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INTRODUCTION

The human visual system conveys information as a set of electrical impulses called spikes. Spikes [START_REF] Rieke | Spikes: Exploring the Neural Code[END_REF] appear very early in the chain of treatment of the human visual system. At the retina level, after a chain of internal treatments, ganglion cells convert an analogous signal into a series of spikes called spike trains forming the neural code. Spikes have the same shape and amplitude and which yields a binary-like neural code.

In order to experiment the behavior of the retina as a quantizer, we implement a three-staged system based on a biologically realistic retinal model of introduced in [START_REF] Wohrer | A biological retina model and simulator, with contrast gain control[END_REF]. The considered simulator is one of the most complete ones generating a spike-based output which, furthermore, successfully reproduce actual neurophysiologic recordings. The model maps the anatomical structure of the retina. This structure is strongly related to the retina functional architecture. Indeed, the retina is a succession of layers. The output of each one is the input of the following. The progression of light stimuli, from the outermost light receptors layer, to innermost ganglionic layer, involves several processing mechanisms.

The innermost ganglion cells layer of the retina emit spikes to convey information over the optic nerve [START_REF] Rieke | Spikes: Exploring the Neural Code[END_REF]. By opposition, retinal cells of the outer stages do note fire spikes. As the input stimuli gets through these stages, the input signal is filtered, but still has the form of a graded continuous electrical signal. These cells are, from innermost to outermost, amacrine cells (in the inner plexiform layer), the Bipolar cells (in the outer plexiform layer), the horizontal cells and finally light receptors. Only the ganglion cells are responsible for signal discretization. In the following we focus on the cells of the three deepest retina layers, involved in the generation of the visual neural code, namely bipolar, amacrine and ganglioon cells. These cells form the main stages responsible for the shaping of the spiking retina code. The paper is organized as follows: In Section 2, we present the model of the three-staged system. Then, in Section 3,we specify the bioinspired quantization/de-quantization algorithm that we implemented. Finally, in Section 4, we explore the overall system behavior and emit the hypothesis of non subtractive dither to interpret the retinal noise.

A BIOLOGICALLY REALISTIC RETINA MODEL

We describe, in this section, the input/output map of the mammalians retina. In order to do this, we base our work on the biologically realistic retina model introduced in [START_REF] Wohrer | A biological retina model and simulator, with contrast gain control[END_REF]. We restrain our study to the temporal behavior of the retina, thus the spatial filtering blocks are ignored in the following description. Furthermore, only the three deepest retina layers in the model are considered, as they are the main stages responsible for the shaping of the spiking retina code. Although this model does not take into account some features of the biological retina, such as lateral connections, still it renders the main biological properties of the actual retina. The three-staged simplified model, as implemented in this work, is described through Sections 2.1 to 2.3.

Bipolar cells layer: The gain control stage

Biological systems need, often, to adjust their operational range to match the input stimuli magnitude range [START_REF] Rieke | Temporal contrast adaptation in salamander bipolar cells[END_REF]. Interestingly, fast magnitude adaptation mechanisms are largely observed in the bipolar cells. Here, the bipolar cells rescale an input current I(t) to generate an output potential VB(t). Let us consider a time duration ∆T such that I(t) is constant across [0, ∆T [. In the following, we define the stimulus signal:

I(t) = Ij, if t ∈ [0, ∆T [ 0 otherwise , (1) 
so that, we can study our system behavior in piecewise fashion. The gain control procedure, as introduced in [START_REF] Wohrer | A biological retina model and simulator, with contrast gain control[END_REF], is defined by:

dVB(t) dt + gB(t)VB(t) = I(t), (2) 
where gB represents a variable leakage term. The expression of gB, for a potential VB encompasses spatial filtering. As the spatial aspect of the retina behavior is ignored in the current study, the spatial filter is set to a Dirac impulse. Referring to [START_REF] Masmoudi | Another look at retina as an image scalar quantizer[END_REF], the gain control expression is developed to get the following:

dVB(t) dt -g 0 B e -t τ B -1 VB(t)+ λB τB t 0 V 2 B (t -s)e -s τ B ds VB(t) = I(t), (3) 
where g 0 B , τB, and λB are constant scalar parameters. The output bipolar voltage VB, as we defined it, is the input of the subsequent inner plexiform layer stage (IPL).

Inner plexiform layer: The non-linear rectification stage

We consider the signal, of voltage VB, as generated by the bipolar cells of the retina. This current is subject to a non-linear rectification by the amacrine cells in the IPL. The output of the IPL is a corrected current IG. A biologically realistic model of this rectification [START_REF] Wohrer | A biological retina model and simulator, with contrast gain control[END_REF] is given by:

IG(t) = N (ε Tw A ,τ A (t) * VB(t)) , (4) 
where Tw A ,τ A is a linear transient filter (see [START_REF] Wohrer | A biological retina model and simulator, with contrast gain control[END_REF] for a formal definition), ε, wA, and τA are constant scalar parameters, and N is a function expressed as follows:

N (v) =    I 2 A IA -λA(v -VA) , if v < VA IA + λA(v -VA), if v VA,
where IA, VA, and λA are constant scalar parameters. Developing (4), we get the following expression for IG (see details in [START_REF] Masmoudi | Another look at retina as an image scalar quantizer[END_REF]):

IG(t) = N ε VB(t) - wA τA t 0 VB(t -s)e -s τ A ds ,
IG is the current input of the last retina stage, namely the ganglionic layer, which produces the neural code of the retina.

Ganglion cells layer: The spike generation stage

The ganglionic layer is the deepest one tiling the retina. The ganglion cells are the neurons that generate the spiking output of the retina. A formalization for spike generator neurons in the retina is proposed in [START_REF] Wohrer | A biological retina model and simulator, with contrast gain control[END_REF]. The model chosen is the widely used noisy leaky integrate and fire (nLIF) [START_REF] Gerstner | Spiking Neuron Models : Single Neurons, Populations, Plasticity[END_REF]. IG(t) is the input stimulus of this spike generator layer, and V (t) is its output voltage. We study VG(T ) behavior in the time bin [0, ∆T [, which amounts studying the spike emission timings (Ti) i 0 . (Ti) i 0 are defined by the following:

V (Ti) = δ, ∀ i 0, Ti ∈ [0, ∆T [, V (t) = VR, ∀ i 0, ∀ t ∈ [Ti, Ti + T ref [. ( 5 
)
where δ is the integration threshold of the neuron, and T ref its refractory time. In the following, the refractory time will be neglected as T ref ∆T . Whenever the voltage V reaches δ, the neuron fires a spike, then reinitializes its voltage to VR, the reset potential. Once the spiking mechanism is specified (cf. ( 5)), the model defines the behavior of VG(t) in the time bin [Ti, Ti+1[, as VG(t) obeys to the following differential equation:

cG dV (t) dt + gGV (t) = IG(t) + η(t), ∀ t ∈ [Ti, Ti+1[, ( 6 
)
where gG is a constant conductance, cG is a constant capacitance, and η is a random noise which will be further discussed in Section 4.2. Then, solving (6), we get: In this section, we specified the model transform that leads to the generation of spikes, here restricted to the time transform. In Section 3, we introduce a bio-plausible coding scheme, and specify the corresponding decoding procedure.

VG(t) = 1 cG t T i (IG + η)(s)e g G (s-T i ) c G ds + VR e - g G (t-T i ) c G , (7) 

A QUANTIZATION/DE-QUANTIZATION ALGORITHM BASED ON RATE CODING

In Section 2, we presented a biologically realistic three-staged model for spike generation in the retina. Our aim, in this Section, is to specify the algorithm that we implemented in order to experiment our bioinspired quantizer. In order to do this, we first study each stage transfer function separately, then we propose a possible decoding process to recover the initial input.

Coding pathway

An interesting feature, that we emphasize in this model, is its dynamics as it involves time t. Our approach is to study each stage, for a given observation time t = t obs , then explore how this behavior evolves as t obs varies.

The gain control stage

For each given stimulus maximum value Ij (cf. ( 1)), we solve the differential equation in (3) using the Runge-Kutta solver [START_REF] Dormand | A family of embedded runge-kutta formulae[END_REF]. Examples of resulting solutions VB(t, Ij ), for different values of Ij, are shown in [START_REF] Masmoudi | Another look at retina as an image scalar quantizer[END_REF]. Thus, we estimate VB(t obs , I) for all possible values of Ij. We, then, infer the one-to-one map VB(t obs , I) by observing the value of the potential VB, at a given observation time t obs , across the solutions (VB(t, Ij)) j∈N . This leads to the mappings shown in Figure 1. These results prove that, in the restrained domain of our model assumptions correctness, the gain control in the bipolar cells layer is linear. The linear slope Gt obs of the gain is, obviously, dependent on the observation time t obs .

The non-linear rectification stage

After the stimulus is rescaled in the gain control stage, it gets nonlinearly rectified in the second IPL stage. Computing the transform in (4), we obtain the mappings shown in the Figure 2, each one corresponding to an observation time t obs . It appears that, for short observation times, input is quasi-linearly rescaled, while for longer observation times, non linearity is accentuated. This implies that, the instantaneous behavior of the IPL stage is a linear gain control, while as observation goes on, emphasize is made on the high amplitude IPL inputs.

The spike generation stage: the rate coding approach

The current IG, that is generated by the IPL stage, passes through the ganglionic stage yielding a spike-based code. Here we consider the so-called rate coding hypothesis to interpret the coding mechanism of the retina. This is the most commonly used theory. The rate coding assumes that, in a given predefined time bin ∆T , the count of spikes convey the major part of the stimulus information [START_REF] Adrian | The impulses produced by sensory nerve endings[END_REF]. Through the two preceding stages, input current I is rescaled by a static gain control slope Gt obs and corrected by a static non linear function. Thus IG is supposed constant over the time interval [0, t obs ] ⊂ [0, ∆T [. This assumption is bio-plausible for a sufficiently restrained observation time t obs , then, we get:

VG(t) = IG + η cG T i +t T i e g G (s-T i ) c G ds + VR e - g G (t-T i ) c G
, where t ∈ [Ti, Ti+1[. VG(t) is a periodic function of time, and finding the firing timing Ti+1, knowing Ti, is equivalent to the deduction of the period P of VG(t). This yields the following formula for the computation of the count of emitted spikes N (see details in [START_REF] Masmoudi | Another look at retina as an image scalar quantizer[END_REF]):

N = ∆T P N =       gG∆T cG log 1 + gG(δ -VR) IG + η -gGδ       . (8) 
We compute the function in [START_REF] Clark | Electrical picture-transmitting system[END_REF] for different values of IG. The results as shown in [START_REF] Masmoudi | Another look at retina as an image scalar quantizer[END_REF] demonstrate that the ganglion cell is a quasi-uniform scalar quantizer after a very short transitory stage around zero.

Based on a biologically realistic model of the retina, we have defined now a rate coding scheme for temporal signals. We propose a possible decoding algorithm in Section 3.2.

Decoding pathway

Our aim, in this Section, is to recover Ĩ, the estimation of the input I, knowing its rate code N , and the model parameters. Though the coding scheme in Section 3.1 is strongly related to actual biological retina behavior, we do not claim that the proposed decoding algorithm is the one that is actually employed in the visual cortex. The decoding algorithm goes exactly the opposite way of the coding one, from the reverse ganglionic layer to the reverse gain control. First, we recover ĨG, the estimation of IG (cf. ( 4)). For this, we apply the following reverse mapping:

ĨG = gG(δ -VR) e - g G ∆T c G N -1 + gGδ. (9) 
Second, we recover ṼB, the estimation of VB, knowing ĨG. For this, we infer the reverse IPL stage mapping through a look up table. The voltage ṼB, corresponding to values of ĨG that do not match the table elements, are computed by spline interpolation. Finally, we recover the input signal Ĩ, by the reverse bipolar gain control. As the gain control in the first coding stage is linear, the reverse gain control is a simple division.

Obviously, the recovered signal Ĩ does not match exactly the original I. This is due to the floor operator in the spike generation mechanism (cf. ( 5)). The behavior of the coder/decoder system is, thus, analogous to a quantizer/ de-quantizer. We investigate the characteristic behavior of the bioinspired quantizer, that we just defined, in Section 4.

THE OVERALL SYSTEM BEHAVIOR REGARDLESS TO RETINAL NOISE

Case of a noiseless ganglion cell quqntizer

Let us cascade the three layers of our system. We aim at defining the characteristic behavior of the bioinspired quantizer as defined in Sections 3.1 and 3.2, and explore the evolution of it across time. It appears that, as the observation time t obs increases, our system goes from coarse to fine, and from uniform to non-uniform. The refining is intuitive and confirmed by actual neurophysiologic experiments. Indeed the visual cortex perceives global aspects of the stimulus first, then as time goes acquire more information about sharp features.

Then the model quantizer is non-uniform. High magnitude signals are mapped accurately, by a small quantization step, while small magnitude signals are coarsely rendered. This is due to the nonlinear rectification in the IPL stage. Indeed, this rectification compresses the dynamic range of small magnitude signals around zero and span higher ones in a linear fashion, this before the generation of spikes in the ganglion cells. This tendency to non-uniformity is accentuated as the gain control gets higher across time. Figure 3 shows an example map of a reconstructed input Ĩ as a function of an input I, using the bioinspired quantizer, and this at two different observation timings. Yet, telecommunication systems are already implemented for dynamic signal range compression, namely compandor circuits. Companding is a technique that is widely used in telecommunication [START_REF] Clark | Electrical picture-transmitting system[END_REF] making the quantization steps unequal, as the IPL stage does in our case. It is also interesting to denote that companding is preceded, for audio recordings, by a variable-gain amplifier, which is locally linear, in the same manner as the bipolar cells gain control loop described above.

Case of a noisy ganglion cell quantizer: Is the ganglion cell a non-subtractive dithered quantizer?

An issue that neuroscientists encountered, in the understanding of the neural code, is the trial-to-trial variability of the retinal neural code. Indeed, given a single visual stimulus, spikes timings in the retina output are not exactly reproducible across trials. Here, we make the proposal that the retinal noise could be a random dither noise signal [START_REF] Wannamaker | A theory of nonsubtractive dither[END_REF]. The hypotheses made to explain the phenomena underlying the spikes timings irregularity yielded two different points of view. The first is that the precise timings of individual spikes convey a large amount of information [START_REF] Perkell | Neural coding[END_REF], and the second assumes that such a variation is a random instantiation of a desired firing rate [START_REF] Adrian | The impulses produced by sensory nerve endings[END_REF]. This implies that the spikes timings variability convey either information or noise [START_REF] Shadlen | Noise, neural codes and cortical organization[END_REF].

In the following, we admit that the quantizing ganglion cell is subject to a noise, and we give a possible interpretation of its role in the stimuli coding/decoding process. Up to our knowledge, little have been done to explicit the probability distribution of such a noise. In the literature, it is generally and empirically assumed that the retinal noise η is Gaussian [START_REF] Wohrer | Model and large-scale simulator of a biological retina, with contrast gain control[END_REF]. Thus, we can suppose that η has a triangular probability distribution function (pdf) with no loss of biological plausibility. Furthermore, we suppose that the dynamic range of η is twice wider than the quantization step of the ganglion cell. Under the restriction of these hypotheses correctness, we mapped the retinal noise η into a dither signal. As we do not subtract the dither signal in the de-quantization process, we talk about non-subtractive dithered system (NSD) [START_REF] Wannamaker | A theory of nonsubtractive dither[END_REF]. Although, not intuitive, adding such a random dither signal to the input stimulus allow the quantizer to have interesting features. Mainly, the quantization error = (I -Ĩ) and the input stimuli I are de-correlated. This feature is clearly demonstrated when computing the cross correlation between and I as shown in the Figures 4(a) and 4(b).

Besides, quantization error is whitened so that error is uniformly distributed over the stimulus spectrum. Figures 4(c The whitening and de-correlation features engenders a greater reconstruction error in terms of mean squared error (see [START_REF] Wannamaker | A theory of nonsubtractive dither[END_REF] for further details). Though, the visual quality of the reconstruction Ĩ is better when using a dithered system. Figure 5 shows the great impact of an NSD ganglion cell quantizer when compared to a non-dithered one, for the same observation time tobs.

DISCUSSION

We presented a bioinspired quantizer/de-quantizer mapping the retina behavior. The model of the retina that we adopted, though restrained to its temporal aspect, reproduces many mechanisms involved in the actual biological system. Our quantizer behavior evolves dynamically, and thus, it permits scalability as it goes from coarse to fine across time. Interestingly, the quantizer evolves also from uniform to non-uniform, but in contradiction with traditional Lloyd-Max quantizers, renders high magnitudes precisely while it maps low magnitudes coarsely. Besides, we emitted a biologically plausible hypothesis that supposes the retinal noise distribution to have specific characteristics, yielding the definition of a non-subtractive dithered system. We do not claim that the retinal noise is a dither signal, but still such a hypothesis is seducing by the noise whitening and de-correlation features it allows. Our future work aims at adding several mechanisms of the retinal processing that are not taken into account in the current model. Namely, spatial filtering and lateral inhibitions are two important features that will be integrated in the upcoming model. Our goal is to infer, starting from a sufficiently realistic model, a decoding algorithm that could decipher actual neural recordings.
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 1 Fig. 1. VB(I): A one-toone map associating each input current I to a bipolar output potential VB. Maps are shown for different observation durations t obs , ranging from t obs = ∆T (thick line) to t obs = ∆T 20 (thin line).
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 3 Fig.3. Input signal/reconstructed signal characteristic: Behavior evolution of the cascaded three stages of the bioinspired model. On the left t obs = 0.075 ∆T , on the right t obs = 0.27 ∆T . already implemented for dynamic signal range compression, namely compandor circuits. Companding is a technique that is widely used in telecommunication[START_REF] Clark | Electrical picture-transmitting system[END_REF] making the quantization steps unequal, as the IPL stage does in our case. It is also interesting to denote that companding is preceded, for audio recordings, by a variable-gain amplifier, which is locally linear, in the same manner as the bipolar cells gain control loop described above.4.2. Case of a noisy ganglion cell quantizer: Is the ganglion cell a non-subtractive dithered quantizer?

  ) 4(d) show a comparison between the spectra of the ganglion cell quantizer with and without NSD.
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 4 Fig. 4. 4(a) 4(b) Cross correlation of the quantization error and the input stimuli. The abscissa represents the spatial lag and the ordinate the cross correlation magnitude. 4(c) 4(d)Noise whitening using a dithered quantizing ganglion cell: A comparison of reconstruction error spectra between non-dithered and dithered quantizing ganglion cell. The test image is Lena. The observation time is t obs = 55ms.

Fig. 5 .

 5 Fig. 5. Comparison of the reconstruction visual quality between nondithered and dithered quantizing ganglion cell. The test image is Lena. The observation time is t obs = 55ms.