
HAL Id: hal-00481465
https://hal.science/hal-00481465

Submitted on 30 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Near optimal and optimal solutions for an integrated
employee timetabling and production scheduling

problem
Olivier Guyon, Pierre Lemaire, Eric Pinson, David Rivreau

To cite this version:
Olivier Guyon, Pierre Lemaire, Eric Pinson, David Rivreau. Near optimal and optimal solutions
for an integrated employee timetabling and production scheduling problem. 13th IFAC Sympo-
sium on Information Control Problems in Manufacturing, Jun 2009, Moscow, Russia. pp.1523-1528,
�10.3182/20090603-3-RU-2001.00252�. �hal-00481465�

https://hal.science/hal-00481465
https://hal.archives-ouvertes.fr

Near optimal and optimal solutions for an

integrated employee timetabling and

production scheduling problem

O. Guyon ∗,∗∗ P. Lemaire ∗∗ É. Pinson ∗ D. Rivreau ∗

∗ LISA-IMA, 3 place André-Leroy 49008 Angers, France
(e-mail: {olivier.guyon, eric.pinson, david.rivreau}@uco.fr)

∗∗ IRCCyN, CNRS ; École des Mines de Nantes
4 rue Alfred Kastler 44307 Nantes, France

(e-mail: pierre.lemaire@emn.fr)

Abstract: This paper deals with integrated employee timetabling and production scheduling
problem. At the first level, we have to manage a classical employee timetabling problem. At the
second level, we aim at supplying a feasible production schedule for a set of interruptible tasks
with qualification requirements and time-windows. Instead of using a hierarchical approach,
we try here to integrate the two stages and propose an exact method based on a specific
decomposition and a cut generation process to solve the resulting problem. This exact two-stage
procedure has the double advantage to converge to optimal solutions but also to find quickly
near optimal solutions. The relevance of this approach is discussed here through experimental
results.

Keywords: Employee Timetabling Problem, Production Scheduling Problem, Cut Generation,
Feasibility Pump, Energetic Reasoning

1. INTRODUCTION

In production systems, production scheduling and em-
ployee timetabling are two problems generally considered
as too complex to be treated simultaneously. On the one
hand, production scheduling aims at allocating resources
(human or material) to different tasks (jobs) that have to
be processed. On the other hand, the objective of employee
timetabling is most often to minimize labor costs (we refer
to Ernst et al. (2004) and Soumis et al. (2005) for a state
of the art of employee timetabling problems). Although
it is clear that the best approach to solve the resulting
problem would be to consider the integrated problem, it is
often decomposed in practice into an assignment part and
a scheduling part. This is essentially due to the fact that no
effective formal algorithm has yet been considered as good
enough to solve the integrated problem. Nevertheless sev-
eral attempts (with encouraging results for some of them)
have been made in both production and transportation
domains (see in particular Artigues et al. (2006, 2009) for
integrated approaches and an exhaustive state of the art,
and Hooker (2005) for a hybrid method mixing Linear Pro-
gramming and Constraint Programming). In this paper,
we exploit the idea proposed in Lasserre (1992) and de-
veloped later in Dauzère-Pérès and Lasserre (1994) for an
integrated job-shop lot-sizing and scheduling problem. In
these works, the authors proposed to solve the integrated
problem by alternatively solving it at two different levels,
one in which lot sizes are computed for a sequence of jobs
on each machine, and one in which a sequence is computed
given fixed lot sizes. Such a decomposition approach has
been successfully applied in Detienne et al. (2009) to an
employee timetabling problem with a given work load.

We integrate here the two sub problems and propose
an exact method which has the double advantage to
converge to optimal solutions but also to find quickly
near optimal solutions. Section 2 states formulations of the
problem. An exact two-stage procedure based on a specific
decomposition and a cut generation process is addressed
in Section 3. We then discuss, in Section 4, about the
relevance of the method by comparing its computational
results with an ILP solver (Ilog Cplex 9.1) on generated
instances. Some conclusions are finally drawn in Section 5.

We may mention that an approach based on a Benders
decomposition has also been experimented. We will not
develop it here because experimental results do not indi-
cate any advantage of using this method for our integrated
problem.

2. PROBLEM DESCRIPTION AND ILP MODELS

We want to schedule a set J of n independent jobs (tasks)
with a set O of m resources (operators) over a planning
horizon H. Each job j ∈ J is characterized by a processing
time pj , a time window Dj = [rj , dj] and requires an
operator o ∈ O who masters one needed competence
cj ∈ C. Jobs may be interrupted and can be processed by
different operators. However, at most one unit of a given
job can be processed at each time t ∈ H. An operator
cannot process several jobs simultaneously. Each operator
o ∈ O has a set Co ⊆ C of competences and owns a set
Ωo ⊆ Ω of eligible work patterns. A work pattern ω ∈ Ω
defines a sequence of actual working time instants and
breaks over the whole planning horizon. This formulation
permits to take into account several contractual, legal or

other constraints (vacations, individual preferences, . . .).
Each relevant pair work pattern - operator (ω - o) is given
a cost ηo

ω standing for the resulting labor cost of assigning
work pattern ω to operator o.

Our problem consists in both scheduling the n jobs and
assigning a work pattern to each operator in order to
satisfy each need for workforce (number of operators and
qualification requirements) at minimum cost.

2.1 Time-indexed formulation

yo
ω is a binary decision variable where yo

ω = 1 if work
pattern ω is assigned to operator o and yo

ω = 0 otherwise.
Binary variable xjt = 1 if and only if one unit of job j is
processed at time instant t and binary variable zoct = 1 if
and only if operator o uses competence c at time t.

Any work pattern ω can be expressed by a boolean vector
σω over H such that σt

ω = 1 if t ∈ H is a working time
instant and σt

ω = 0 otherwise.

Using notations mentioned above, an intuitive MIP formu-
lation can hence be given:

[Q] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω (1)

∑

ω∈Ωo

yo
ω = 1 ∀o ∈ O (2)

∑

t∈Dj

xjt = pj ∀j ∈ J (3)

∑

j∈J|
cj=c

xjt =
∑

o∈O|
c∈Co

zoct ∀t ∈ H,∀c ∈ C (4)

∑

c∈Co

zoct ≤
∑

ω∈Ωo

σt
ω · yo

ω ∀t ∈ H,∀o ∈ O (5)

yo
ω ∈ {0, 1} ∀o ∈ O,∀ω ∈ Ωo (6)

xjt ∈ {0, 1} ∀j ∈ J,∀t ∈ H (7)

zoct ∈ {0, 1} ∀o ∈ O,∀c ∈ Co,∀t ∈ H (8)

Constraints (2) ensure that exactly one work pattern
is assigned to each employee. Each job has to be fully
processed within its time-window (3). There are as many
operators using competence c as processed units of jobs
requiring c at each time instant t (4). Each operator uses
at most one competence at each instant he is available
according to his assigned work pattern, and exactly 0 if he
is not (5).

We can see that there are two decision stages in the
timetabling process. It is first necessary to set effective
working periods to operators by assigning a work pattern
to each of them. Then we must decide which competence
is really used by the related operator at each time instant.

2.2 Formulation by time intervals and with competence
pattern

In order to restrict the number of variables involved in the
time-indexed formulation [Q], we propose a second model
[P] based on an aggregate of time instants in intervals and
on a combination of individual employee qualifications in
effective competence patterns.

We first extract from H the release date rj and the
due date dj of each job j and bounds associated with
presence intervals for each work pattern ω ∈ Ω. Such time
instants are then sorted by ascending order and coupled by
successive pairs in order to get a partition of H into kmax

time intervals Ik (k ∈ K = {1, 2, . . . , kmax}). Resource
needs and requirements (operators and competences) over
each time interval Ik are constant. Indeed, by definition,
no job can start neither has to end and no operator can
start neither has to stop to work at any unextracted time
instant. It is thus unnecessary to distinguish time instants
of each time interval Ik in order to solve the overall
problem.

We then combine individual qualifications of operators
in competence patterns in order to restrict the number
of operator-competence resources variables (zoct) of [Q].
These variables do not directly operate in cost function. It
is therefore useless to distinguish operators with exactly
the same competences when we assign competences to
time intervals. So we introduce a new notation Θ ⊆ P(C)
to denote the set of competence patterns θ ∈ Θ. Each
operator o ∈ O is given a single competence pattern θo.
Two distinct operators are given the same competence
pattern θ if and only if they both master only and exactly
the same competences c ∈ θ.

We can therefore propose a second MIP formulation (de-
rived from [Q]):

[P] : min
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω (9)

(2)
∑

k∈K|
Ik⊆Dj

xjk = pj ∀j ∈ J (10)

∑

j∈J|
cj=c

xjk =
∑

θ∈Θ|
c∈θ

zθck ∀k ∈ K,∀c ∈ C (11)

∑

c∈θ

zθck ≤
∑

o∈O|
θo=θ

∑

ω∈Ωo|
Ik⊆ω

lk · yo
ω ∀k ∈ K,∀θ ∈ Θ (12)

(6)

xjk ∈ [0,min(pj , lk)] ∀j ∈ J,∀k ∈ K (13)

zθck ∈ [0, lk · |{o ∈ O/θo=θ}|] ∀θ ∈ Θ,∀c ∈ θ,∀k ∈ K
(14)

where lk stands for the length of Ik, xjk is the number of
units of j processed over Ik and zθck is the number of units
of competence c used by competence pattern θ over time
interval Ik. The other notations are the same as the ones
used for the time-indexed formulation [Q].

We ensure that a time-indexed solution can always be
extracted from a solution of formulation [P] by solving
a maximum flow problem.

Solution methods proposed in the remainder are based on
this formulation [P] because it proves to be (in practice)
more effective in terms of computing time.

3. SOLUTION PROCEDURE
3.1 Overall process

We present here an approach exploiting the splitting of
[P] into two sub problems. A master problem [MP] first
assigns a work pattern to each operator. Using this entry,
the satellite sub-problem [SP] checks feasibility in terms
of processing the whole set of jobs as well as matching
competences to operators. If solving [SP] fails in finding a
feasible solution for [P], a feasibility cut is added to [MP]
in order to invalidate the current associated assignment.

If [MP] is solved up to optimality, the process stops
with an optimal solution for [P] as soon as solving [SP]
succeeds. This is a relevant exact method, but computing
times may sometimes become prohibitive (see Guyon et al.
(2008)).

As we want quickly near optimal solutions, only a feasible
solution for [MP] is sought for. When [SP] succeeds, such
a solution is feasible for [P]. In this case we add a boundary
constraint to [MP] to ensure that future assignments have
a lower cost. Note that iterating this process until [MP] is
unfeasible provides again an exact procedure; the optimum
for [P] is the last found feasible assignment. Algorithm 1
gives a formal algorithmic description of the process.

Algorithm 1 Cut generation process

UB ← ∞
repeat

ȳ ← feasible solution - cost : cȳ < UB - for ([MP])
if [SPȳ] is unfeasible then

add a feasibility cut to [MP]
else

UB ← cȳ

add a boundary constraint to [MP]
end if

until ([MP] is unfeasible) or (stop criteria)

Master problem [MP] can be formalized as follows:

[MP] : min cy =
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω

s.t. (2) and (6)

Cut

where Cut is the set of feasibility cuts and boundary
constraints iteratively added to the model.

3.2 Cut structure

Let us assume a fixed assignment ȳ of work pattern to
operators as a solution for [MP]. We have to check whether
ȳ is feasible with regards to the other constraints of [P].
We thus introduce the satellite sub-problem [SP (ȳ)]:

[SP (ȳ)] : max fȳ =
∑

j∈J

∑

k∈K|
Ik⊆Dj

xjk

∑

k∈K|
Ik⊆Dj

xjk ≤ pj ∀j ∈ J

(11)
∑

c∈θ

zθck ≤
∑

o∈O|
θo=θ

∑

ω∈Ωo|
Ik⊆ω

lk · ȳo
ω ∀k ∈ K, ∀θ ∈ Θ

(13) − (14)

fȳ represents the number of units of jobs which can be
scheduled according to ȳ. Since [P] aims at fully scheduling
each job, ȳ is feasible for [P] if and only if it leads to an
optimal flow value fȳ =

∑

j∈J pj .

[SP (ȳ)] is a maximum flow problem on a directed trans-
portation network Gȳ = (X,U) with:

• Set of nodes : X = {s} ∪ J ∪ KC ∪ ΘK ∪ {t}
· s : source
· t : sink

• Set of edges : {α, β} ∈ U - (capacity γαβ) -
· ∀j ∈ J : (s, j) ∈ U with γsj = pj

· ∀j ∈ J,∀a ∈ KC : (j, a) ∈ U ⇔ (cj = ca) ∧
(Ika

⊆ Dj)
with γja = min(pj , lka

)
· ∀a ∈ KC,∀b ∈ ΘK : (a, b) ∈ U ⇔ (Ika

= Ikb
) ∧

(ca ∈ θb)
with γab = lka

· |{o ∈ O/θo=θa
}|

· ∀b ∈ ΘK : (b, t) ∈ U
with γbt =

∑

o∈O/θo=bθ

∑

ω∈Ωo/Ikb
⊆ω

lkb
· ȳo

ω

Figure 1 describes Gȳ.

Notation: γαβ

k1c0

k1c1

s

j0

jj

j1

k0c0

k0c1

θ0k0

θ0k1

θ1k1

θ1k0

⇔

(cj = c)

(j, kc) ∈ U
⇔

∧

t

J

(c ∈ θ)

(Ik1 = Ik2)
∧

(k1c, θk2) ∈ U

(Ik ⊆ Dj)

pj min(pj , lk) lk · |{o ∈ O/θo=θ}|

KC ΘK

∑

o∈O/
θo=θ

∑

ω∈Ωo/
Ik⊆ω

ȳo
ω · lk

Fig. 1. Structure of Gȳ

If fȳ =
∑

j∈J pj , ȳ is a feasible solution for [P], we
therefore add the following intuitive boundary constraint
to [MP]:

∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω < cȳ

In return, if fȳ <
∑

j∈J pj , jobs cannot be fully scheduled
according to ȳ. We therefore have to introduce the feasi-
bility valid cut fȳ ≥

∑

j∈J pj in order to invalidate ȳ from

the set of feasible solutions for [MP].

Applying maximum flow minimum cut theorem stated in
Ford and Fulkerson (1962) on Gȳ (see Figure 2), we have:

fȳ =
∑

j∈J−

γsj +
∑

j∈J+

∑

a∈KC−

γja +
∑

a∈KC+

∑

b∈ΘK−

γab +
∑

b∈ΘK+

γbt

with the following notations:

• ∀u ∈ U (φu, γu) : (flow, capacity) of edge u
• X = X+ ∪ X− with

· X+ = {s} ∪ J+ ∪ KC+ ∪ ΘK+

· X− = X+ = J− ∪ KC− ∪ ΘK− ∪ {t}
· ∀u = (α, β) ∈ U/α∈X+∧β∈X− φu = γu

· ∀u = (α, β) ∈ U/α∈X−∧β∈X+ φu = 0

t

{u = (α, β) ∈ U/α ∈ X− ∧ β ∈ X+ ∧ φu = 0}

ΘK−

ΘK+

Ξ = {u = (α, β) ∈ U/α ∈ X+ ∧ β ∈ X− ∧ φu = γu}

J−

J+

KC−

KC+

s

Fig. 2. Maximum flow cut Ξ of Gȳ

The feasibility maximum flow cut (that invalidates ȳ)
which has to be added to set Cut of [MP] is hence:

∑

b∈ΘK+

∑

o∈O|
θo=θb

∑

ω∈Ωo|
Ikb

⊆ω

lkb
· yo

ω ≥ ν

where:

ν =
∑

j∈J

pj − fȳ

=
∑

j∈J+

pj −
∑

j∈J+

∑

a∈KC−

min(pj , lka) −

∑

a∈KC+

∑

b∈ΘK−

lkb
· |{o ∈ O/θo=θb

}|

The only elements depending on ȳ which restrict fȳ are the
saturated edges {u = (α, t) ∈ U/α ∈ ΘK+}. Thus, to get a
flow greater than fȳ, one has to find an assignment leading
to higher capacities for these latter edges. The optimum
assignment y∗ for [P] therefore has to satisfy the maximum
flow cut of Gȳ.

3.3 Solving the master problem

The MIP formulation of a restricted master problem
[MP bf] with only a small subset Qb of boundary con-
straints and a small subset Qf of feasibility cuts is:

[MP bf] : min cy =
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω

(2) and (6)
∑

o∈O

∑

ω∈Ωo

ηo
ω · yo

ω < (cȳ)
i

∀i ∈ Qb

∑

b∈ΘK+

i

∑

o∈O|
θo=θb

∑

ω∈Ωo|
Ikb

⊆ω

lkb
· yo

ω ≥ νi ∀i ∈ Qf

[MP] is a 0-1 Multidimensional Multiple-choice Knapsack
Problem (NP-hard problem) whereas [SP (ȳ)] is a Maxi-
mum Flow problem (P-problem). The main difficulty of
this method consists thus in quickly finding a feasible
solution for [MP].

Two approaches have been experimented. The first one
consists in using an ILP solver tuned to stop as soon as a
feasible integer solution has been found. The second one
is to use the Feasibility Pump heuristic.

Feasiblity Pump The Feasibility pump, first proposed
in Fischetti et al. (2005) and then successively improved
in Bertacco et al. (2005) and Achterberg and Berthold
(2007), is a primal heuristic for finding feasible solutions
of Mixed Integer Programs. The fundamental idea of this
approach is to generate two (hopefully convergent) trajec-
tories of points that satisfy feasibility in a complementary
but partial way: one satisfies the linear constraints, the
other the integer requirement. These are produced by al-
ternatively rounding a LP-feasible point (x∗) to an integer
point (x̃) and finding a closest (with respect to a prede-
fined distance function) LP-feasible point, which is then
used as the new (x∗) for the next iteration step. Process
thus iterates until this latter so-called closest LP-feasible
point is also an integer feasible point. The procedure is
illustrated in Figure 3.

x∗
1

x̃1 = [x∗
0]

x∗
0

x̃2 = [x∗
1] = x∗

2

Fig. 3. Fundamental procedure of the Feasibility Pump

The relevance of these two distinct approaches experi-
mented here is discussed in Section 4.

3.4 Speeding up by initial cuts

In the specific cut generation process, cut’s quality is
dominant. Indeed, the more assignments of work pattern
to operators a cut invalidates the faster the process con-
verges to the overall optimum. It easily appears that an
initialization of cuts should speed up the overall process.
This part of the paper is dedicated to initial cuts added to
set Cut to initialize [MP].

To define initial cuts, we use an energetic reasoning. This
notion has been broadly successfully used, in particular in
Lopez et al. (1992) and Baptiste et al. (1999), for schedul-
ing problems. Competences are considered as consumable
resources, operators as suppliers and jobs as consumers.
The underlying idea of this concept is to define time peri-
ods where a strictly positive required energy consumption
can be established for a subset of jobs. On such periods,
resource supplies have to be high enough to allow con-
sumption.

Let δ = [δb, δe] ∈ ∆ be a time period with ∆ ⊆ P(H),
C ⊆ C a subset of competences.

In the remainder, we will use the notation (a)+ =
max(a, 0) ∀a ∈ R.

We define the required energy consumption (ujδ) of j over
δ as the difference between pj and the number of units of
j that can be processed apart from δ:

ujδ =
(

pj − (δb − rj)
+ − (dj − δe)

+
)+

The overall required energy consumption (Ucδ) of compe-
tence c over δ is thus defined as follows:

Ucδ =
∑

j∈J|cj=c

ujδ

Over δ, each operator can work as many time instants
he is available according to his assigned work pattern.
Consequently, as soon as an operator o is available and
masters a competence c ∈ C, one and only one competence
of o is available at each time instant t ∈ δ. We can hence
define the capacity of available resources C over δ as:

∑

t∈δ

∑

o∈O|
{Co∩C6=∅}

∑

ω∈Ωo

σt
ω · yo

ω

Energetic constraint - Initial cut A feasible solution for
[P] has hence to satisfy:

∑

t∈δ

∑

o∈O|
{Co∩C6=∅}

∑

ω∈Ωo

σt
ω · yo

ω ≥
∑

c∈C

Ucδ

uj2δ = (2 − (1 − 2)+ − (8 − 7)+)+ = (2 − 0 − 1)+ = 1

7 8 10210

r1 r2δb δe d1d2

j2

j1 cj1
= c1

cj2
= c1

pj1
= 9

pj2
= 2

Uc1δ = 5 + 1 = 6 > 0 ⇒ Cut

uj1δ = (9 − (1 − 0)+ − (10 − 7)+)+ = (9 − 1 − 3)+ = 5

Fig. 4. Initial cut over δ = [1, 7] and with C = {c1}

The number of eligible initial cuts can be considerable,
particularly when the number of time periods, δ, is large.
Further, such a process can lead to a large number of cuts
that might not be ultimately tight in any optimal solution.
Hence, we select a set of initial valid cuts.

To introduce the selection used in our experiments, we

first have to define τC
δ =

∑

c∈C
Ucδ

δe−δb
as the proportional

overall required energy consumption of competence pattern
C over δ. This meaningful indicator allows us to define
likely major cuts. Indeed, if we consider two time periods
δ ∈ ∆ and δ′ ∈ ∆ such as τC

δ > τC
δ′ , it seems logical

to suppose that the cut generated with C over δ is more
restrictive than the one generated over δ′.

The approach of selecting initial cuts used in our exper-
iments consists in taking interest in the sorted set Υ of
bounds υ associated with presence intervals for each work
pattern. Indeed, these time instants are the only ones
where number of available operators (and thus compe-
tences) can be modified. Let [υi, υi+1] and [υj−1, υj] two
time periods with (i, j) ∈ |Υ|2 and υi < υj . We chose to
generate, for each pair (i, j) ∈ |Υ|2, an initial energetic cut
for the time period δ defined as follows:

δ = argmax
δ′=[δ′

b
,δ′

e]

τC
δ′

where δ′b and δ′e are two extracted time instants from H,
that is to say two bounds associated with time intervals
Ik (k ∈ K = {1, 2, . . . , kmax}) (see Section 2.2). Besides
δ′b ∈ [υi, υi+1] and δ′e ∈ [υj−1, υj].

In our experiments, set Θ of competence patterns is the
reference set used to get initial energetic cuts. Singletons
(one competence) are also used.

An intensive way of selecting initial cuts is to solve
the linear relaxation of [P] with cuts so far generated.
Initial cuts matching constraints with small slack variables
can hence be considered. In our experiments, we pick
up constraints whose ratio of slack variable to second
member is less or equal to 0.12. We have to notice here
that unselected cuts are therefore kept for the specific
decomposition and cut generation process. Indeed as soon
as an integer solution for a given master problem [MP] is
found, violated unselected cuts are added to the set Cut
of [MP].

Initial cuts are proved to be really useful because they
invalidate many unfeasible assignments for a negligible
calculation time. Moreover, by nature, they quickly point
out strong assignment restrictions on precise time periods.
This way of acting is different from maximum flow cuts
involved all along process because these latter ones permit
an overall view of the problem. Thus those two different
kinds of cuts are complementary and their mixed use is
really useful for this specific approach.

All methods described in this paper are initialized with
selected initial cuts because it proves to be really more
effective in practice.

4. EXPERIMENTS

Approaches described previously have been implemented
in Java and tested on a PC (Intel Pentium D 930, 3 GHz,
2 GB RAM) which operating system is MS Windows XP.
Used ILP solver is ILOG CPLEX 9.1.

4.1 Test bed

Our test bed is made up of generated instances. Release
dates, processing times and margins (time window range)
are respectively distributed with an uniform and two
binomial laws. A maximum processing time pmax and a
maximum margin margemax are given as parameters to
these probability laws. In order to better tally with reality,
work patterns match 3-shift-work constraints. Quarter
of an hour is the time accuracy unit for work pattern
generation. Work patterns are generated over a week
(without week-end) and are transposed from week to week
in order to cover the whole horizon. Each operator is
randomly assigned a set of eligible work patterns and a
set of mastered competences. A cost is given to each pair
of operator and eligible work pattern. This cost depends on
working time instants (day - night), operator’s salary level
(length of service, qualification, . . .) and on operator’s
requirements. Table 1 summarizes parameters used in
order to get 270 feasible instances. Notice that 3 different
instances are generated for each set of parameters.

Parameter min max step

m 15 25 10

n 4 · m 6 · m m

margemax 30 90 30

|C| 1 5 1

pmax 30

|H| 480

Table 1. Instance parameters

4.2 Results

Table 2 reports the results of the approaches described in
this paper. We use the ratio UB∗/UB as the indicator of
effectiveness for each method. UB∗ stands for the tightest
known upper bound of the solved instance (found with
a CPU time limit of one hour) and UB is the value
found by the concerned method. Column UB∗/UB and σ
respectively give the average and the standard deviation
of the ratios UB∗/UB.

• (MIP) stands for the resolution of the direct formu-
lation by time intervals and with competence pattern
by an ILP solver.

• (Cut : [MP] →֒ MIP) stands for the two-stage
procedure (Cut) using an ILP solver to solve each
master problem (parameter IntSolLim set to 1 for
Ilog Cplex 9.1).

• (Cut : [MP] →֒ FP) stands for the two-stage
procedure (Cut) using the Feasibility Pump heuristic
to solve each master problem.

In all three cases selected initial cuts (see Section 3.4) are
added to the model in a pre-processing stage.

(Cut)

CPU limit (MIP) ([MP] →֒ MIP) ([MP] →֒ FP)

UB∗/UB σ UB∗/UB σ UB∗/UB σ

1s 70.76 % (20.82 %) 87.24 % (19.04 %) 95.38 % (10.38 %)

5s 86.98 % (19.21 %) 95.64 % (11.67 %) 98.98 % (3.52 %)

10s 92.00 % (15.89 %) 98.24 % (6.76 %) 99.52 % (1.08 %)

30s 97.22 % (9.29 %) 99.11 % (4.62 %) 99.82 % (0.52 %)

60s 99.46 % (2.64 %) 99.53 % (3.21 %) 99.88 % (0.41 %)

300s 99.87 % (0.44 %) 99.91 % (0.48 %) 99.97 % (0.15 %)

Table 2. Quality of upper bound over CPU
time limit

We first remark (see Table 2) that both (Cut : [MP] →֒
MIP)) and (Cut : [MP] →֒ FP)) found really quickly
tight upper bounds. The specific decomposition and cut
generation process (Cut) is hence appropriate for the
problem presented in this paper.

We can also observe that (Cut : [MP] →֒ FP)) is always
more effective in both terms of average and standard
deviation than (Cut : [MP] →֒ MIP)). This means that
(Cut : [MP] →֒ FP)) is not only more accurate but also
more reliable than (Cut : [MP] →֒ MIP)). The Feasibility
Pump heuristic is thus really effective for solving master
problems (0-1 Multiple Choice and Multiple Dimension
Knapsack).

5. CONCLUSIONS

We have proposed an exact method for solving an inte-
grated employee timetabling and production scheduling
problem. This exact approach is based on an effective
specific decomposition and cut generation process. This
exact two-stage procedure has the double advantage to
converge to the optimum but also to find quickly near
optimal solutions.

The main points of this paper are based on the real
interest of using a decomposition approach to find optimal
and near optimal solutions for the integrated problem,
and on the proved effectiveness of the Feasibility Pump
heuristic for quickly finding a good feasible solution for a
0-1 Multidimensional Multiple-choice Knapsack Problem.

REFERENCES

Achterberg, T. and Berthold, T. (2007). Improving the
feasibility pump. Discrete Optimization, Special issue:
Mixed Integer Programming, 7786.

Artigues, C., Gendreau, M., and Rousseau, L.M. (2006). A
flexible model and a hybrid exact method for integrated
employee timetabling and production scheduling. CORS
/ Optimization Days 2006 Joint Conference.

Artigues, C., Gendreau, M., and Rousseau, L.M. (2009).
Solving an integrated employee timetabling and job-
shop scheduling problem via hybrid branch-and-bound.
Computers & Operations Research, 36, 2330–2340.

Baptiste, P., Le Pape, C., and Nuijten, W. (1999). Satisfia-
bility tests and time-bound adjustments for cumulative
scheduling problems. Annals of Operations Research,
92, 305–333.

Bertacco, L., Fischetti, M., and Lodi, A. (2005). A fea-
sibility pump heuristic for general mixed-integer prob-
lems. Technical Report OR/05/5, DEIS - Università di
Bologna, Italy.

Dauzère-Pérès, S. and Lasserre, J.B. (1994). Integration
of lotsizing and scheduling decisions in a job-shop.
European Journal of Operations Research, 75, 413–426.

Detienne, B., Péridy, L., Pinson, E., and Rivreau, D.
(2009). Cut generation for an employee timetabling
problem. European Journal of Operational Research,
197, 1178–1184.

Ernst, A.T., Jiang, H., Krishnamoorthy, M., and Sier, D.
(2004). Staff scheduling and rostering : A review of
applications, methods and models. European Journal
of Operational Research, 153, 3 – 27.

Fischetti, M., Glover, F., and Lodi, A. (2005). The
feasibility pump. Mathematical Programming, 104, 91–
104.

Ford, L.R. and Fulkerson, D.R. (1962). Flows in Networks.
Princeton University Press, Princeton.

Guyon, O., Lemaire, P., Pinson, E., and Rivreau,
D. (2008). Couplage planification/ordonnancement:
une approche par décomposition et génération de
coupes. In Actes de la 7e Conférence Internationale de
Modélisation et Simulation, 1376–1385.

Hooker, J.N. (2005). A hybrid method for planning and
scheduling. Constraints, 10, 385–401.

Lasserre, J.B. (1992). An integrated model for job-shop
planning and scheduling. Management Science, 38,
1201–1211.

Lopez, P., Erschler, J., and Esquirol, P. (1992). Ordon-
nancement de tâches sous contraintes : une approche
énergétique. Automatique, Productique, Informatique
Industrielle, 26, 453–481.

Soumis, F., Pesant, G., and Rousseau, L.M. (2005). Ges-
tion de Production et Ressources Humaines, chapter 4,
Gestion des horaires et affectation du personnel. Presses
Internationales Polytechnique.

