of the KL divergence under
constraint (13) involves a single active source indexed by j. By
computing the derivative of D, (Ry|Rx) with respect to v; and
equating it to zero, we get

(14)

Let us now assume that the global minimum of the KL divergence
under constraint (13) involves two active sources indexed by j1
and j2. We use the fact that there exists an invertible matrix A
and two diagonal matrices A1 and A such that R;;, = AA; A
and Rj, = AA>A". When R, or R, have full rank, the
columns of A can be computed as the eigenvectors of R, R;ll

or Rﬂ'le_; as shown in [10]. When both R;, and R;, have
rank 1, the columns of A are the vectors h;, and h;, such that
R;, = h;,h and R;, = h;,h%. Since the KL divergence is
invariant under invertible linear transforms, it can be rewritten as

Drr (A7 Rux(A™) Mo, At 4 0j, A2).

15)
By computing the gradient of this expression with respect to v;,
and vj;, and equating it to zero, we obtain

Dir(Rx|Ryx) =

(f}a) — (diag(A1) diag(As)) " diag(A~ Ry (A7))
J2

(16)
where diag(.) denotes the column vector of diagonal entries of a
matrix. Note that this equation may result in negative variances
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vj, Or vj,, which implies that the KL divergence is not minimized
when these two variances only are nonzero. To sum up, the global
minimum of the KL divergence under the constraint that at most
two sources are active is obtained by considering all possible in-
dexes j and pairs of indexes (j1, j2) of active sources, deriving the
optimal source variances via (14) and (16) and selecting the index
or the pair of indexes resulting in the smallest KL divergence.

Once a suitable initial value of the source variances has been
found, the KL minimization problem can be solved via any Newton-
based optimizer given the gradient and Hessian of the criterion. In
the following, we use Matlab’s fmincon optimizer which is based
on a subspace trust region. Preliminary experiments showed that
convergence is achieved in less than five iterations in most time-
frequency points.

3.2. Oracle estimation of the source variances

In addition to semi-blind separation, we evaluate the separation
performance achieved by each model when the “true” source vari-
ances v;(n, f) are known. These variances can be derived from
the true source spatial images s;mg (n, f) when available. Let us

denote by ﬁsi_mg (n, f) the empirical covariance matrix of the spa-

tial image of source j, which can be computed as in (11) by replac-
ing x with s;mg. For full-rank models, the “true” source variances
can be computed in the ML sense by minimizing the KL diver-
gence DKL(ﬁS;mg (n, )R ime (n, f)), which gives

J J

vi(n, f) = —tr(R (R (1, 1). (17)

For rank-1 models, this divergence is undefined since R _img (7, f)
J

is not invertible. We compute the true source variances instead as

[bj (£)s;™ (n, )1

v D) = = (e

(18)

3.3. Computation of the source spatial covariance matrices

The estimation of the source variances in Sections 3.1 and 3.2
relied on the knowledge of R;(f). For rank-1 models and for
the full-rank direct+diffuse model, R, (f) was computed from the
geometry setting or from the mixing filters as explained in Sec-
tions 2.1, 2.2 and 2.3. For the full-rank unconstrained model in
Section 2.4, R;(f) was computed by iterative minimization of
DKL(f{Si_,ng (n, f)|R ime (n, f)) by alternate application of (17)
J J

and

R;(f) = Z e f — R s (1, f) (19)

where N is the total number of time frames. The minimization was
initialized by R;(f) o4 Ly R sime (n, f) and convergence

was typically achieved in two or three 1terat10ns

4. EXPERIMENTAL EVALUATION

We evaluated the source separation performance achieved by each
of the models in Section 2 over a three-source stereo reverberant
speech mixture using the semi-blind and oracle parameter estima-
tion algorithms described in Section 3. The mixture was generated
by convolving 5 s speech signals sampled at 16 kHz with room
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Source and microphone height: 1.4 m
Room dimensions: 4.45x 3.35x 2.5 m
Microphone distance: d = 0.2 m
Reverberation time: Ts = 250 ms

53 54
|
- " r=1.2m Ao

1.8m

Figure 1: Geometry setting of the test mixture.

Source Covariance
variance Rank | SDR SIR ISR
.. model
estimation
anechoic 1 0.9 1.7 4.8
Blind v.:onvoh.ltive 1 4.0 6.4 8.5
direct+diffuse 2 3.1 6.1 7.3
unconstrained 2 5.8 10.3  10.5
anechoic 1 0.4 4.4 7.5
Oracle f:onvolgtive 1 4.2 102 6.2
direct+diffuse 2 102 173 11.7
unconstrained 2 109 179 125

Table 1: Average source separation performance.

impulse responses simulated via the source image method so that
the geometry setting, i.e. showned in Fig 1, is known exactly. The
STFT was computed with a sine window of length 1024 (64 ms).
The bi-dimensional window w defining time-frequency neighbor-
hoods in (11) was chosen as the outer product of two Hanning
windows with length of 3 [4]. Computation time was on the or-
der of 5 min per model in the semi-blind case using Matlab on
a 2.4 GHz computer. Separation performance was evaluated us-
ing the signal-to-distortion ratio (SDR), signal-to-interference ra-
tio (SIR) and source image-to-spatial distortion ratio (ISR) criteria
in [9], averaged over all sources.

The results are shown in Table 1. The rank-1 anechoic model
has lowest performance because it only accounts for the direct
path. In a semi-blind context, the full-rank direct+diffuse model
results in a SDR decrease of 1 dB compared to the rank-1 convolu-
tive model. This decrease appears surprisingly small when consid-
ering the fact that the former involves 8 spatial parameters (6 dis-
tances r;;, plus o2, and d) instead of 3078 parameters (6 mixing
coefficients per frequency bin) for the latter. The full-rank uncon-
strained model improves the SDR by 2 dB and 2.5 dB when com-
pared to the rank-1 convolutive model and binary masking method
respectively. In an oracle context, full-rank models clearly outper-
form rank-1 models by 6 dB or more regarding all criteria. Also,
the performance of the full-rank direct+diffuse model is very close
to that of the unconstrained model.

5. CONCLUSION

In this paper, we proposed to model the spatial properties of sound
sources by full-rank spatial covariance matrices and studied a pos-
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sible parameterization of these matrices stemming from the theory
of statistical room acoustics. We derived algorithms to estimate the
source variances and perform source separation either in a semi-
blind or in an oracle setting. Experimental results over speech data
confirm that full-rank spatial covariance matrices better account
for reverberation and potentially improve separation performance
compared to rank-1 matrices. Future work will validate the per-
formance of the proposed algorithms over real-world recordings.
Moreover, we will investigate blind learning of full-rank spatial
covariance matrices from the mixture signal. In order to address
the permutation problem, we will take into account dependencies
between the model parameters in different frequency bins by inves-
tigating both advanced models of the source variances in the spirit
of [5] and alternative parameterizations of the spatial covariance
matrices providing more flexibility than the current direct+diffuse
parameterization, e.g. by learning the value of ¥(d, f) from the
data instead of defining it as in (10).
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