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Abstract

Background: Anandamide is a lipid neurotransmitter which belongs to a class of molecules termed the endocannabinoids
involved in multiple physiological functions. Anandamide is readily taken up into cells, but there is considerable controversy
as to the nature of this transport process (passive diffusion through the lipid bilayer vs. involvement of putative proteic
transporters). This issue is of major importance since anandamide transport through the plasma membrane is crucial for its
biological activity and intracellular degradation. The aim of the present study was to evaluate the involvement of
cholesterol in membrane uptake and transport of anandamide.

Methodology/Principal Findings: Molecular modeling simulations suggested that anandamide can adopt a shape that is
remarkably complementary to cholesterol. Physicochemical studies showed that in the nanomolar concentration range,
anandamide strongly interacted with cholesterol monolayers at the air-water interface. The specificity of this interaction was
assessed by: i) the lack of activity of structurally related unsaturated fatty acids (oleic acid and arachidonic acid at 50 nM) on
cholesterol monolayers, and ii) the weak insertion of anandamide into phosphatidylcholine or sphingomyelin monolayers.
In agreement with these data, the presence of cholesterol in reconstituted planar lipid bilayers triggered the stable insertion
of anandamide detected as an increase in bilayer capacitance. Kinetics transport studies showed that pure
phosphatidylcholine bilayers were weakly permeable to anandamide. The incorporation of cholesterol in phosphatidyl-
choline bilayers dose-dependently stimulated the translocation of anandamide.

Conclusions/Significance: Our results demonstrate that cholesterol stimulates both the insertion of anandamide into
synthetic lipid monolayers and bilayers, and its transport across bilayer membranes. In this respect, we suggest that besides
putative anandamide protein-transporters, cholesterol could be an important component of the anandamide transport
machinery. Finally, this study provides a mechanistic explanation for the key regulatory activity played by membrane
cholesterol in the responsiveness of cells to anandamide.
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Introduction

Anandamide (arachidonoylethanolamide) is a lipid neurotrans-

mitter belonging to the family of endocannabinoids and involved

in the regulation of almost all the physiological functions studied

including the nervous, the cardiovascular, the respiratory, or the

reproductive systems [1]. The intracellular metabolism of

anandamide has been the subject of numerous studies. It is well

known that anandamide is produced from membrane phospha-

tidylethanolamine by a two-step reaction catalysed by membrane

N-acyl transferase and phospholipase D [2]. Then, intracellular

anandamide breakdown by a membrane fatty acid amide

hydrolase (FAAH) stops its biological activity [3]. Because of its

high lipophilicity together with its amphipathic nature ananda-

mide is generally considered to exert its biological effects in

membrane bilayers [4]. In this respect, two scenarios could be

proposed. First, anandamide could act directly in the physico-

chemical environment of the cell membrane which has produced it

(autocrine membrane-bound effect). However, anandamide can

also be released in the aqueous extracellular space, where,

probably transported by a protein carrier, it can reach and

stimulate neighbouring cells (paracrine effect). Anandamide

attachment to cannabinoid protein receptors, occurs through

binding sites deeply embedded in the lipid bilayer [4,5]. This

implies that anandamide has to gain entry into the membrane to

stimulate these receptors, which belong to the family of G protein-

coupled receptors with seven transmembrane domains.

Interestingly, molecular modeling studies have shown that

anandamide could generate either condensed hairpin or extended

rod-like structures [6]. This is consistent with a major conforma-

tional adjustment of anandamide structure during the reversible

transfer of the lipid neurotransmitter from a polar aqueous phase

to an apolar lipid phase. Recently, Tian et al. have carefully

studied the conformation, location, and dynamic properties of
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anandamide in a dipalmitoyl phosphatidylcholine (DPPC) multi-

lamellar model membrane bilayer system [4]. They concluded that

the neurotransmitter can interact with phospholipids and then

laterally diffuse within the bilayer until reaching the transmem-

brane domains of cannabinoid receptors. However, several

important features of anandamide-lipid interactions remained to

be explored. In particular, the role of cholesterol in the interaction

of anandamide with biological membranes has not been

elucidated. Several aspects of anandamide function seem to

involve membrane cholesterol. Maccarone and co-workers showed

that cholesterol enrichment of glioma cell membranes significantly

increased the uptake of anandamide [7]. Reciprocally, depletion of

membrane cholesterol in hepatocytes membranes decreased their

responsiveness to anandamide [8]. Moreover, lipid rafts, which are

enriched in cholesterol, have been involved in the uptake and

recycling of anandamide [9]. Altogether, these data strongly

suggested that cholesterol could play a pivotal role in the

interaction of anandamide with biological membranes and thus

in its neurotransmitter activity. There are several ways by which

membrane cholesterol could affect anandamide functions. Re-

cently, Bari and co-workers reported that cholesterol modulates

the binding efficiency of the endocanninoid receptor CB1, and

that this effect is critical for anandamide-induced apoptosis [10].

However, in some cells, anandamide exhibited an apoptotic effect

which did not involve the cannabinoid receptors identified so far,

but were definitely cholesterol-dependent [8,11]. Whether these

latter effects are mediated by alternative protein receptors

functionally coupled to cholesterol, or by cholesterol itself through

a protein-independent mechanism, remains to be established.

Similarly, no consensus has been reached as to whether

anandamide transport through biological membranes requires a

protein transporter or not [12].

As stated above, anandamide is a lipid molecule which has to be

inserted in the plasma membrane to exert its neurotransmitter

activity. As a matter of fact, a simple way for cholesterol to control

anandamide functions would be to specifically bind to anandamide,

thereby controling its membrane insertion. In particular, a physical

interaction between cholesterol and anandamide would explain

why cholesterol appears so critical for many aspects of endocanna-

bonoid functions, including anandamide uptake and recycling [9],

CB1 activity [10], and receptor-independent apoptosis [8].

However, this possibility has not been experimentally tested. In

the present study, we have investigated the behaviour of

anandamide in various membrane environments with or without

cholesterol, using both monolayer and bilayer membrane models

systems. All the lipids used in these experiments were synthetic, so

that potential interference with undesirable membrane contami-

nants could be totally ruled out. We show that anandamide interacts

with cholesterol in both monolayer and bilayer systems. We also

show that cholesterol triggers the transmembrane transport of

anandamide. In complete agreement with these physicochemical

results, molecular modeling simulations suggested that cholesterol

has a remarkable fit for anandamide, explaining the striking

preference of anandamide for cholesterol among other major

membrane lipids such as phosphatidylcholine. Thus, whatever the

mechanisms by which anandamide triggers a biological effect,

cholesterol is able to regulate these effects because it binds to

anandamide in the membrane environment.

Results

Molecular modeling of anandamide bound to cholesterol
In membrane environments, anandamide adopts a typical

extended conformation, with its headgroup at the level of the polar

headgroup of phospholipids and its terminal methyl group near

the bilayer centre [4]. Molecular modeling simulations of

anandamide in vacuo led to a quite similar conformation of the

lipid (Figure 1A). When cholesterol was positioned in the vicinity

of anandamide, Monte Carlo simulations indicated that both lipids

progressively changed their conformation to find a remarkable

complementary fit. The resulting anandamide-cholesterol complex

Figure 1. Molecular modeling of anandamide-cholesterol
interactions. A- Spacefill model of a cholesterol-anandamide complex
in vacuo obtained with the Polak-Ribiere algorithm (for geometry
optimization) and then submitted to Monte Carlo simulations. The
extended conformation of anandamide in membrane environments is
consistent with the study of Tian et al. [4]. The methyl groups on the b
face of cholesterol fit particularly well with the cavities generated by the
double bonds of anandamide. The complex is stabilized by van der
Waals interactions and a hydrogen bond (yellow) between the OH
group of cholesterol (acceptor group) and the NH group of anandamide
(donor group). The total energy of the system is 48.12 kcal.mol21

(22.81 kcal.mol21 for anandamide bound to cholesterol). B- Compar-
ison of cholesterol-anandamide and cholesterol-sphingosine interac-
tions. The cholesterol-anandamide complex (left panel) is the same as in
(A), but shown in a tube representation. The cholesterol-sphingosine
complex [13] is shown in the left panel. Note that sphingosine has a
good geometric and chemical compatibility with the smooth a face of
cholesterol. Anandamide reacts similarly with cholesterol but with its
rough b face. The total energy of the system is 48.68 kcal.mol21 for the
cholesterol-sphingosine complex (22.41 kcal.mol21 for sphingosine
bound to cholesterol).
doi:10.1371/journal.pone.0004989.g001

Cholesterol and Anandamide
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is stabilised by van der Waals interactions between their apolar

parts and by a hydrogen bond between the OH group of

cholesterol and the NH group of anandamide. This molecular

complex respects the orientation of both lipids in biological

membranes. Although the extended conformation of anandamide

is consistent with an interaction with phospholipids [4], the perfect

fit between cholesterol and anandamide suggested a preferential

interaction of anandamide with cholesterol rather than with

phosphatidylcholine. Since we previously showed that cholesterol

also interacts with sphingosine [13], it was interesting to compare

the anandamide-cholesterol complex with the cholesterol-sphin-

gosine one. As shown in Figure 1B, anandamide interacts with

the b face of cholesterol which, according to the nomenclature

proposed by Rose and co-workers [14] is the ‘rough’ face with the

protruding methyl groups. In contrast, sphingosine binds to the

‘smooth’ a face of cholesterol. The respective energies calculated

for the cholesterol-anandamide and cholesterol-sphingosine com-

plexes are remarkably similar (see Figure 1 legend for details). As

biochemical studies have confirmed that sphingosine actually

interacts with cholesterol [13], these data suggest that the

interaction between anandamide and cholesterol is also very likely.

However, anandamide is a very flexible molecule whose

conformation might be strongly influenced by its environment

[4]. For these reasons, we studied the impact of vicinal membrane

lipids on the strength of the anandamide-cholesterol interaction.

Phosphatidylcholine, a representative lipid of the liquid disordered

(Ld) phase of the plasma membrane [15] was injected first in the

system. As shown in Figure 2, this lipid accommodated its

conformation to the shape of anandamide, and it had virtually no

impact on the anandamide-cholesterol complex. Then a sphingo-

momyelin molecule in tight interaction with cholesterol [15] was

introduced in the system as a representative component for the

liquid ordered (Lo) phase, which corresponds to lipid raft domains

[16]. Again, these lipids did not destabilize the anandamide-

cholesterol complex (Figure 2). Sphingomyelin readily bound to

the a face of cholesterol which is still fully accessible when the

sterol interacts with anandamide. Overall these data suggested that

a specific interaction between anandamide and cholesterol could

take place in both the Ld and the Lo phases of the plasma

membrane. Physicochemical experiments were then conducted to

assess whether anandamide could actually interact with cholesterol

in membrane environments.

Interaction of anandamide and structurally related
compounds with lipid monolayers

In a first series of experiments, we prepared various lipid

monolayers at the air-water interface and measured the interaction

of anandamide with these synthetic half-membranes using the

Langmuir film balance technology [13,17]. Anandamide (50 nM)

was injected in the aqueous subphase underneath the monolayer

and its interaction with the lipids was detected by a surface

pressure increase. This increase in the surface pressure is caused by

the insertion of anandamide molecules between the lipids of the

monolayer. It is a direct and quantitative measurement of the

interaction of a ligand (anandamide in this case) with a given lipid

[13]. Therefore, the higher the value of the surface pressure

increase induced by anandamide, the higher the affinity of

anandamide for a given lipid monolayer.

With this in mind, one can see in Figure 3 that anandamide

interacted more efficiently with cholesterol than with palmitoyl-

oleyl-phosphatidylcholine (POPC), a physiologically relevant

glycerophospholipid. Interestingly, the interaction with cholesterol

progressively increased over time until reaching a plateau value

(+7 mN.m21) after 7 minutes. This value is remarkably close to

the one of +6 mN.m21 obtained upon the addition of sphingosine

(50 nM) under a monolayer of cholesterol [13]. In contrast,

following a very rapid initial increase of surface pressure induced

by anandamide, the pressure of the POPC monolayer progres-

sively decreased to eventually return to the initial value. This

effect, which was reproducibly observed over six independent

experiments, suggests a decrease in the area of the monolayer,

which could be due to the extraction of either anandamide, or of

anandamide-POPC complexes, or of POPC alone. Moreover,

anandamide interacted with mixed cholesterol-POPC films, but

not with sphingomyelin (SM). Clearly, our data revealed a striking

selectivity of anandamide among major membrane lipid species

with a definitive preference for cholesterol.

An important issue was to assess whether similar results could be

obtained if structurally related lipids were assayed instead of

anandamide. Anandamide is metabolically derived from a

phospholipid precursor containing an unsaturated acyl chain

derived from arachidonic acid [2]. Thus we studied the interaction

of two unsaturated fatty acids, i.e. arachidonic acid and oleic acid,

with cholesterol monolayers. The molecular structures of these

compounds are shown in Figure 4. Both oleic and arachidonic

acids could fit with the apolar part of cholesterol and establisha H-

Figure 2. Molecular modeling of the anandamide-cholesterol
complex in the membrane environment. The anandamide (AEA)-
cholesterol complex was generated in vacuo, and subsequently merged
with a phosphatidylcholine molecule (PC). The flexible acyl chains of PC
could satisfactorily fit with AEA, allowing PC to interact with the AEA-
complex. A molecule of sphingomyelin (SM) interacting with cholesterol
was added to the system as a representative lipid raft component. The
SM-cholesterol complex could also fit with the AEA-cholesterol
complex. Namely, in the AEA-cholesterol complex, the a face of
cholesterol is fully accessible for the sphingosine chain of SM. This
molecular modeling study indicates that AEA can bind to cholesterol in
both the PC-rich fluid (Ld) phase and the SM-rich (Lo) phase of the
plasma membrane. In particular, the H-bond between cholesterol and
AEA is still present after introducing these membrane lipids in the
system. The total energy of the system is 180.68 kcal.mol21 for the
cholesterol-sphingosine complex (214.43 kcal.mol21 for AEA bound to
cholesterol). All models were obtained with the Polak-Ribiere algorithm
(for geometry optimization) and then submitted to Monte Carlo
simulations.
doi:10.1371/journal.pone.0004989.g002

Cholesterol and Anandamide
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bond with its OH group. However, arachidonic acid (50 nM)

induced only a very weak increase in the surface pressure

(+1 mN.m21 after 500 seconds, compared with +7.5 mN.m21

for anandamide) (Figure 5A). Oleic acid (50 nM) induced an

immediate decrease in the surface pressure (21 mN.m21 after

5 seconds) followed by a very weak and progressive increase

(+0.5 mN.m21 after 500 seconds). These data showed that in the

nanomolar concentration range, anandamide but neither oleic

acid nor arachidonic acid did interact with cholesterol monolayers.

To observe an interaction equivalent to the one induced by 50 nM

anandamide, the concentrations of arachidonic acid and oleic acid

had to be raised respectively to 500 nM and 750 nM. The

interaction of oleic acid (750 nM) with a cholesterol monolayer is

shown in Figure 5B. The surface pressure first increased

(+7 mN.m21) shortly after the addition of oleic acid, after which

the surface pressure progressively decreased to reach a stable value

of 5 mN.m21 after 400 seconds of incubation. At this time, we

injected an equivalent concentration of anandamide (750 nM) to

compare the effects of both lipids on the same cholesterol

monolayer. The surface pressure was dramatically increased upon

addition of this concentration of anandamide in the subphase until

reaching a stable plateau value (+23.5 mN.m21) after 800 seconds.

Overall, these data showed that unsaturated fatty acids that are

structurally related to anandamide do not behave like anandamide

when probed on cholesterol monolayers. These results clearly

demonstrate that the interaction of anandamide with a pure

cholesterol monolayer is specific. Closely related amphipathic

molecules such as arachidonic acid and oleic acid can also interact

with cholesterol, but at significantly higher concentrations than

anandamide does (10 times and 15 times, respectively). In any

case, at all the concentrations tested in this study, the effects of

anandamide on cholesterol monolayers were always stronger than

those of fatty acids.

If one considers the molecular structure of anandamide and

arachidonic acid, this can be viewed as paradoxical. Indeed, the

polar part of arachidonic acid consists of a carboxylic group, which

displays an OH in place of the NH of anandamide. In the

anandamide-cholesterol complex shown in Figure 1, the

hydrogen atom of NH is involved in an H bond with the oxygen

atom of cholesterol. As shown in Figure 6B, a minimized

complex between the protonated form of arachidonic acid and

cholesterol can be obtained. This complex was then positioned in

front of a phosphatidylcholine molecule to mimic the membrane

environment. The short-term evolution of this cholesterol-

arachidonic acid complex, constrained by phosphatidylcholine,

was studied in silico by molecular dynamics simulations. After

3 ps, arachidonic acid had detached from cholesterol to adopt a

conformation more fitted to the apolar flexible chains of

phosphatodylcholine (Figures 6C). At this time, the hydrogen

bond and several van der Waals interactions that were initially

involved in the cholesterol-arachidonic acid complex had been

broken. For comparison, we studied the evolution of a cholesterol-

anandamide complex under similar conditions. In marked contrast

with the data obtained with arachidonic acid, the anandamide-

cholesterol complex had remained remarkably stable after 3 ps of

simulation, with its stabilizing hydrogen bond still operative

(Figure 6A). These modeling studies, which are in line with the

physicochemical data, suggest that cholesterol has a higher affinity

for anandamide than for arachidonic acid. This specific issue will

be further discussed below.

Figure 3. Interaction of anandamide with various lipid
monolayers. The indicated lipid was spread at the air-water interface
to form a compressible monolayer at an initial pressure comprised 20–
25 mN.m21. After stabilization of the monolayer, anandamide was
added in the aqueous subphase (final concentration 50 nM). Under
these specific conditions, anandamide does not modify the surface
tension of water (not shown), so that it will have no effect on the
surface pressure by itself. Thus, any change in the surface pressure
indicates an interaction of anandamide with the lipid monolayer. The
data are expressed as the variation of the surface pressure as a function
of time following the addition of anandamide. The following lipids were
spread at the air-water interface: pure POPC (full squares), pure
cholesterol (open squares), mixed POPC-cholesterol film (1:2, mol:mol,
open triangles), pure SM (full triangles).
doi:10.1371/journal.pone.0004989.g003

Figure 4. Chemical structures of cholesterol, anandamide and
unsaturated fatty acids. Unsatutared fatty acids (arachidonic acid
and oleic acid) are structurally related to anandamide. The interaction of
cholesterol with these fatty acids, in comparison with anandamide, is
shown in Figure 5.
doi:10.1371/journal.pone.0004989.g004

Cholesterol and Anandamide
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Interaction of anandamide with lipid bilayers
To characterise the biophysical mechanisms responsible for

cholesterol-dependent anandamide interactions, we prepared

planar lipid bilayer membranes [18] of controled biochemical

compositions. In this model, a bilayer is formed by injecting with a

Hamilton syringe, 1–2 ml of a concentrated lipid solution (POPC

or POPC-Cholesterol, 50 mg/ml) in a hole drilled in the wall of a

Delrin chamber (200 mm diameter) thus separating two compart-

ments. The formation of a gigaohm-seal characteristic of an

operating membrane has been systematically monitored electro

physiologically. Ag/AgCl electrodes are used to record the

electrical variations induced by the ionic fluxes crossing through

the membrane. One electrode is connected to the amplifier and

dipped into the Delrin chamber thus defining the cis compart-

ment. The other is connected to the ground and defined the trans

compartment. Thus, this experimental setup is adequate to

evaluate the insertion of organic compounds within the lipid

bilayer.

Figure 5. Interaction of arachidonic acid, oleic acid and
anandamide with cholesterol monolayers. A. Monolayers of pure
cholesterol were prepared at the air-water interface at an initial
pressure of 25 mN.m21. After stabilization of the monolayer, arachi-
donic acid (open squares), oleic acid (full triangles) or anandamide (full
squares) were injected in the aqueous subphase at a final concentration
of 50 nM. The data are expressed as the variation of the surface
pressure as a function of time following the addition of the indicated
lipid in the subphase. B. A monolayer of cholesterol (initial pressure of
25 mN.m21) was incubated with 750 nM of oleic acid added in the
subphase. Under these conditions, the surface pressure of the
monolayer rapidly increased and reached a stable value of
5 mN m21. After 400 seconds, 750 nM of anandamide (AEA, arrow)
was injected in the aqueous subphase, which induced a dramatic
surface pressure increase.
doi:10.1371/journal.pone.0004989.g005

Figure 6. Molecular dynamics simulations of cholesterol-
anandamide and cholesterol-arachidonic acid minimized com-
plexes in a membrane lipid environment. A- Geometry optimiza-
tion of anandamide (AEA) interacting with both cholesterol (chol) and
phosphatidylcholine (PC). The molecules with the carbon atoms in blue
correspond to the initial conditions (energy minimum complex
simulated in vacuo with the Polak-Ribiere algorithm). Molecular
dynamics simulations of the AEA-cholesterol complex were then
conducted in vacuo with the MM+ force field. The respective positions
of AEA and cholesterol after 3 ps of simulation are indicated in green.
One can see that AEA is still tightly bound to cholesterol, indicating that
PC had little influence on the geometry of the AEA-cholesterol complex.
B- Tube representation of a minimized complex between arachidonic
acid (a.a) and cholesterol. The model was obtained with the Polak-
Ribiere algorithm using the anandamide-cholesterol complex of
Figure 1 as template. The H bond between the –COOH group of
arachidonic acid and the OH group of cholesterol is indicated as a dot
line. C- Spacefill models showing the evolution of the cholesterol-
arachidonic acid complex (in presence of a PC molecule shown in a
tube representation) after 3 ps of molecular dynamics simulations. The
initial conditions are shown in the left panel, and the geometry
obtained after 3 ps of simulation in the right panel. The system has
spontaneously evolved toward the dissociation of arachidonic acid from
cholesterol (arrow). The conformation of arachidonic acid after 3 ps is
more fitted to the geometry of the vicinal PC molecule than to the
sterol. This suggests that in the membrane environment, the affinity of
cholesterol for arachidonic acid is weaker than for anandamide.
Consequently, the complex between cholesterol and arachidonic acid
is predicted to be less stable than the complex between cholesterol and
anandamide.
doi:10.1371/journal.pone.0004989.g006

Cholesterol and Anandamide
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Now, the way that anandamide is transferred from stock organic

solution to aqueous buffers is debated among investigators. As a

matter of fact, anandamide transport studies, which require higher

anandamide concentrations than those we used in the monolayer

assay, are generally conducted in presence of bovine serum

albumin [19], which improves anandamide solution stability and

minimizes its binding to plastic surfaces [12]. However, it has also

been reported that serum albumin could generate some artifacts in

transport studies [20]. Furthermore, in our hands, bovine serum

albumin appeared to be deleterious for planar bilayer membranes

(not shown). Finally, the spectroscopic method used for ananda-

mide detection does not allow the use of a protein carrier such as

serum albumin. Thus we decided to use methyl-beta-cyclodextrin

(MbCD) to prepare aqueous anandamide solutions useable for

planar bilayer studies. Indeed, cyclodextrins are well known for

their ability to increase substantially the aqueous solubility,

stability and bioavailability of lipophilic drugs, so that they are

suitable carriers for anandamide [21]. In this respect, it should be

noted that only the free drug, and not the cyclodextrin-drug

complex can penetrate across the biological membranes [22]. In

any case, we carefully controled that under our experimental

conditions, 4.2 mM of MbCD alone has no effect on the

capacitance and resistance of lipid bilayers (not shown). Then

we added anandamide in presence of MbCD in the cis

compartment in which a functional membrane of pure POPC

had been formed by the injection method [18]. Figures 7A and
7B show the resulting currents after a 180 mV voltage pulse. In

response to anandamide, there was a transient increase in the

bilayer capacitance during the first minute (not shown), followed

after 5 minutes by a stable capacitance decrease of 1568%

(p,0.05; range: 14–2 mF/cm2, n = 7, Figure 8A). Therefore, the

evolution of this electrical parameter in response to anandamide is

fully consistent with the interaction of anandamide with a POPC

monolayer (initial increase of the surface pressure followed by

progressive decrease as shown in Figure 3). Changes in

capacitance are due to the variations of the actual membrane

surface [18]. The time-course of the electrical resistance of the

membrane bilayer evolved similarly, with a decrease of 26612%

(p,0.05, range: 4.26104–0.26104 ohm-cm2, n = 7, Figure 8B).

From these studies conducted with two distinct model membranes

it can be concluded that: i) anandamide interacts with POPC, ii)

this interaction is rapidly reversible, and iii) the presence of

anandamide in pure POPC phases could modify the phospholipid

organisation.

Figure 7. Action of anandamide (AEA, 400 mM) on planar lipid bilayers: effect of cholesterol. A–B. superimposed currents across a bilayer
constituted of POPC alone (A), held at 0 mV, in response to a rectangular pulse (+180 mV, 200 ms), before (control, light grey bilayer alone), and after
addition of anandamide (heavy grey, +5, +25 min after AEA injection). B. Expanded view of tail currents (I tail) showing their decrease over time. C–D.
POPC-cholesterol (2:1, mol:mol). AEA injection (C) stably increased both resistance and capacitance. Maximum effect was obtained for all POPC-
cholesterol bilayers within 3–5 min. Each current trace represents the average of 6 records.
doi:10.1371/journal.pone.0004989.g007

Cholesterol and Anandamide
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The incorporation of cholesterol in POPC bilayers (Figures 7C
and 7D) highly stimulated anandamide insertion. Namely, when

added on a bilayer with a molar POPC-cholesterol ratio of 2:1

(mol:mol), anandamide induced an immediate and permanent

increase in capacitance, 1969% (p,0.01, range: 100–8 mF/cm2,

n = 7, Figure 8C), indicating a stable insertion process. This is in

line with the results obtained with cholesterol monolayers

(Figure 3). Interestingly, anandamide also increased the resistance

of the membrane by 1665% (p,0.01, range: 3.86104–

4.16104 ohm-cm2, n = 7, Figure 8D), which indicated that the

integrity of bilayers was not compromised by anandamide.

Translocation of anandamide through lipid bilayers
The next issue addressed herein was to determine whether

cholesterol has any impact on the membrane translocation of

anandamide. Using the same bilayer design, we studied the

kinetics of anandamide transport through POPC bilayers prepared

with various cholesterol amounts. Anandamide (1 mM) was added

Figure 8. Modification of bilayers electrical properties. A–D. dotted line, control; solid line, after AEA injection. Intensity-Voltage curves were
obtained from the relaxation tail currents plotted against voltage, and current reading at 225 ms and 425 ms (POPC and POPC-cholesterol
respectively). Capacitance-Voltage curves, I0 reading was also at 225 and 425 ms, and It 100 ms later. Error bars were calculated after current
acquisitions from six repeated protocols, from the same membrane, and then fed to the analysis programme.
doi:10.1371/journal.pone.0004989.g008
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in the cis compartment of the bilayer chamber in presence of

4.2 mM MbCD. The concentration of anandamide in each

compartment at various times was determined by an enzymatic

assay based on the 5-lipoxygenase catalysed reaction on cis-cis 1–4

pentadiene structure systems [23] (threshold detection level

2.5 nmol of anandamide). The data in Figure 9A clearly shows

that pure POPC membranes have a very weak permeability to

anandamide. Above a critical threshold level, the presence of

cholesterol in the POPC matrix strongly stimulated the translo-

cation of anandamide. For instance, after one hour, cholesterol

increased by twelve times the amount of AEA transfer

(Figure 9B). The electrical parameters of bilayers were assessed

by electrophysiological monitoring, so that we can be certain that -

under our experimental conditions – the presence of MbCD did

not affect the integrity of the bilayers, whatever their cholesterol

content (in the range of 8:1 to 2:1 POPC:cholesterol molar ratio).

In particular, the increase in membrane capacitance measured

upon incubation of MbCD-anandamide complexes with choles-

terol containing lipid bilayers demonstrates that, under these

conditions, MbCD does not extract cholesterol. This is fully

consistent with the data independently obtained by Ohvo and

Slotte [24] who showed that cyclodextrin-dependent cholesterol

extrusion from model membranes requires a high excess of

cholesterol vs. phospholipids, which is not the ratio we used in our

experiments. Finally, POPC-cholesterol bilayers incubated only

with 4.2 mM of MbCD, were totally impermeable to glucose (data

not shown), which demonstrated that these membranes were not

leaky to small polar molecules.

Discussion

The main outcomes of the present study can be summarized as

follows: i) anandamide can adopt a specific conformation

compatible with a high affinity interaction with cholesterol; ii)

although anandamide can interact with phosphatidylcholine [25],

cholesterol greatly facilitates its insertion into reconstituted model

membranes; and iii) the presence of a threshold level of cholesterol

is sufficient to induce the translocation of anandamide through a

protein-free membrane. Such threshold levels could correspond to

local enrichments of the plasma membrane in pure cholesterol

which could exist for instance at the boundaries of lipid raft

domains [16,26].

That anandamide could interact with cholesterol has been

previously suggested by Biswas et al. on the basis of the binding of

cholesterol to anandamide-coated polymixin beads [8]. However,

this experimental system does not adequately reflect the

orientation and organization of cholesterol in a biological

membrane. In addition, the lipid specificity of the interaction

has not been investigated by these authors, so that we cannot

conclude from their study whether anandamide has a general

affinity for lipid molecules or a specific fit for cholesterol. In our

study, we show that one peculiar anandamide conformation

displays a remarkable complementary fit for cholesterol (Figure 1).

Molecular modeling approaches indicated that anandamide

interacts with the b face of cholesterol. Interestingly, previous

studies suggested that sphingosine, which also binds to cholesterol,

recognizes its a face [13]. These geometric features allow

cholesterol to interact simultaneously with anandamide and with

sphingolipids. Moreover, the energy calculations of cholesterol-

anandamide and cholesterol-sphingosine interactions appeared to

be remarkably similar, suggesting highly specific interactions in

both cases. The surface pressure values measured during the

interaction of cholesterol monolayers with anandamide and with

sphingosine were also fully consistent (ca. +6–7 mN.m21 for the

concentration of 50 nM for both sphingosine and anandamide).

These data, obtained with lipid monolayers, were fully

confirmed by the physicochemical studies of bilayer model

membranes, which demonstrated that the presence of cholesterol

dramatically increased the insertion of anandamide into the lipid

phase. It should be noted that the capacitance values obtained

with this system were significantly higher than those obtained in

comparable studies of synthetic phospholipid bilayers probed with

penetrating compounds [27]. This indicates that the cholesterol

Figure 9. Kinetics of anandamide transport through planar
lipid bilayers: effect of cholesterol. Planar lipid bilayers consisting
of pure POPC (full triangles), or various mixtures of POPC and
cholesterol [molar: molar 2:1 (full squares), 4:1 (open squares), 5:1 (full
circles), 8:1 (open circles)] were obtained as described for electrical
measurements. A. Anandamide (1 mM) was added to the cis
compartment in presence of 4.2 mM MbCD. The amount of ananda-
mide recovered in the trans compartment was enzymatically measured
using an anandamide assay with 5-lipoxygenase. B. Anandamide
transport as a function of cholesterol percentage in the POPC bilayer.
The experimental points correspond to the amount of AEA in the trans
compartment 1 hour after its addition in the cis compartment. The
sigmoidal shape of the cholesterol effect suggests that a threshold level
of cholesterol is required to trigger the translocation of AEA. This is
consistent with the recruitment of cholesterol molecules into tail-to-tail
dimers as the ordered supramolecular cholesterol structure used by
AEA to cross the membrane. On the opposite, a further excess of
cholesterol (full squares, panel A) would condense into non functional
nanodomains unable to further increase the kinetics of AEA transport.
doi:10.1371/journal.pone.0004989.g009
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stimulation of anandamide insertion into bilayer membranes is a

not a borderline phenomenon but a quantitatively significant

process.

As the bilayer system is particularly well suited for transport

studies, we could also analyze the effect of cholesterol on the

translocation of anandamide. Our data clearly showed that

bilayers consisting of POPC alone were only weakly permeable

to anandamide. This agreed with the low affinity of anandamide

for POPC measured in both monolayer and bilayer systems.

However, in presence of a threshold level of cholesterol, the

transport of anandamide through the synthetic membrane was

greatly enhanced. On this basis, one could hypothesize that

anandamide could interact chiefly with cholesterol enriched

domains such as lipid rafts [9], and especially the boundaries of

these domains where local cholesterol clusters could modulate the

interaction of these domains with the bulk membrane [16,26].

Until now, the mechanism of anandamide transport through a

biological membrane is matter of debate [12,28]. According to

some authors, anandamide passively diffuses through the

membrane, its transmembrane gradient being maintained by

the intracellular action of FAAH which hydrolyses anandamide

into arachidonic acid and ethanolamine [29]. Because the

transport of anandamide is saturable and specifically inhibited

by anandamide analogues that are not broken by FAAH, other

authors argue for the existence of a proteic transporter for

anandamide [30]. An important specificity of the present study is

that the different model membranes used (monolayers and

bilayers) were built with synthetic lipids. Accordingly, we could

totally rule out the possibility that some of the observed effects

could be due to protein contaminants. Indeed, our data clearly

indicate that cholesterol has the intrinsic property to stimulate

both the insertion and transmembrane transport of anandamide.

Thus, even though a putative protein anandamide transporter

can exist, clearly this latter is not compulsory. Further studies will

help to clarify the role of membrane cholesterol in anandamide

transport, especially its saturability and sensitivity to anandamide

analogues.

Our data are also consistent with the observation that the

uptake of anandamide is inhibited by cholesterol depleting agents,

and stimulated by membrane cholesterol enrichment [7]. The

ability of anandamide to recognize and bind to membrane

cholesterol could also explain why anandamide uptake and/or

biological effects are modulated by pharmacological agents that

affect the homeostasis of lipid rafts (cholesterol-enriched micro-

domains) [9,10]. As for the effects of anandamide that are

mediated by its well-characterized protein receptors such as CB1

[8], cholesterol could exert two distinct (yet not mutually exclusive)

functions: i) modulation of receptor conformation with an impact

on ligand binding efficiency, and ii) facilitation of the transfer of

anandamide to the protein receptor following its insertion into the

membrane. Finally, the cholesterol-anandamide interaction could

also be responsible for the effects of anandamide that do not

appear to involve its classical transmembrane protein receptors

[8,11,31].

An intriguing and perhaps unexpected aspect of the

interaction of anandamide with cholesterol is its relative

specificity. We have shown that unsaturated fatty acids

structurally related to anandamide do not interact with

cholesterol monolayers unless their concentration is raised to

500 nM for arachidonic acid (10 times higher than anandamide)

and 750 nM for oleic acid (15 times higher than anandamide).

This can be interpreted as a better affinity of cholesterol for

anandamide than for unsaturated fatty acids such as the

arachidonic acid. The apolar parts of arachidonic acid and

anandamide are identical. The difference lies in the polar part,

which is a carboxylic group for the fatty acid and ethanolamide

for anandamide. As a matter of fact, the ethanolamide group has

a marked impact on the stability of the anandamide-cholesterol

complex, as suggested by molecular dynamics simulations. Yet

the low activity of arachidonic acid on cholesterol monolayers

could also be due to the dissociation equilibrium of the

carboxylic group. The pKa of this group for polyunsaturated

fatty acids is close to pH 8, but is known to fall towards pH 7

for diluted solutions [32]. Thus, under the experimental

conditions of the monolayer experiments, arachidonic acid

might indeed be a balanced mixture of negatively charged and

neutral protonated molecules. Since only the protonated form of

the acid could establish an H bond with the oxygen atom of

cholesterol, this feature could also explain the instability of

arachidonic acid-cholesterol complexes (this effect was not

studied in our molecular dynamics simulation). In contrast,

anandamide is a neutral molecule and the hydrogen atom of its

NH group is not labile. This makes the H bond between

anandamide and cholesterol particularly stable.

Overall, our physicochemical data indicated that i) anandamide

preferentially interacts with cholesterol in monolayer and bilayer

systems (compared with other membrane lipids such as POPC or

sphingomyelin), and ii) this effect is specific for anandamide as

assessed by the study of structurally related compounds (arachi-

donic acid and oleic acid).

Conclusion
Our demonstration of a specific interaction between ananda-

mide and cholesterol has important consequences for the

neurobiology of anandamide. The efficient transfer of anandamide

from the aqueous phase (i.e. bound to a carrier protein) to the

plasma membrane is associated with a reduction of dimensionality

from a three-dimensional space to a two-dimensional surface

diffusion [33]. Consequently, the concentration of anandamide in

the membrane could be of several levels of magnitude higher than

in the intercellular space. Since cholesterol is present in both

leaflets of the plasma membrane [34], it could trigger the

bidirectional translocation of anandamide (according to the

concentration gradient of the neurotransmitter). Indeed, ananda-

mide could be transferred from one membrane leaflet to the other

by cholesterol dimers adopting a tail-to-tail configuration [34].

This transmembrane transport is still consistent with a passive

diffusion mechanism, but involving a cholesterol concentration

threshold as illustrated in Figure 9. Finally, whether anandamide

bound to cholesterol could be laterally transported in the plane of

the membrane and delivered to its transmembrane receptors CB1

and CB2 warrants further investigation.

Materials and Methods

Materials
Synthetic lipids of the higher purity available were purchased

from Sigma. Pure water was from BIORAD. All other reagents

were from Sigma.

Molecular modeling
Geometry optimization of each cholesterol-lipid complex was

first achieved with the Polak-Ribiere algorithm. Monte Carlo

(Figures 1, 2) and molecular dynamics simulations with the

MM+ force field (Figure 6) were then performed in vacuo with

the Hyperchem 7.5 program (ChemCAD, Obernay, France) as

described previously [13,17].

Cholesterol and Anandamide

PLoS ONE | www.plosone.org 9 March 2009 | Volume 4 | Issue 3 | e4989



Surface pressure measurements of lipid monolayers
The surface tension was measured with a fully automated

microtensiometer (mTROUGH SX, Kibron Inc. Helsinki, Fin-

land). All experiments were carried out in a controled atmosphere

at 20uC61uC. Anandamide (stock solution prepared in hexane:-

chloroform:ethanol; 11:5:4; vol:vol:vol and saturated under a

nitrogen flux) was injected in the pure aqueous subphase (volume

of 800 ml) with a 10 ml Hamilton syringe, and the variations of the

surface pressure were continuously recorded until reaching

equilibrium. The data were analyzed with the Filmware 2.5

program (Kibron Inc. Helsinki, Finland) as described previously

[13,17]. The accuracy of the system under our experimental

conditions was 60.25 mN.m21 for surface tension. To compare

the effects of anandamide, arachidonic acid and oleic acid, 1006
solutions of these lipids were prepared in 100 mM NaCl and

injected in the aqueous subphase.

Reconstituted planar lipid bilayers
Planar lipid bilayers were formed over a 200 mm diameter

circular hole, in a vertical wall of a Delrin chamber (Warner

instruments), by the injection method [18]. The membrane

forming solution consisted of palmitoyl-oleoyl-phosphatidylcholine

(POPC) or POPC/cholesterol (2:1; 4:1; 8:1, mol/mol; synthetic

lipids purchased from Sigm). The bilayers were obtained by

injecting 1 ml of lipids (50 mg/ml in: hexane/chloroform/ethanol,

11/5/4, v/v/v) with a Hamilton syringe. The aperture was not

pre-treated before the injection of lipids.

Electrical recordings
All experiments were performed in 0.1 M KCl, 0.001 M 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.2;

Sigma; H2O from Biorad). Each compartment contained 1.4 ml of

this solution. An Ag/AgCl electrode connected to a patch-clamp

amplifier (Axopatch 200B, Digidata 1200, Axon Instruments) via a

probe was immersed (using a glass micropipette, 1–2 GV) in the

cis compartment, the trans compartment was connected to the

ground. The formation of bilayers was electrically monitored by

measuring online the membrane apparent resistance (25 mV/

0.5 s). After lipid injection, a gigaohm (GV) seal was obtained

within seconds. Membranes were maintained at zero mV in

voltage clamp mode and typically stabilized at 280 pA in these

ionic conditions. Capacity increased with time until a steady-state

value some 2–10 min later and considered as membrane

stabilization. This was controled by the total reduction of the leak

current after a 100 mV- 1 s pulse, probably reflecting the solvent

elimination. Electrical apparent resistance ranged 10–40 GV for

POPC and POPC-cholesterol bilayers. The breakdown potential

was estimated around 220–250 mV using rectangular voltage

steps. Since fluctuations of currents were typically observed for

steps by 200 mV (assessed over a hundred bilayers), the maximum

voltage step was set at 180 mV. Experiments were performed at

room temperature. One mmole of AEA from an ethanolic stock

solution (10 mM) was dried in saturated nitrogen atmosphere then

resuspended in 50 ml of methyl-beta-cyclo-dextrin (MbCD)

solution (87 mM) and injected in the cis compartment. The same

volume of MbCD 87 mM was injected in the trans compartment.

Only one injection of AEA was performed per bilayer. Different

POPC/cholesterol ratios were tested in the present work (from

16:1 to 2:1) and only the 2:1, corresponding to the most efficient

ratio for transport of AEA through bilayers, is described and

illustrated in Figure 5. There was no capacitance modification for

16:1 and 8:1 ratios. The 4:1 ratio gave only one minor capacitance

variation over ten bilayers. Thus, no graded response was

observed from 16:1 to 2:1 POPC/cholesterol ratios, suggesting a

threshold effect of cholesterol concentration.

Data analysis. Off-line analysis was carried out using the

subroutine Clampfit of the Pclamp6 software to export data.

Membrane resistance and capacitance were calculated using a

home-made (with Matlab) computer analysis programme (see

below). Electrical resistance was obtained by impressing a family of

voltage step across the membrane (30 mV/2 s) and calculated

according to the ohm’s law RM = (EM/Ei2EM)*Ri where Ri is the

series resistance (stated at 1 MV, which is the resistance of a glass

pipette), Ei is the calibrated input voltage, and EM is the voltage

across the bilayer. Current/voltage (I/V) curves were generated

from the BLM current responses, as a function of applied voltage.

The experimental transmembrane resistance RM (in ohms) was

converted to the normalized transmembrane resistance Rm (in

ohm-cm2) by calculating the product of RM times the membrane

area (A). Since A is usually expressed in cm2, the equation

becomes Rm = RM*A.

Rm varied linearly in the 30–60 mV voltage range, in both types

of bilayers. From 60 to 180 mV, POPC I/V curves remained

linear after a change in slope, whereas POPC-cholesterol bilayers

exhibited a slight rectification, and a change in slope. The steady-

state current for a 180 mV pulse taken as reference, was obtained

around 200 ms and 400 ms for POPC and POPC-cholesterol

bilayers respectively.

To discard the difficulty of tau (time constant) evaluation online,

the planar lipid bilayer capacitance was calculated from the

modified equation: Cm = t/Rpln(I0/It) [18] where t = time in

seconds, I0 is the steady state current at t = 0, It is the current at

time t, and Rp is the leakage resistance given by Rp = RmRi/Rm+Ri

for potentials from 30–60 mV. Rp was included in the Cm

equation and extrapolated for the complete potential range (30–

180 mV). Cm decreased with increased potentials for all bilayers

in a bell-shape behavior.

Analysis programme. The resistance is calculated according

to Ohm’s law

U~R � I ð1Þ

i.e.

R~U=I ð2Þ

Which is normalized to the membrane area

Rm~RM � Am ð3Þ

To calculate the membrane capacitance (see below) the term Rp

(leakage resistance) was obtained from:

Rp~
RmRs

RmzRs

ð4Þ

where Rm comes from equation (3) and Rs is the series resistance

given by the resistance of the glass micropipette (1 MV)

Statistical data and consequences on mean and standard
error for lipid bilayer capacitance

Current traces averaging and standard error. Average

traces are calculated for six different files obtained for a same

voltage step. To each point is associated the mean and standard
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error. The mean is calculated from:

x~
1

n

Xn

i~1

xi

And standard error from:

S~
1

n

Xn

i~1

xi{xð Þ2
 !1

2

Stat reminder
Two data series a and b with a mean of

a,b

And standard error

Sa,Sb

1. Mean and standard error of a sum

Then the data series y = a+b has a mean of

y~azb

And standard error

Sy~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

azS2
b

q

2. Mean and standard error of a product and a quotient

The data series y = a * b ou y = a/b has a mean of

y~a � b

Or

y~
a

b

And standard error of

Sy~y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sa

a

� �2

z
Sb

b

� �2
s

3. Logarithm

y~log10 að Þ has a mean of y~log10 að Þ and standard error

Sy~0:434 � Sa

a

Mean and standard error for lipid bilayer capacitance

Cm~
t

Rp � log I0

It

� � ð5Þ

Modified from Ti Tien [18]

Given a ma,sað Þ, b mb,sbð Þ, c mc,scð Þ, d md ,sdð Þ
Then it comes: y~

a

b:log
c

d

� �
Which has a standard error of:

Sy~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5:31:log2 mc

md

� �

log2 10ð Þ: m2
d

s2
d

z
m2

c

s2
c

 !z
m2

b

s2
b

z
m2

a

s2
a

vuuuuuuuut
mb:log

mc

md

� �

Calculated with maxima-5.5 (created by W. Schelter;http://

ww3.ac-poitiers.fr/math/prof/logic/gos6/)

And a mean of : my~
ma

mb:log
mc

md

� �
Formulas were checked using Matlab and test vectors of known

mean and standard errors.

Transport of anandamide through a reconstituted planar lipid

bilayer

Kinetics of 1 mmole anandamide transport across planar lipid

bilayers of controled lipid composition were carried out at 20uC
using planar lipid bilayer chambers from Warner Instrument as

described above. The anandamide transport is measured with an

anandamide assay at various times using 5-lipoxygenase from

soybean. An excess of 5-lipoxygenase (50.000 units, type I-B

Sigma) catalyses at 20uC in 1.1 ml of 0.1 M carbonate/

bicarbonate buffer, 2% Tween 20, (Sigma), pH 9, the complete

hydroperoxydation of lipids containing cis-cis pentadiene structure

as linoleic acid, arachidonic acid or anandamide [23]. The

reaction is followed by measuring the increase in absorbance at

234 nm against lipoxygenase solution in 2% Tween 20. One

enzymatic unit causes an increase in absorbance at 234 nm of

0.001 per minute at 20uC at pH 9 when linoleic acid is used as

substrate. The soybean 5-lipoxygenase uses anandamide as

substrate with approximately 15% of the activity indicated using

linoleic acid. The amount of anandamide accumulated in the trans

compartment was estimated considering that one absorbance unit

at 234 nm is equivalent to the oxidation 0.12 micromole of

anandamide, on the basis of a calibration curve.

Experimental data were analysed with the Origin programme,

version 3.5 (Microcal software). The Boltzman (x,A1,A2,x0,dx)

function producing a sigmoidal curve was used according to the

equation:

(A1–A2)/[1+exp((x2x0)/dx)]+A2 with parameters of x0 (center,

i.e., x at y50), dx (width), A1 (Y initial), and A2 (Y final).
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34. Harris JS, Epps DE, Davio SR, Kézdy FJ (1995) Evidence for transbilayer, tail-
to-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes.

Biochemistry 34: 3851–3857.

Cholesterol and Anandamide

PLoS ONE | www.plosone.org 12 March 2009 | Volume 4 | Issue 3 | e4989


