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Abstract

We introduce the notion of watching systems in graphs, which is a generalization of that

of identifying codes. We give some basic properties of watching systems, an upper bound

on the minimum size of a watching system, and results on the graphs which achieve this

bound; we also study the cases of the paths and cycles, and give complexity results.
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1 Introduction and definitions

1.1 Identifying systems

Many search problems, either mathematical problems or ‘real life’ issues, come down to de-
termine whether a particular item lies in a given set X of possible locations, and locate it if
this is the case, by asking questions about its location. Let us suggest a simple model for this,
in the so-called non-adaptive case, when all questions must be prepared in advance, before
getting the answers.

Consider a finite set X and assume that we can only query whether the item lies in certain
sets S ⊆ X that belong to a given family S of subsets of X. For x ∈ X, the S-identifying set,
or S-label (or simply label if there is no ambiguity) of x is the set

LS(x) = {S ∈ S : x ∈ S}.

We say that S is an identifying system of X if the labels of the elements of X are all nonempty
and pairwise distinct.

In this case, we can simply ask if the item belongs to S for every S ∈ S: either all the
answers will be negative and the item cannot be in X, or the set of questions with positive
answers will correspond to the label LS(x) of the location x where the item is located. Since
|S| can be much larger than the minimum number of questions required to always succeed,
an interesting problem is to find an identifying system S ′ with S ′ ⊆ S and with minimum
size.

Let us mention graph theoretical problems that are particular instances of this general
framework. Karpovsky, Chakrabarty and Levitin introduced the notion of identifying codes
in [21]; here, with the previous notation, X is the set of vertices of a finite, (in general)
undirected graph and S is the set of all the closed neighbourhoods of the vertices of the graph
(see the next section for details). More generally, with the so-called (r,≤ `)-identifying codes,
one can identify sets of vertices within a certain distance (see for instance [23], [24] or [25]).
Honkala, Karpovsky and Litsyn, as well as Rosendahl, studied the identification of vertices
and edges of a graph using cycles (see [17], [18], [26], [27]). In [19], Honkala and Lobstein
considered the identification of vertices in Z2, using arbitrary subsets of Z2: we shall see
below that this approach is quite close to the notion of watching system. Charbit, Charon,
Cohen, Hudry and Lobstein studied the general problem of identifying systems in a bipartite
graph framework ([7], [8], [10], [11]). In this paper, we will introduce a new problematics
in graphs, which extends the concept of identifying codes, and which can be thought of as
identifying vertices with subsets of the closed neighbourhoods of the vertices of the graph.

1.2 Notation

We use standard notation: by graph we mean a simple, finite, undirected, generally connected,
graph (if the graph is not connected, we can consider separately its connected components).
If G is a graph, we denote its vertex set by V (G) and its edge set by E(G). The closed
neighbourhood NG[v] of a vertex v consists of v and its neighbours in G. For r ≥ 0 and
v ∈ V (G), the ball of radius r and centre v is the set BG(v, r) of all vertices x ∈ V (G)
satisfying dG(v, x) ≤ r, where dG is the usual distance in G. Obviously, BG(v, 1) = NG[v]. For
standard notions such as degree, diameter, spanning tree, etc., we refer to [4] or [6], whereas
for the notion of NP-completeness and general background about algorithmic complexity we
refer to [3] or [15].

2



1.3 Identifying codes

Identifying codes were introduced in [21] in 1998 with the original motivation of fault detection
in multiprocessor systems. If G is a graph, an identifying code is a subset C ⊆ V (G) such
that the family

{NG[v] : v ∈ C}

is an identifying system of V (G). The elements of C are usually called codewords.
Of course, such a system will exist if and only if the family of all closed neighbourhoods

{NG[v] : v ∈ V (G)} is itself identifying, which means in this case that distinct vertices
must have distinct closed neighbourhoods; a graph with this property is called twin-free or
identifiable.

As aforementioned, in the original motivation the graph models a finite network of proces-
sors, and codewords correspond to processors equipped with a monitor able to detect a faulty
processor in the closed neighbourhood of its location. Then, if there is at most one fault in
the network and if every monitor sends a one-bit message referring to whether it detects a
fault or not, we will be able to tell if there is a faulty processor in the graph, and locate it.
See the graph G1 on Figure 1 for an example; one can check that a minimum identifying code
in this graph has five codewords. Another example is the graph G2, depicted on Figure 2,
which is a star on 15 vertices. One can check that the minimum size of an identifying code
in G2 is 14.

1.4 Watching systems

The graph G1 (Figure 1) is slightly pathological, because requiring five codewords to monitor
six vertices is very much to ask (in fact, n−1 codewords is the maximum that can be required
for a graph on n vertices, see [9] or [16]). The reason why we need so many codewords is
that the closed neighbourhoods of two distinct vertices only differ by at most two vertices
(the same phenomenon is also true for the leaves in G2 on Figure 2), and in this context a
codeword has no choice but to check its whole closed neighbourhood, so that two distinct
codewords check almost the same sets of vertices.

There are problems in which this situation is close to reality. For instance, consider a
smoke detector: it has no choice but to detect smoke, regardless of the direction where it
came from. So an identifying code is a good model for a fire-monitoring system in a building.

On the other hand, for instance in fault detection in multiprocessor systems, it seems
plausible that we could easily assign a smaller control area to every detector by simply not
connecting it to some adjacent vertices. Let us use the term watcher instead of codeword for
this generalization.

First, let us define it informally with two examples. Assume that an edge between two
vertices a and b denotes the possibility for a watcher in a to watch out what happens in b,
but that we can choose not to use this possibility: thus we can assign to a watcher located at
a vertex v a watching zone, which will be any subset of NG[v].

Let us try this on G1 and check out Figure 3: we only need three watchers with this
protocol (the locations of the watchers 1, 2 and 3 are written down in squares, whereas the
label of each vertex, i.e., the set of watchers watching it, is written down in italics nearby, so
that the watching zone of each watcher can be retrieved), when five codewords were needed
previously. All we have to check is that the labels of all vertices are nonempty and different,
and that each watcher only watches vertices in the closed neighbourhood of its location.
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What we can also do is to place several watchers at the same location, with distinct
watching zones. For instance consider G2 (see Figure 4): only four watchers are needed
whereas 14 codewords were necessary. This can be thought of as a single detector in the
centre of the star, but needing four bits instead of one to send information, since it has 15
different vertices to watch. Thus watchers also enable us to model a monitoring system where
monitors could simply tell where they detect a fault, but where the cost of a monitor is
proportional to the number of bits needed to send this information.

�

��

�

� �

�

Figure 1: The graph G1 and a minimum identifying code, of size five. Codewords are in black.
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Figure 2: The graph G2 and a minimum identifying code, of size 14. Codewords are in black.

Let us define this formally:

Definition 1. A watching system in a graph G = (V (G), E(G)) is a finite set

W = {w1, w2, . . . , wk}

where each wi is a couple wi = (vi, Zi), where vi is a vertex and Zi ⊆ NG[vi], such that
{Z1, . . . , Zk} is an identifying system.
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Figure 3: The graph G1 with a minimum watching system, of size three. Watchers’ locations are
written down inside squares and labels nearby vertices, in italics.
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Figure 4: A minimum watching system in G2, of size four.

We will often represent watchers simply by integers, as we did in Figures 3 and 4. Note that
any graph G admits the trivial watching system {(v, {v}) : v ∈ V (G)}.

If W is a watching system in G and w = (v, Z) ∈ W is a watcher, we will say that v is
the location of w, or that w is located at v. The set Z is the watching zone, or watching area,
of w, and if x ∈ Z we say that w covers x, or that x is covered by w. We say that w separates
the vertices x and y (or x from y) if w covers x and does not cover y, or the other way round.
Therefore, W is a watching system of G if every vertex is covered by at least one watcher
in W and any two distinct vertices are separated by at least one watcher in W. Let us define
the W-label, or W-identifying set, or simply label, of a vertex v as the set LW(v) of watchers
covering v. We will say that a vertex v is identified by W if its label LW(v) is nonempty (v is
covered by one watcher at least) and there is no other vertex in G with the same label. Thus
another way to express the fact that W is a watching system is to say that all vertices in G
are identified by W.
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2 First properties of watching systems

Let us recall that a dominating set in G is a subset Γ of V (G) such that every vertex not
in Γ is adjacent to at least one element in Γ. Let respectively w(G), γ(G) and i(G) denote
the minimum sizes of a watching system, of a dominating set and, when it exists, of an
identifying code in G. These parameters will be called watching number, domination number,
and identifying number, respectively.

If we have k questions to be answered by yes or no, there are 2k −1 possibilities to answer
all these questions without answering always by the negative, so we get a trivial lower bound
for the size of a watching system. It is known that this bound also holds for identifying codes
(see [21]). Noticing that an identifying code, when it exists, defines a watching system in
an obvious way, we have the following relationship involving |V (G)| and the watching and
identifying numbers:

Theorem 2. For any graph G, we have:

dlog2(|V (G)| + 1)e ≤ w(G).

For any twin-free graph G, we have:

w(G) ≤ i(G).

We now compare the watching and domination numbers of a graph, with the following result,
where ∆(G) denotes the maximum degree of G:

Theorem 3. For any graph G, we have:

γ(G) ≤ w(G) ≤ γ(G) · dlog2(∆(G) + 2)e .

Proof. If W is a watching system, then the set of the watchers’ locations in W is a dominating
set, so we have the left-hand inequality. On the other hand, if we have a dominating set
Γ ⊆ V (G) of size γ(G), we can identify all vertices simply by locating enough watchers at
every vertex of Γ. One just has to notice that in order to identify a vertex v and its (at
most) ∆(G) neighbours, we need at most p := dlog2(∆(G) + 2)e watchers, since a set with p
elements has at least ∆(G) + 1 nonempty subsets. �

3 An upper bound for the watching number

It is known that i(G) ≤ |V (G)| − 1 for any connected twin-free graph with at least three
vertices (see [9], [16]), and that this bound is reached, for instance, by the star, cf. Figure 2.
We prove a much better upper bound for watching systems, namely 2n/3, in Theorem 7, the
proof of which will use the following three lemmata.

Lemma 4. Let G be a graph and H be a partial graph of G, i.e., with V (H) = V (G) and
E(H) ⊆ E(G). Then

w(H) ≥ w(G).

Proof. If W is a watching system for H, then the same W is a watching system for G, since
two adjacent vertices in H are also adjacent in G.

Note that this monotony property does not hold in general for identifying codes.
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Figure 5: Trees with four vertices.

Lemma 5. Let T be a tree, x be a leaf of T , and y be the neighbour of x.
(a) There exists a minimum watching system for T with one watcher located at y.
(b) If y has degree 2, there exists a minimum watching system for T with one watcher

located at z, the second neighbour of y.

Proof. (a) A watching system must cover x, so there is a watcher w1 located at x or y, with
x ∈ Z. If w1 = (x,Z), then we can replace it by w2 = (y, Z), since NG[y] ⊇ NG[x].

(b) If y /∈ Z, then one other watcher must cover y, and if y ∈ Z, then one must separate x
and y, since x ∈ Z. In both cases, the task can be done by a watcher located at z.

Lemma 6. Let T be a tree with four vertices, and let v be a vertex of T ; there exists a set W
of two watchers such that

− the vertices in V (T ) \ {v} are covered and pairwise separated by W — in this case, we
shall say, with a slight abuse of notation, that W is a watching system of V (T ) \ {v};

− the vertex v is covered by at least one watcher.

Proof. On Figure 5, we give all possibilities: the two trees with four vertices, and for each
of them, the two possible locations for v (v is a leaf, or v is not a leaf).

Theorem 7. Let G be a connected graph of order n, i.e., with n vertices.

− If n = 1, w(G) = 1.

− If n = 2 or n = 3, w(G) = 2.

− If n = 4 or n = 5, w(G) = 3.

− If n /∈ {1, 2, 4}, w(G) ≤ 2n
3 .

Proof. For n = 1, n = 2, or n = 3, the result is direct. For n = 4, it is necessary to have
at least dlog2(5)e = 3 watchers and it is easy to verify that this is sufficient. For n = 5, all
possibilities are given by Figure 6 and we can see that we always have w(G) = 3.

We proceed by induction on n. We assume that n ≥ 6 and that the theorem is true for
any connected graph of order less than n.

Let G be a connected graph of order n. Let T be a spanning tree of G; we will prove that
w(T ) ≤ 2n

3 and then the theorem will result from Lemma 4. We denote by D the diameter
of T and we consider a path v0, v1, v2, . . . , vD−1, vD of T , with length D.

We distinguish between four cases, according to some conditions on the degrees of vD−1

and vD−2.

7



1, 21 2 2, 3 3 1 1, 3 3 1, 2
1, 3

1 2 3 1 2 3 1 2

31, 2 1

2

32, 3

Figure 6: The case n=5 in Theorem 7.
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Figure 7: First case of Theorem 7: the degree of vD−1 is equal to 3.

• First case: the degree of vD−1 is equal to 3
The vertex vD−1 is adjacent to a vertex x other than vD−2 and vD; because D is the diameter,
clearly x and vD are leaves of T (see Figure 7). We consider the tree obtained by removing
x, vD−1 and vD from T ; this new tree T ′ has order n − 3.

If n ≥ 8 or if n = 6, we consider a minimum watching system W for T ′; if n = 7, then T ′

is of order 4, and, using Lemma 6, we choose a set W of two watchers which is a watching
system for V (T ′) \ {vD−2} and covers the vertex vD−2.

Then for T , in both cases, we add to W two watchers w1 = (vD−1, {vD−2, vD−1, vD}) and
w2 = (vD−1, {vD−1, x}). On Figure 7, we rename 1 and 2 these watchers. Then W∪{w1, w2}
is a watching system for T . So, w(T ) ≤ |W| + 2 ≤ w(T ′) + 2.

Now we use the induction hypothesis: if n ≥ 8 or n = 6, then w(T ) ≤ 2
3(n − 3) + 2 = 2n

3 ;
and if n = 7, then w(T ) ≤ 2 + 2 = 4 < 2

3 × 7.

• Second case: the degrees of vD−1 and vD−2 are equal to 2
The neighbours of vD−1 are vD−2 and vD, the neighbours of vD−2 are vD−3 and vD−1 (see
Figure 8). We consider the tree obtained by removing vD−2, vD−1 and vD from T ; this new
tree T ′ has order n − 3.

If n ≥ 8 or if n = 6, we consider a minimum watching system W for T ′; if n = 7, T ′ is of
order 4; again using Lemma 6, we choose a set W of two watchers which is a watching system

1

1, 2

vD

1, ... 21

0v v1 vD
vD

vD

2

−3 −2 −1

Figure 8: Second case of Theorem 7: the degrees of vD−1 and vD−2 are equal to 2.
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Figure 9: Third case of Theorem 7: the degree of vD−1 is at least 4.

for V (T ′)\{vD−3} and covers the vertex vD−3. As in the first case, we add to W two watchers:
w1 = (vD−2, {vD−3, vD−2, vD−1}) and w2 = (vD−1, {vD−2, vD}), and obtain a watching sys-
tem for T . So, w(T ) ≤ |W|+2 ≤ w(T ′)+2. The end of this case is the same as in the first case.

• Third case: the degree of vD−1 is at least 4
The vertex vD−1 is adjacent to at least two vertices other than vD−2 and vD: let x and y be
two neighbours of vD−1 distinct from vD−2 and vD; these two vertices are leaves of T (see
Figure 9). We consider the tree T ′ obtained by removing x and y from T . By Lemma 5,
there exists a minimum watching system W of T ′ with a watcher w1 located at vD−1. For T ,
we take the set W and add the watcher w2 = (vD−1, {x, y}); we also add the vertex x to
the watching zone of w1. The set W being a watching system for T ′, the set W ∪ {w2} is a
watching system for T . So, w(T ) ≤ w(T ′) + 1.

If n ≥ 7, the order of T ′ is at least 5 and, using the induction hypothesis, w(T ) ≤
2
3(n − 2) + 1 < 2n

3 .
If n = 6, then n − 2 = 4 and w(T ) ≤ 3 + 1 = 4 = 2

3 × 6.

• Fourth case: the degree of vD−1 is equal to 2 and the degree of vD−2 is at least 3
The neighbours of vD−1 are vD−2 and vD. The vertex vD−2 is adjacent to vD−3 and vD−1 but
also to at least one other vertex x (see Figure 10); if the degree of x is at least 3, using the
fact that the diameter of T is equal to D, we can use the first or third case to conclude, with
x playing the part of vD−1.

So, we assume that the degree of x is 1 or 2; if its degree is 2, it has a neighbour y other
than vD−2.

We consider the tree T ′ of order n − 2 obtained by removing vD−1 and vD from T . By
Lemma 5, there exists a minimum watching system W of T ′ with a watcher w1 located at
vD−2. For T , we take the set W and add the watcher w2 = (vD−1, {vD−1, vD}); we also add
the vertex vD−1 to the watching zone of w1. Then W ∪ {w2} is a watching system for T .

The end of this case is exactly the same as in the previous case.

Moreover, we can almost characterize the graphs for which this bound is tight: in [2], we
characterize the trees T with n vertices and w(T ) = b 2n

3 c, then we characterize the graphs G
with n vertices and w(G) = b 2n

3 c in the cases n = 3k, k ≥ 1, and n = 3k + 2, k ≥ 1; the case
n = 3k + 1 is more complex, and we are only able to state a conjecture for k ≥ 6.
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Figure 10: Fourth case of Theorem 7: the degree of vD−1 is equal to 2 and the degree of vD−2 is at
least 3.

4 Watching systems in paths and cycles

Let us call a watching system W compressed if for every vertex v ∈ V (G) and for every set
A such that ∅ ( A ( LW(v), there is v′ ∈ V (G) such that A = LW(v′). See for example
Figures 3 and 4.

If a watching system W is not compressed, then we can find v and A satisfying ∅ ( A (

LW(v) such that A is not the label of any vertex in G. Then if for every watcher (x,Z) in
LW(v) \ A we redefine this watcher by (x,Z \ {v}), we obtain another watching system of G
where the labels of all vertices are the same as before, except for v that has been assigned
label A. Clearly, if we do this repeatedly we get a compressed watching system of G with the
same size as W, and thus we can always require a watching system to be compressed.

The following lemma is easy but will prove useful:

Lemma 8. Let G be a graph and W be a compressed watching system in G. Then for all
v ∈ V (G), we have:

2|LW(v)| − 1 ≤ |BG(v, 2)| .

Proof. Since W is compressed, all the 2|LW(v)|−1 nonempty labels that can be formed using
the watchers in LW(v) must be attributed to vertices in G. The watchers in LW(v) having
their locations in NG[v], these labels can be attributed only inside BG(v, 2).

The path Pn on n vertices is the graph whose vertex set is {1, 2, . . . , n} and whose edge set
is {{i, i + 1} : 1 ≤ i ≤ n − 1}. We prove:

Theorem 9. For all n ≥ 1, we have:

w(Pn) =

⌈

n + 1

2

⌉

.

Proof. First let us prove that w(Pn) ≥ n+1
2 . The small cases are easy to handle, and we

assume that n ≥ 6. Let W be a minimum compressed watching system of Pn and let i be
such that 1 ≤ i ≤ n. By Lemma 8, since |BPn

(i, 2)| ≤ 5, we deduce that |LW(i)| ≤ 2. Let us
show that the vertices having a label of size 2 can be assumed to be nonadjacent.

First, assume that two adjacent vertices i and i+1 have respective labels ab and cd where
a, b, c and d are distinct watchers. Since W is compressed, the four vertices around i and
i + 1 must be labeled by a, b, c and d (and thus we must also have i > 2 and i + 1 < n − 2).
Without adding watchers, we can change W into a new compressed watching system where,
without loss of generality, the labels from i − 2 to i + 3 are a − ab − b − c − cd − d.
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Now assume that the labels of i and i + 1 are ab and ac; then the vertices with labels
a, b and c must be in i − 2, i − 1, i + 2 or i + 3. If, for instance, the labels in this order are
b − a − ab − ac − c, then we can replace them by b − ab − a − ac − c. It is not difficult to see
that in all cases, we can get a watching system with the same size as W, where the vertices
with labels of size 2 are nonadjacent.

Let us also note that we can assume that the vertices 1 and n do not belong to this set:
for instance, if the labels of 1, 2 and 3 are ab− a− b, we can replace them by a− ab− b, and
a similar observation can be made for the vertices n − 2, n − 1, n.

Once W is modified, the set of vertices with size-2 labels is an independent set in the path
2, 3, . . . , n−1 and thus has size at most

⌊

n−1
2

⌋

, and so the set of vertices with labels of size 1,
whose cardinality is the same as W, has size at least

n −

⌊

n − 1

2

⌋

,

which is equal to
⌈

n+1
2

⌉

.
Constructions proving that

⌈

n+1
2

⌉

is an upper bound are easy to find; actually it is suf-
ficient to use identifying codes (cf. [5]): on the paths, watching systems are no better than
identifying codes, except for n = 2, when no identifying code exists. �

The following result on cycles is obtained in a similar way. Let Cn denote the cycle of length n,
with vertices 1, 2, . . . , n, and edges {i, i + 1} for i ∈ {1, 2, . . . , n − 1}, and {n, 1}.

Theorem 10. We have w(C4) = 3, and for n = 3 and all n ≥ 5:

w(Cn) =
⌈n

2

⌉

.

Proof. For the lower bound, using the same argument as in the proof of Theorem 9, we
modify W so that the set of vertices with size-2 labels is an independent set in Cn, thus
having size at most

⌊

n
2

⌋

. Constructions proving the upper bound are easy to find.

If we compare to identifying codes, we can see that the cycle of length three admits no
identifying code and that i(C4) = i(C5) = 3; then i(Cn) = n

2 when n is even, n ≥ 6 (see [5]),
and i(Cn) = n+3

2 when n is odd, n ≥ 7, see [12]. So i(Cn) = w(Cn) when n = 5 or n is even,
n ≥ 4, and i(Cn) = w(Cn) + 1 when n is odd, n ≥ 7.

5 Computational complexity

Let us recall what is a vertex cover in a graph G. An edge e = xy ∈ E(G) is said to be covered
by a vertex v ∈ V (G) if v and e are incident, i.e., if v = x or v = y. A vertex cover in G is a
set of vertices C ⊆ V (G) such that every edge of G is covered by a at least one element c ∈ C.
Equivalently, C is a vertex cover if

∀e = xy ∈ E(G), x ∈ C or y ∈ C.

It is well known that the problem of finding the minimum cardinality of a vertex cover in a
given graph is NP-hard (see [20]); furthermore, it was proved in [14] that this problem remains
NP-hard when restricted to the class of planar graphs whose maximum degree is at most 3,
class which we denote by Π3. For our proof we need to go a little further. In all graphs, a
vertex of degree one is never an issue when we are looking for a vertex cover, since it is easy
to prove the following lemma (see [1] for instance):
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Lemma 11. Let G be a graph and xy ∈ E(G) be an edge such that the degree of the vertex x
is 1, and let G′ be the graph obtained by removing x, y and all their incident edges from G.
Then the minimum cardinality of a vertex cover in G equals the minimum cardinality of a
vertex cover in G′ plus 1.

Let Π′
3 be the class of all planar graphs where every vertex has degree 2 or 3. In addition to

the aforementioned result from [14], Lemma 11 proves that the following decision problem is
NP-complete:

Min Vertex Cover in Π′
3

• Instance: A graph G ∈ Π′
3 and an integer k;

• Question: Is there a vertex cover for G with size at most k ?

We will use this NP-complete problem in order to study the computational complexity of the
following decision problem:

Min Watching System in Π3

• Instance: A planar graph G′, with maximum degree at most 3, and an integer k′;
• Question: Is there a watching system for G′ with size at most k′ ?

We prove the following:

Theorem 12. Min Watching System in Π3 is NP-complete.

Proof. Let us observe that Min Watching System in Π3 belongs to NP : given a watching
system, it is polynomial with respect to the size of the instance, which can be taken as the
order of the graph, to compute the labels of all vertices and check that they are nonempty
and distinct. Now, using a polynomial reduction from the problem Min Vertex Cover

in Π′
3, we will show that our problem is NP-complete.

Consider a graph G and an integer k, an instance of the Min Vertex Cover in Π′
3

problem. Denote respectively by n and m the number of vertices and edges of G. We con-
struct a graph G′ by replacing every edge xy of G by the structure Sxy depicted on Figure 11,
consisting of 4 vertices (including x and y) and 3 edges. Thus G′ has n+2m vertices and 3m
edges and clearly the construction of G′ from G can be done in polynomial time. Moreover,
if G ∈ Π′

3, we clearly have G′ ∈ Π3. We set k′ = k + m. The reduction will be complete if we
prove that for all k ≥ 0:

G admits a vertex cover of size at most k if and only if G′ admits a watching system of
size at most k′.

Consider an edge xy of G and the structure Sxy replacing xy in G′, and let V ′
xy = {axy, bxy}.

Assume first that C is a vertex cover of G. We define a watching system W in G′ as
follows:

− for every vertex x of V (G) such that x ∈ C, we add the watcher (x,NG′ [x]) to W;

− for every edge e = xy of G, we add the watcher (axy, NG′ [axy]) to W.

12



It is easy to see that W is a watching system in G′. Consider a vertex x in G; since it has degree
at least 2 in G, it is adjacent to at least two vertices y1 and y2 in G. So the corresponding
vertex x in G′ is covered by, at least, the two watchers located at axy1

and axy2
, belonging

respectively to the structures Sxy1
and Sxy2

, and thus x is identified by W. Also note that
for every edge e = xy of G, since either x or y belong to the vertex cover C, there is a watcher
in W that separates axy from bxy. Thus G′ admits a watching system with size |C|+ m ≤ k′.

Conversely, assume that W is a watching system of G′ of size at most k′. Consider an
edge xy ∈ E(G) and the watchers located in the structure Sxy of G′. Then:

− if no watcher is located at x nor y, there must be at least two watchers located in V ′
xy;

− if at least one watcher is located at x or y, we still need at least one watcher in V ′
xy.

So if we denote by C the set of vertices x ∈ V (G) such that W contains a watcher located
at x, and by p the number of edges xy of G with x 6∈ C and y 6∈ C, we have

|C| ≤ |W| − 2p − (m − p) ≤ k′ − m − p ≤ k − p.

Therefore if we add to C one vertex for every uncovered edge of G, we get a vertex cover of G
of size at most k.

"

"

# #

# #

$ $

$ $

Sxy

x

x

y

y

axy

bxy

Figure 11: The structure Sxy replacing every edge xy of G in the transformation.

6 Distance-identification of sets of vertices

6.1 Definitions

Let us now turn to the problem of identifying several vertices within a certain distance, using
a watching system. For r ≥ 1 and ` ≥ 1, we define the notion of (r,≤ `)-watching systems
which extends the notion of (r,≤ `)-identifying codes.

Define a r-watcher w in a graph G as in the case of a watcher w = (v, Z) except for the
watching zone Z that can now be any subset of the ball BG(v, r) centred at the location v
of w and with radius r; thus a 1-watcher is simply a watcher. We extend in an obvious way
the notions of covering, label, separation, identification, . . . to r-watchers.
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Let now W be a set of r-watchers in G. If A ⊂ V (G), we define the W-label of A as

LW(A) =
⋃

v∈A

LW(v),

and we say that W is a (r,≤ `)-watching system if all the labels of the subsets A of V (G)
with 1 ≤ |A| ≤ ` are nonempty and distinct.

Note that a (r,≤ `)-watching system is a (r′,≤ `′)-watching system if `′ ≤ ` and r′ ≥ r.
Let S = {S1, S2, . . . , Sk} be a finite family of distinct nonempty subsets of a set X and

` ≥ 1. We say that S is a `-superimposed family on X if, whenever we consider two distinct
sets I, J included in {1, . . . , k} with 1 ≤ |I| ≤ ` and 1 ≤ |J | ≤ `, we have:

⋃

i∈I

Si 6=
⋃

j∈J

Sj .

This is the notion of `-superimposed code in a set-system version. These codes were introduced
in [22]. They are related to (r,≤ `)-identifying codes, as was observed in [21] and [13]. They
are also related to watching systems since, with our definition, if W is a (r,≤ `)-watching
system in a graph G, then the family of all W-labels of the vertices of G is a `-superimposed
family on W. Note that the family of singletons of X is always a `-superimposed family of X
for all ` ≥ 1, and so every graph G admits a (r,≤ `)-watching system for all r ≥ 1 and ` ≥ 1,
consisting of the watchers (v, {v}) for all v ∈ V (G).

Observe that if ` ≥ 2 and i 6= j, then Si ⊆ Sj is impossible in a `-superimposed family.
From this follows that if |LW(x)| = 1 for a vertex x in the graph with watching system W,
then if ` ≥ 2 the watcher covering x must cover only x: we will call such a watcher a hermit.
Without loss of generality, we can suppose that this watcher is (x, {x}), since its location
does not matter.

6.2 The case of (1,≤ 2)-watching systems in paths and cycles

Let us start with the following lemma.

Lemma 13. For 1 ≤ k ≤ 4, the only 2-superimposed family on a set with k elements with at
least k subsets is the family of k singletons.

Proof. The result is obvious if 1 ≤ k ≤ 3, so we just check the case k = 4. Let S1, S2, S3, S4

be a 2-superimposed family on {1, 2, 3, 4}. If there is a singleton in the family, say S1 = {1},
then we have Si ⊂ {2, 3, 4} for i > 1 and we use the case k = 3 to conclude.

If an element, say 1, is in at least three different sets, say S1, S2 and S3, then by intersecting
these sets with {2, 3, 4} we get a 2-superimposed family of size 3 on {2, 3, 4}, so, using the
case k = 3, we must have (up to permutations) S1 = {1, 2}, S2 = {1, 3} and S3 = {1, 4}.
Then S4 cannot contain 1, and the remaining possibilities for S4 all lead to contradictions.

If all the elements are in at most two sets and there are no singletons, then by a simple
counting argument we see that all the sets must be pairs, and so the family must be (up to
permutations) {{1, 2}, {1, 3}, {3, 4}, {2, 4}}, which is not 2-superimposed. �

In other words, with k watchers, 1 ≤ k ≤ 4, we can produce k valid labels, which will be
singletons, and not more.

From now on until the end of Section 6.2, the vertices of the paths or cycles are denoted
by x1, x2, . . . and the watchers by 1, 2, . . . or w1, w2, . . ., depending on the context.
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Theorem 14. For all n ≥ 1, the minimum size of a (1,≤ 2)-watching system in the path Pn is

min(n,
⌈5(n + 1)

6

⌉

), which is equal to

{

n if n ≤ 10,
⌈

5(n+1)
6

⌉

if n ≥ 5.

Proof. Let λn =
⌈5(n+1)

6

⌉

and Λn = min(n, λn): we have to prove that Λn is the minimum
size of a (1,≤ 2)-watching system in Pn. The proof for the lower bound works by induction
on n.

If 1 ≤ n ≤ 4, the result comes directly from Lemma 13: we need n watchers since the
labels of the vertices form a 2-superimposed family of size n. So from now on, we assume that
n ≥ 5, that the lower bound holds for all n′ < n, and that W is a (1,≤ 2)-watching system
in Pn. We call a hole any vertex at which no watcher is located.

If there is no hole, then |W| ≥ n, and so |W| ≥ Λn for all n ≥ 5; therefore, we can assume
that at least one hole exists in Pn.

Case 1) Suppose first that holes exist only on x1 or xn.
Without loss of generality, we can assume that x1 is a hole. If x1 is covered by only one
watcher w, this watcher is located at x2 and cannot cover any other vertex xi, i ∈ {2, 3}, since
this would imply that the sets {x1, xi} and {xi} cannot be separated by W. So w = (x2, {x1});
then

W ′ =
(

W \ {w}
)

∪ {(x1, {x1})}

is still a (1,≤ 2)-watching system in Pn, and

W ′′ = W ′ \ {(x1, {x1})}

is a (1,≤ 2)-watching system in Pn−1 = x2, x3, . . . , xn. By the induction hypothesis, we have
|W ′′| ≥ Λn−1, from which we immediately derive that |W| = |W ′′| + 1 ≥ Λn.

If now x1 is covered by at least two watchers wi, i = 1, 2, . . ., located at x2, then we
consider the path x3, x4, . . . , xn and the set W1 = W \{wi : i = 1, 2, . . .}. We then have three
subcases:

• if xn is not a hole, then x1 is the only hole in Pn, and |W1| ≥ n − 2, implying |W| ≥
n ≥ Λn;

• if xn is a hole covered by only one watcher, we use the same argument as used in this
case for x1, and we are done;

• if xn is a hole covered by at least two watchers w′
j , j = 1, 2, . . ., located at xn−1, then

we consider the path Pn−4 = x3, x4, . . . , xn−2 and the set W2 = W1 \ {w
′
j : j = 1, 2, . . .}; by

hypothesis, Pn−4 has no holes, so |W2| ≥ n − 4 and again |W| ≥ n ≥ Λn. In all three cases,
we are done, which ends Case 1.

Case 2) There is a hole x`, ` ∈ {2, 3, . . . , n − 1}.
Without loss of generality, we can assume that ` ≤ bn+1

2 c, so that there are more vertices to
the right of x` than to its left: ` − 1 ≤ n − `. We distinguish between three subcases:

• `− 1 ≤ 4 and there are at least ` watchers located at x1, x2, . . . , x`−1; since r = 1, there
is no influence by these ` watchers on x`+1, and we can apply the induction hypothesis to
x`+1, . . . , xn, and obtain:

|W| ≥ ` + Λn−` = ` + min
(

n − `,
⌈5(n − ` + 1)

6

⌉

)

= min
(

n,
⌈5(n + 1) + `

6

⌉

)

≥ Λn.

• `− 1 ≤ 4 and there are exactly `− 1 hermits located at x1, x2, . . . , x`−1 (by Lemma 13,
and without loss of generality as far as the hermits’ locations are concerned, this is the only

15



possibility left when ` − 1 ≤ 4); since these hermits cannot interfere with x`, we can apply
the induction hypothesis to x`, . . . , xn, and obtain this time:

|W| ≥ `−1+Λn−`+1 = `−1+min
(

n−`+1,
⌈5(n − ` + 2)

6

⌉

)

= min
(

n,
⌈5(n + 1) + ` − 1

6

⌉

)

≥ Λn.

• ` − 1 ≥ 5 (and so, n − ` ≥ 5); again, x`−1 cannot interfere with x`+1, and we can apply
the induction hypothesis to x1, x2, . . . , x`−1 and to x`+1, . . . , xn, and obtain:

|W| ≥
⌈5`

6

⌉

+
⌈5(n − ` + 1)

6

⌉

≥
⌈5(n + 1)

6

⌉

≥ Λn,

which ends the proof for the lower bound.
We give a construction that matches the lower bound. For n ∈ {1, 2, . . . , 10}, we need at

least n watchers, and we can do it with n hermits. For n = 11, see Figure 12.
When n = 6k − 1, k ≥ 3, for which at least 5k watchers are necessary, use Figure 12, add

the pattern of the last six vertices to the right of the right-most vertex, x11, change, for these
new vertices, 6, 7, 8, 9, 10 into 11, 12, 13, 14, 15, and so on.

When n = 6k + i, k ≥ 2, i ∈ {0, 1, 2, 3, 4}, for which at least 5k + i + 1 watchers are
necessary, use the construction for 6k − 1, where the watchers 5k − 4, . . . , 5k are located at
the last five vertices, and where the label of the last vertex, x6k−1, is {5k − 1, 5k}. Now add
n−6k+1 = i+1 vertices to the right of x6k−1, and locate i+1 watchers 5k+1, . . . , 5k+ i+1
at the vertices x6k, . . . , x6k+i. Change the label of x6k−1 to {5k − 1, 5k + 1} and assign the
labels {5k + j, 5k + j + 2} to x6k+j , for j ∈ {0, . . . , i − 1}, and the label {5k + i, 5k + i + 1}
to x6k+i = xn.

We let the reader check that this is indeed a (1,≤ 2)-watching system; see Figure 13 for
an example.

Observe also that no (1,≤ 2)-identifying code (and more generally, no (1,≤ `)-identifying
code) exists in the path Pn, because, since NPn

[x1] ⊆ NPn
[x2], the sets of vertices {x2} and

{x1, x2} cannot be separated.

% % % % % % % % % % %
1 2 3 4 5 6 7 8 9 10

1, 2
1, 3

2, 4
3, 5

4, 5
5, 6

6, 7
6, 8

7, 9
8, 10

9, 10

Figure 12: An optimal (1,≤ 2)-watching system in the path P11.

In the case of cycles, we have the following result.

Theorem 15. For all n ≥ 3, the minimum size of a (1,≤ 2)-watching system in the cycle Cn

is d5
6ne, except for n = 6, for which it is 6.

Proof. The small cases, up to n = 5, are easy to handle. The proof of the case n = 6 is
cumbersome and is not given here. Now consider a (1,≤ 2)-watching system W in Cn, n ≥ 7.
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& & & & & &
5k − 2 5k − 1 5k 5k + 1 5k + 2 5k + 3

x6k−3 x6k−2 x6k−1 x6k x6k+1 x6k+2

5k−3, 5k−1 5k−2, 5k 5k−1, 5k+1 5k, 5k+2 5k+1, 5k+3 5k+2, 5k+3

Figure 13: The right end of the path Pn for n = 6k + 2.

Remembering that a hole is a vertex at which no watcher is located, we can see that if there is
no hole, we are done; so we consider a hole x` in Cn, and the path on n− 1 vertices obtained
from Cn by removing x`. Obviously, W is a (1,≤ 2)-watching system for this path, and so

|W| ≥ Λn−1 = d5((n−1)+1)
6 e, and the lower bound is proved. Constructions meeting the lower

bound are easy: take a path with n− 1 vertices together with the construction of an optimal
(1,≤ 2)-watching system described in the proof of Theorem 14. Add a vertex xn which is
linked to x1 and xn−1, and assign to xn the label {w1, w2}, where w1 is located at x1 and w2

is located at xn−1 (in our construction, there are always watchers located at each end of the
path). You obtain a (1,≤ 2)-watching system for Cn, of size Λn−1 = d5n

6 e, for n ≥ 7. The
reason why this construction does not work for n = 6 is that there would be three labels,
{1, 3}, {3, 5} and {1, 5}, whose pairwise unions are equal to {1, 3, 5}.

If we compare to (1,≤ 2)-identifying codes in Cn, we can see that, because for all i the sets
BCn

(xi, 1) and BCn
(xi, 1) ∪ BCn

(xi+1, 1) differ by only one vertex, xi+2, this vertex, hence
by symmetry all vertices, must belong to the code. Starting from n = 7, the only (1,≤ 2)-
identifying code in the cycle Cn is V (Cn).

6.3 The case of (1,≤ `)-watching systems in paths and cycles for ` ≥ 3

Like every graph, the path Pn and the cycle Cn admit, for all ` ≥ 3, a (1,≤ `)-watching
system, which is the trivial watching system consisting of all the hermits. In the case of Pn

and Cn, this is the best we can do:

Theorem 16. For all n ≥ 1 (respectively, n ≥ 3) and ` ≥ 3, the minimum size of a (1,≤ `)-
watching system in the path Pn (respectively, the cycle Cn) is n.

Proof. Consider a (1,≤ `)-watching system W for Pn or Cn, where ` ≥ 3. Let H ⊆ W be
the set of hermits in W, and let VH ⊂ V (G) be the set of vertices covered by these hermits
(as aforementioned, VH can be taken, without loss of generality, as the set of the locations of
the hermits). Now assume that there is a vertex x in V (G) \ VH; then we have |LW(x)| > 1.

Suppose that LW(x) = {w1, w2}: then w1 and w2 are not hermits and so there exist a
vertex v1 6= x covered by w1 and a vertex v2 6= x covered by w2 (though we may have v1 = v2).
But in this case we have LW({v1, v2}) = LW({v1, v2, x}) (or LW({v1}) = LW({v1, x}) if
v1 = v2), and so W cannot be a (1,≤ `)-watching system if ` ≥ 3.

Therefore, all vertices in V (G) \ VH are covered by at least three watchers from W \ H;
since a watcher can only cover at most three vertices, we clearly have |W \ H| ≥ |V (G) \ VH|.
Since we also have |H| = |VH|, the result follows.
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Finally, observe that for ` ≥ 3, no (1,≤ `)-identifying code exists in the cycle Cn, because the
sets of vertices {1, 3} and {1, 2, 3} (or more generally, {x, x + 2} and {x, x + 1, x+ 2}) cannot
be separated.
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August 2003.

[10] I. CHARON, G. COHEN, O. HUDRY and A. LOBSTEIN: Discriminating codes in (bipartite)
planar graphs, European Journal of Combinatorics, Vol. 29, pp. 1353–1364, 2008.

[11] I. CHARON, G. COHEN, O. HUDRY and A. LOBSTEIN: Links between discriminating and
identifying codes in the binary Hamming space, Lecture Notes in Computer Science, No. 4851,
pp. 267–270, Springer-Verlag, 2007.

[12] M. DANIEL: Codes identifiants, Rapport pour le DEA ROCO, Grenoble, France, 2003.

[13] A. FRIEZE, R. MARTIN, J. MONCEL, M. RUSZINKÓ and C. SMYTH: Codes identifying
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