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Abstract—We present a novel quantization algorithm based on a
biologically realistic vertebrate retina model. Our aim is to investigate
the retina transfer function that maps a continuous input sgnal into a
binary-like neural code. We, furthermore, describe a posdile decoding
procedure. The coder/decoder, we describe here, focuses tire temporal
behavior of the three last retina layers. The neural code, tht is originated
by these layers, contains all the information required abotithe stimulus.
Actually, the considered code is a series of electrical impses, termed

as spike trains[1]. The coding/decoding schema we introduce assumes

that, given a AT-sized time bin, the count of spikes convey the major
part of the information. This defines a so-called firing rate coding
which is the most commonly used hypothesis for neural codingAs
time goes, our system gradually changes from a quasi-unifar quantizer
to a highly non-linear one. Besides, high magnitude stimuliare well
refined, while small magnitudes are coarsely approximatedThis yields
an original bioinspired quantization system, the behaviorof which evolves
dynamically during the time interval of stimuli observation. Here, we
present the retina model adapted to a temporal signal. Therwe explore
the input/output map of the system and its ability to recoverthe original
signal. Besides, we raise the analogy between this bioinsgd system and
already well known compandor/quantizer systems used for amog-to-
digital converters. Finally, we compare the performances bour quantizer
to the dead zone scalar quantizer used in JPEG2000, and showetber
performances for low rate transmissions.

. INTRODUCTION

The retina transforms a continuous input currdift) into a

an image scalar quantizer
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Fig. 1. Diagram showing the layers of the retina. At the ttye, duter most
pigmented layer. At the bottom, the innermost ganglionjeta(from [6]).

By opposition, retinal cells of the outer stages do note fpikes.
As the input stimuli gets through these stages, the inputasigs
filtered, but still has the form of a graded continuous eleatisignal.
These cells are, from innermost to outermost, amacrine ¢ellthe
inner plexiform layer), the Bipolar cells (in the outer pfexm layer),
the horizontal cells and finally light receptors (see FiglyeOnly
the ganglion cells are responsible for signal discretiratiin the
following we focus on the cells of the three deepest retiners,
involved in the generation of the visual neural code, nanbgbplar,
amacrine and ganglioon cells. These cells form the mainestag

series of impulses termed a&pikes The spikes are the elementsresponsible for the shaping of the spiking retina code.

composing the neural code of the retina and thus, they coailelye
information about the visual stimulus to high order coitiageas.
Interestingly, all spikes have the same shape and amplijueleing
a binary-like code. As a consequence, the retina can be deresi
as a data quantizer. Several hypothesis are discussed litethéure,

The paper is organized as follows: In Section Il, we preshat t
model of the three-staged system. Then, in Section Ill,waloex
the input/output relation of the system and its ability ta@aoweer
the original signal and, besides, we raise the analogy lestveer
bioinspired coding/decoding schema and well establisioedpand-

on how could this spike-based code be deciphered [1]-[3feH&q/quantization approaches in telecommunication systefinally,

we consider the so-callefiring rate codingproposal, which is the

in Section IV, we show the performances of the proposed miodel

most commonly used one. The rate coding assumes that, give'ﬂeﬁns of rate/distortion trade-off.

AT-sized time bin, the count of spikes convey the major parhef t

stimulus information [4].

Il. BIOLOGICALY REALISTIC RETINA MODEL
Our aim is to study the input/output transfer function of theep

In order to experiment the behavior of the retina as a quamtizyertebrate retina layers. For this to be done, we base ouk amthe

we implement a three-staged system based on a biologieslistic
retinal model of introduced in [5]. The considered simulai®

biologically realistic retina model introduced in [5]. Westrain our
study to the temporal behavior of the retina, thus the sipfiitiering

one of the most complete ones generating a spike-based toutilécks are ignored in the following description. Furthermanly the

which, furthermore, successfully reproduce actual ndwsiplogic
recordings. The model maps the anatomical structure of étiear
This structure is strongly related to the retina functicaahitecture.
Indeed, the retina is a succession of layers. The output df eae
is the input of the following. The progression of light stilindrom
the outermost light receptors layer, to innermost ganglidayer,
involves several processing mechanisms. Thus, there arelifitinct
types of neurons, each one tiling the whole surface of thmaget
along a given layer. This architecture is outlined in Figlire

As discussed earlier, the innermost ganglion cells layethef
retina emit spikes to convey information over the optic eefY].

three deepest retina layers in the model are considerediegsate
the main stages responsible for the shaping of the spikiirgareode.
The three-staged simplified model, as implemented in thikwis
described through Sections II-A to II-C.

A. Bipolar cells layer: The gain control stage
An issue encountered by any biological system is to adjsst it

operational range to match the input stimuli magnitude eafg].
Interestingly, fast magnitude adaptation mechanisms agelly ob-
served in the bipolar cells. The input of the bipolar cellsgst is a
currentI(t), and its output is a potential denot& (¢).



We suppose, in the following, thdt(¢) is a time-binned stimulus,

Ie is the current input of the last retina stage, namely the

such that each samplg = I(t = t;) is exposed to the systemganglionic layer, which originates the neural code of thee
during aAT-sized time interval AT resolution is sufficiently refined C. Ganglion cells layer: The spike generation stage

to consider that stimulus is constant durfdgAT’[. We, then, explore
the time course behavior of each sample stimulus signahetty:

I(t):{ I;, if t € [0, AT

0 otherwise
The gain control procedure, as introduced in [5], is defingd b
dVs(t)

7 &)

wheregp represents a variable leakage term. The expressigx of

)

+95(O)Va(t) = I(1),

for a potentialVz(x, y, ) that varies in time and space, is given by:

98(%,y,t) = Gop (z,y) * Erg (1) * Q (VB (2,9,1)), ()

where G, is a spatial filter,E-; is a low-pass temporal filter,

and @ a static function ofV/z. As the inputl(¢) is a function of
time only, assumption is made that the spatial filtey, (z,y) is a

The ganglionic layer is the deepest one tiling the retinae Th
ganglion cells are the neurons that generate the spikirgubof the
retina. A formalization for spike generator neurons in teéna is
proposed in [5]. The model chosen is the widely used lealggatte
and fire (LIF) [3]. I (t) is the input stimulus of this spike generator
layer, andV (¢) is its output voltage. We study(7") behavior in
the time bin[0, AT, which amounts studying the spike emission
timings (73):>0- (13)i>0 are defined by the following:

V(T 5,Yi >0, T, €[0,AT], @
V(t) 0,Vi>0,Vt e [T, Ti+ Tresl.

where § is the integration threshold of the neuron, afg.; its
refractory time. In the following, the refractory time wilk neglected
asTrey < AT.

Whenever the voltag®” reachessd, the neuron fires a spike, then

Dirac impulse, i.eGo, (z,y) = do,0. E-; is a temporal undershoot reinitializes its voltage t@. Once the spiking mechanism is specified

modeled using exponential filters, and defined by:

—t

1 =t
E.,(t) = Eexp B, (4)

Furthermore,Q is assumed to have a convex shape, and is defined

by:
Q(Vs(t)) = g5 + ABVA(2). (5)

This yields the general developed expression relating titeud, Vz,
to the input,I, that follows:

dVi(t)

e AU A IO

;\_j (/Ot VE(t— S)G:T;ds) Vs(t)

As the retina has a layered architecture, the output voliageof
the bipolar cells, is the input of the subsequent amacrifis itethe
inner plexiform layer stage (IPL).

1(t). (6)

B. Inner plexiform layer: The non-linear rectification stag

(cf. (8)), the model defines the behavior B (¢) in the time bin
(T3, Ti+1], as Vs (t) obeys to the following differential equation:

v (t)

7 ©)

wheregg is a constant conductance, afidis a constant capacitance.
Then, solving (9), we get:

1 T+t
()
ca Jr,

where(C' is an integration constant. In this section, we specified the
model transform that leads to the generation of spikes, festeicted
to the time transform. In Section Ill, we introduce a bioydile
coding scheme, and specify the corresponding decodinggune.

+gGV(t) = Ic(t),vt S [Ti,Ti+1[,

9G(s=T;)
cG

9G (t=T;)
e

VG(t) G(s)e , (10)

ds—l—C) e

I11. NEURAL QUANTIZER BASED ON RATE CODING

In Section I, we presented a biologically realistic thetaged
model for spike generation in the retina. Our aim, in thist®eac is
to get the overall model characteristic input/output bébravn order
to do this, we first consider each stage transfer functiorarsegly,

We consider the signal, of voltagés, as generated by bipolar then we cascade the three of them, and finally propose a f®ssib
cells of the retina. This current is subject to a non-lineatification  gecoding algorithm to recover initial input.

by amacrine cells in the IPL. The output of the IPL is a cordct

currentI¢. A biologically realistic model of this rectification [5] is A. Coding pathway

defined by:
la(z,y,t) = Go(2,y) * N (e Tws 74 (1) * VB(2,9,1)) . (7)

In (7), e, wa, andT4 are constant scalar values, , -, is a linear
transient filtering defined by:

w __t
Twara =00(t) — T_je A,

and N is a non linear function oi/s defined by:
.
Ia—da(v—"Va)
Ta+Xa(v—Va), if v=Va,

N() = , ifo<Vy

where 4, Va, and A4 are constant scalar parameters. As only thfﬁen exploreVi

time behavior is taken into account, the spatial fitgr(z, y) is set to
a Dirac impulse (cf. Section 1I-A). Developing the expressin (7),
we get the following expression fdi;:

N <s (VB(t) - %4 /Ot Vi (t — s)e?_ﬁds)) .

Ic(t)

An interesting feature we emphasize in this model, is itsadyics
as it involves time. Our approach is to study each stage, for a given
observation time = ¢,,5, then explore how this behavior evolves as
tops Varies.

1) The gain control stageFirst stage in the model maps each
stimulus sampld (¢ = t;) (cf. (1)) into a voltageVs (cf. (6)). For a
given maximum stimulus valuég; (cf. (1)), we solve the differential
equation (6). The algorithm we use is the Runge-Kutta orglina
differential equation solver [7]. The resulting solutidfs (¢, I;) is
shown in the Figure 2(a), for different values bf.

For a given observation time,,s, we infer a map that associates
a bipolar potential/s (tos, I), to an input current. In order to do
this, we observe the system response to a stimllast,,s < AT,
(tows, I) for all possiblel = I; values. This leads
to the mappings shown in Figure 2(b).

These results prove that, under the assumption of a slot ihpu
(cf. (1)), the gain control in the bipolar cells layer is laxeThe linear
slopeG;,_,, of the gain is dependent on the observation timg of
the stimulus.
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Fig. 2. 2(a):Vp(t): Output potential of bipolar cells obtained with Runge-
Kutta numerical resolution of (6). Solutions are computeddifferent input
values fromI; = 1 (thick line) to I; = 0.25 (thin line). Simulations are
made for the following parameter valuedT = 1, gg = 10%, 7 = 103,
Ap = 10'.. 2(b)V5(I): A one-to-one map associating each input curient
to a bipolar output potential/z. Maps are shown for different observation
durationst ., ranging fromt,,, = AT (thick line) to tops = 5= (thin
line). Under the assumptions we made, the behavior of the gangéthh c
between two successive spikes is the same. Fhu$) is a periodic
function of time, and finding the firing timin@%1, knowing 77, is
equivalent to the deduction of the period B&(¢). This yields the
following formula for the period computation:

_ @ I
(Tir = Ti) = gGZOQ<IC_gL6)~ (12)

For further details about proofs, interested readers megy te [3].
Through (12), we deduce the spiking frequencyFis= % The rate

Fig. 4. The rate code generated by the ganglion cells: treqade N =
f(Ig) (solid line) and the real spiking frequendy = f(Is) (dotted line).
Simulations are made for the following parameter valdes: 4, g = 102,
andcg = 1072,

%% 0z o4 v 00 08 1 code, in[0, AT}, is the number of spikes fired &, defined by:
Fig. 3. Ig(Vp): Non linear IPL rectification mapping eadliz value into N = [|FAT]
an output curreni ;. Maps are shown for different exposition duratianss,
ranging fromt,,s = AT (thick line) tot,ps = % (thin line). N ga AT (13)
gad
cglog |1+ ———
g ( Ie — gad )

2) The non-linear rectification stageAfter the stimulus is rescaled he f L for diff | h
in the gain control stage, it gets non-linearly rectified lie second We CO_mpP‘e the function in (13_) or different va ues M The
IPL stage. Computing the transform in (7), we obtain the riragm result_ln Figure 4, show the gangll_on cell to be a quasi-unifscalar
shown in the Figure 3, each one corresponding to an obsenvatfiuantizer after a_very_short tran.sn_ory stage around Z€r0.
time t.ps. It appears that for short observation times, input is quascgI I?asgd on a blologlg_ally rehal'St'CmedEI of tlhe_ retllna,Wwe chav
linearly rescaled, while for longer observation times nioedrity is elined TOW a raFe col Ing EC eme tor temporal signals. Weopeop
accentuated. This implies that, the instantaneous behafithe IPL a possible decoding algorithm in Section III-B.
stage is a linear gain control, while as observation goesmphasize B. Decoding pathway
is made on the high amplitude IPL inputs.

. : ; . Our aim, in this Section, is to recovér the estimation of the input
3) The spike generation stage: the rate coding approathie knowing its rate codéV, and the model parameters. Though the
current I, that is generated by the IPL stage, passes through the 9 ' P . 9

andlionic. stage vielding a spike-based code. Here we densi coding scheme in Section IlI-A is strongly related to actialogical
gang ge y ng P . S .~ retina behavior, we do not claim that the proposed decodguayithm
the so-calledrate coding hypothesis, to interpret the coding. . . .

. : T is the one that is actually employed in the visual cortex.
mechanism 9f the retina. Thls. IS th_e most common!y used j?heoﬁ'he decoding algorithm goes exactly the opposite way of téng
The rate co_dmg assumes that,_ Inagiven predfeflned FlmA_mnthe one, from the reverse ganglionic layer to the reverse gamrab
count of spikes convey the major part of the stimulus infdrame[4]. F;rst we recoverls, the estimation off (cf. (7). For this, we

Through the two preceding stages, input currénts rescaled apply the following reverse mapping:

by a static gain control slop&r; ., and corrected by a static o = gcd . (14)
non linear function. Thus/¢ is supposed constant over the time 1 _e—%

interval [0, tops] C [0, AT'[. This assumption is bio-plausible for a - o L
sufficiently restrained observation tintg,,. We further assume that Second, we recoveV’s, the estimation ofi’s, knowing /. For
initial conditioning of V' in [T, Ti+1[C [0, AT[ (cf. (8)) implies this, we infer the reverse IPL stage mapping through a lootable.

C = 0 (cf. (10)). Then for a givert € [T}, Ti11[, we get: The voltageVs, corresponding to valu_es G_Ib that dq not match the
Tt . . table elements, are computed by spline interpolation.
Va(t) = (I_c/ i e%ds) o 96 (=T) Ve T Ti] Finally, we recover the input signdl, by the reverse bipolar gain
cc Jry control. As the gain control in the first coding stage is lmdhe
implying: reverse gain control is a simple division.

Ve(t) = Ic (1 _G_M) Obviously, the recovered signdl does not match exactly the

e ° (1) original . This is due to the floor operator in the spike generation



mechanism (cf. (8)). The behavior of the c_oder/deco@reﬂysits, —Somspied quanier

thus, analogous to a quantizer/ de-quantizer. We investigiae og] \-Uniform scalar quantizer with dead zone
characteristic behavior of the bioinspired quantizer, veéingd, in '
Section IlI-C.

o
o
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C. The retina as a bioinspired quantizer: the overall systeshavior

Di stortion (MSE)

o
)

Let us cascade the three layers of our system. We aim at dgfinin
the characteristic behavior of the bioinspired quantizedefined in
Sections IlI-A and III-B, and explore the evolution of it ass time. 0
It appears that as the observation titpg increases, our system goes
from coarse to fine, and from uniform to non-uniform. Fig. 6. Rate/distortion trade-off: Comparison between tinéorm scalar

The refining is intuitive and confirmed by actual neurophlysjiz quantizer with dead zone (dotted line ) and the bioinspiradntjzer with
experiments. Indeed the visual cortex perceives globadsmpf the gain control.
stimulus first, then as time goes acquire more informati@muabharp
features.

Then the model quantizer is non-uniform. High magnitudealsg
are mapped accurately, by a small quantization step, winialls
magnitude signals are coarsely rendered. This is due toahdimear
rectification in the IPL stage. Indeed, this rectificatiormpoesses
the dynamic range of small magnitude signals around zercspad
higher ones in a linear fashion, this before the generatfospikes
in the ganglion cells. This non-uniformity tendency is atcated as
the gain control gets higher across time.

Figure 5 shows an example map of a reconstructed ifipas a
function of an input/, using the bioinspired quantizer, and this a
two different observation timings.

=]

Oé’z 1 .15 2 2.5 3 35
itrdate in bit per sanple

The quality of the reconstruction is measured in terms of rmea
squared error (MSE) between the original sighaand the recon-
structed onel. We compare these measures to those of a scalar
uniform quantizer with dead zone. Such a quantizer is ajreadell
established standard, used in JPEG2000, and has been poolien
well suited for Laplace-like distributed sources. The hssare shown

in the Figure 6.

The behavior of the bioinspired quantizer shows slight mrpment

of the performances for low rate transmission, comparetédcstalar
uniform quantizer with dead zone. Although, for median satiee
Elassical scalar uniform quantizer is clearly more effitien

V. DISCUSSION

0 ° We presented a bioinspired quantizer based on rate codimg. T
02 %2 system implemented relies on a biologically realistic maafethe
retina. Interestingly, the behavior of the quantizer wecHp is
similar to an analog-to-digital converter with a compardistage,
i.e., involving a non-linear rectification before applyiaguniform
02 7 quantizer. Though, two major differences are to be mentione
%03 ; oz oz ; oz First, the bioinspired model quantizers emphasizes higgnihzde
signals, while classical approaches aim at refining withenamcuracy
Fig. 5. Input signal/reconstructed signal characterisiiehavior evolution |ow magnitudes, which are more probable (Lloyd-Max quam)iz
of the cascaded three stages of the bioinspired model. Onethe,;,; = Second, the time dimension has been introduced in the qagiot
0.075 AT, on the rightt,,s = 0.27 AT. ) . .
mechanism. This allows further work to explore dynamics lué t
rate/distortion trade-off and add time scalability to fetiioinspired
quantization models. Future studies will take into accositial
synaptic dependencies and go a step further toward bi@bgiodel
realism. The final goal of our investigations is to infer a gibke
decoding procedure for actual neural recordings.

reconstructed |
reconstructed |

Yet, telecommunication systems are already implementediyo
namic signal range compression, namely compandor circQibsn-
panding is a technique that is widely used in telecommuiticgB]
making the quantization steps unequal, as the IPL stageidaas
case. It is also interesting to denote that companding isepled, for
audio recordings, by a variable-gain amplifier, which isalclinear, REFERENCES
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