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Abstract— We present a novel quantization algorithm based on a
biologically realistic vertebrate retina model. Our aim is to investigate
the retina transfer function that maps a continuous input signal into a
binary-like neural code. We, furthermore, describe a possible decoding
procedure. The coder/decoder, we describe here, focuses onthe temporal
behavior of the three last retina layers. The neural code, that is originated
by these layers, contains all the information required about the stimulus.
Actually, the considered code is a series of electrical impulses, termed
as spike trains [1]. The coding/decoding schema we introduce assumes
that, given a ∆T -sized time bin, the count of spikes convey the major
part of the information. This defines a so-called firing rate coding
which is the most commonly used hypothesis for neural coding. As
time goes, our system gradually changes from a quasi-uniform quantizer
to a highly non-linear one. Besides, high magnitude stimuliare well
refined, while small magnitudes are coarsely approximated.This yields
an original bioinspired quantization system, the behaviorof which evolves
dynamically during the time interval of stimuli observation. Here, we
present the retina model adapted to a temporal signal. Then,we explore
the input/output map of the system and its ability to recoverthe original
signal. Besides, we raise the analogy between this bioinspired system and
already well known compandor/quantizer systems used for analog-to-
digital converters. Finally, we compare the performances of our quantizer
to the dead zone scalar quantizer used in JPEG2000, and show better
performances for low rate transmissions.

I. I NTRODUCTION

The retina transforms a continuous input currentI(t) into a
series of impulses termed asspikes. The spikes are the elements
composing the neural code of the retina and thus, they conveyall the
information about the visual stimulus to high order cortical areas.
Interestingly, all spikes have the same shape and amplitude, yielding
a binary-like code. As a consequence, the retina can be considered
as a data quantizer. Several hypothesis are discussed in theliterature,
on how could this spike-based code be deciphered [1]–[3]. Here
we consider the so-calledfiring rate codingproposal, which is the
most commonly used one. The rate coding assumes that, given a
∆T -sized time bin, the count of spikes convey the major part of the
stimulus information [4].

In order to experiment the behavior of the retina as a quantizer,
we implement a three-staged system based on a biologically realistic
retinal model of introduced in [5]. The considered simulator is
one of the most complete ones generating a spike-based output
which, furthermore, successfully reproduce actual neurophysiologic
recordings. The model maps the anatomical structure of the retina.
This structure is strongly related to the retina functionalarchitecture.
Indeed, the retina is a succession of layers. The output of each one
is the input of the following. The progression of light stimuli, from
the outermost light receptors layer, to innermost ganglionic layer,
involves several processing mechanisms. Thus, there are five distinct
types of neurons, each one tiling the whole surface of the retina,
along a given layer. This architecture is outlined in Figure1.

As discussed earlier, the innermost ganglion cells layer ofthe
retina emit spikes to convey information over the optic nerve [1].

Fig. 1. Diagram showing the layers of the retina. At the top, the outer most
pigmented layer. At the bottom, the innermost ganglionic layer (from [6]).

By opposition, retinal cells of the outer stages do note fire spikes.
As the input stimuli gets through these stages, the input signal is
filtered, but still has the form of a graded continuous electrical signal.
These cells are, from innermost to outermost, amacrine cells (in the
inner plexiform layer), the Bipolar cells (in the outer plexiform layer),
the horizontal cells and finally light receptors (see Figure1). Only
the ganglion cells are responsible for signal discretization. In the
following we focus on the cells of the three deepest retina layers,
involved in the generation of the visual neural code, namelybipolar,
amacrine and ganglioon cells. These cells form the main stages
responsible for the shaping of the spiking retina code.

The paper is organized as follows: In Section II, we present the
model of the three-staged system. Then, in Section III,we explore
the input/output relation of the system and its ability to recover
the original signal and, besides, we raise the analogy between our
bioinspired coding/decoding schema and well established compand-
ing/quantization approaches in telecommunication systems. Finally,
in Section IV, we show the performances of the proposed modelin
terms of rate/distortion trade-off.

II. B IOLOGICALY REALISTIC RETINA MODEL

Our aim is to study the input/output transfer function of thedeep
vertebrate retina layers. For this to be done, we base our work on the
biologically realistic retina model introduced in [5]. We restrain our
study to the temporal behavior of the retina, thus the spatial filtering
blocks are ignored in the following description. Furthermore, only the
three deepest retina layers in the model are considered, as they are
the main stages responsible for the shaping of the spiking retina code.
The three-staged simplified model, as implemented in this work, is
described through Sections II-A to II-C.

A. Bipolar cells layer: The gain control stage

An issue encountered by any biological system is to adjust its
operational range to match the input stimuli magnitude range [2].
Interestingly, fast magnitude adaptation mechanisms are largely ob-
served in the bipolar cells. The input of the bipolar cells stage is a
currentI(t), and its output is a potential denotedVB(t).



We suppose, in the following, thatI(t) is a time-binned stimulus,
such that each sampleIj = I(t = tj) is exposed to the system
during a∆T -sized time interval.∆T resolution is sufficiently refined
to consider that stimulus is constant during[0,∆T [. We, then, explore
the time course behavior of each sample stimulus signal, defined by:

I(t) =

{

Ij , if t ∈ [0,∆T [
0 otherwise

(1)

The gain control procedure, as introduced in [5], is defined by:

dVB(t)

dt
+ gB(t)VB(t) = I(t), (2)

wheregB represents a variable leakage term. The expression ofgB,
for a potentialVB(x, y, t) that varies in time and space, is given by:

gB(x, y, t) = GσB (x, y) ∗ EτB (t) ∗Q (VB(x, y, t)) , (3)

where GσB is a spatial filter,EτB is a low-pass temporal filter,
and Q a static function ofVB . As the inputI(t) is a function of
time only, assumption is made that the spatial filterGσB (x, y) is a
Dirac impulse, i.e,GσB (x, y) = δ0,0. EτB is a temporal undershoot
modeled using exponential filters, and defined by:

EτB (t) =
1

τB
exp

−t
τB . (4)

Furthermore,Q is assumed to have a convex shape, and is defined
by:

Q(VB(t)) = gB + λBV
2
B(t). (5)

This yields the general developed expression relating the output,VB,
to the input,I , that follows:

dVB(t)

dt
− gB

(

e
−

t
τB − 1

)

VB(t)+

λB

τB

(∫ t

0

V
2
B(t− s)e

−s
τB ds

)

VB(t) = I(t). (6)

As the retina has a layered architecture, the output voltageVB , of
the bipolar cells, is the input of the subsequent amacrine cells in the
inner plexiform layer stage (IPL).

B. Inner plexiform layer: The non-linear rectification stage

We consider the signal, of voltageVB , as generated by bipolar
cells of the retina. This current is subject to a non-linear rectification
by amacrine cells in the IPL. The output of the IPL is a corrected
currentIG. A biologically realistic model of this rectification [5] is
defined by:

IG(x, y, t) = Gσ(x, y) ∗N (ε TwA,τA(t) ∗ VB(x, y, t)) . (7)

In (7), ε, wA, andτA are constant scalar values,TwA,τA is a linear
transient filtering defined by:

TwA,τA = δ0(t)−
wA

τA
e
−

t
τA ,

andN is a non linear function ofVB defined by:

N(v) =







I2A
IA − λA(v − VA)

, if v < VA

IA + λA(v − VA), if v > VA,

whereIA, VA, andλA are constant scalar parameters. As only the
time behavior is taken into account, the spatial filterGσ(x, y) is set to
a Dirac impulse (cf. Section II-A). Developing the expression in (7),
we get the following expression forIG:

IG(t) = N

(

ε

(

VB(t)−
wA

τA

∫ t

0

VB(t− s)e
−s
τA ds

))

.

IG is the current input of the last retina stage, namely the
ganglionic layer, which originates the neural code of the retina.

C. Ganglion cells layer: The spike generation stage

The ganglionic layer is the deepest one tiling the retina. The
ganglion cells are the neurons that generate the spiking output of the
retina. A formalization for spike generator neurons in the retina is
proposed in [5]. The model chosen is the widely used leaky integrate
and fire (LIF) [3].IG(t) is the input stimulus of this spike generator
layer, andV (t) is its output voltage. We studyVG(T ) behavior in
the time bin [0,∆T [, which amounts studying the spike emission
timings (Ti)i>0. (Ti)i>0 are defined by the following:

{

V (Ti) = δ,∀ i > 0, Ti ∈ [0,∆T [,
V (t) = 0,∀ i > 0, ∀ t ∈ [Ti, Ti + Tref [.

(8)

where δ is the integration threshold of the neuron, andTref its
refractory time. In the following, the refractory time willbe neglected
asTref � ∆T .
Whenever the voltageV reachesδ, the neuron fires a spike, then
reinitializes its voltage to0. Once the spiking mechanism is specified
(cf. (8)), the model defines the behavior ofVG(t) in the time bin
[Ti, Ti+1[, asVG(t) obeys to the following differential equation:

cG
dV (t)

dt
+ gGV (t) = IG(t),∀ t ∈ [Ti, Ti+1[, (9)

wheregG is a constant conductance, andcG is a constant capacitance.
Then, solving (9), we get:

VG(t) =

(

1

cG

∫ Ti+t

Ti

IG(s)e
gG(s−Ti)

cG ds+ C

)

e
−

gG(t−Ti)

cG , (10)

whereC is an integration constant. In this section, we specified the
model transform that leads to the generation of spikes, hererestricted
to the time transform. In Section III, we introduce a bio-plausible
coding scheme, and specify the corresponding decoding procedure.

III. N EURAL QUANTIZER BASED ON RATE CODING

In Section II, we presented a biologically realistic three-staged
model for spike generation in the retina. Our aim, in this Section, is
to get the overall model characteristic input/output behavior. In order
to do this, we first consider each stage transfer function separately,
then we cascade the three of them, and finally propose a possible
decoding algorithm to recover initial input.

A. Coding pathway

An interesting feature we emphasize in this model, is its dynamics
as it involves timet. Our approach is to study each stage, for a given
observation timet = tobs, then explore how this behavior evolves as
tobs varies.

1) The gain control stage:First stage in the model maps each
stimulus sampleI(t = tj) (cf. (1)) into a voltageVB (cf. (6)). For a
given maximum stimulus valueIj (cf. (1)), we solve the differential
equation (6). The algorithm we use is the Runge-Kutta ordinary
differential equation solver [7]. The resulting solutionVB(t, Ij) is
shown in the Figure 2(a), for different values ofIj .

For a given observation timetobs, we infer a map that associates
a bipolar potentialVB(tobs, I), to an input currentI . In order to do
this, we observe the system response to a stimulusI at tobs 6 ∆T ,
then exploreVB(tobs, I) for all possibleI = Ij values. This leads
to the mappings shown in Figure 2(b).

These results prove that, under the assumption of a slot input I

(cf. (1)), the gain control in the bipolar cells layer is linear. The linear
slopeGtobs of the gain is dependent on the observation timetobs of
the stimulus.
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Fig. 2. 2(a):VB(t): Output potential of bipolar cells obtained with Runge-
Kutta numerical resolution of (6). Solutions are computed for different input
values fromIj = 1 (thick line) to Ij = 0.25 (thin line). Simulations are
made for the following parameter values:∆T = 1, gB = 104, τB = 103 ,
λB = 101.. 2(b):VB(I): A one-to-one map associating each input currentI
to a bipolar output potentialVB . Maps are shown for different observation
durationstobs, ranging fromtobs = ∆T (thick line) to tobs = ∆T

20
(thin

line).
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Fig. 3. IG(VB): Non linear IPL rectification mapping eachVB value into
an output currentIG. Maps are shown for different exposition durationstobs,
ranging fromtobs = ∆T (thick line) to tobs = ∆T

20
(thin line).

2) The non-linear rectification stage:After the stimulus is rescaled
in the gain control stage, it gets non-linearly rectified in the second
IPL stage. Computing the transform in (7), we obtain the mappings
shown in the Figure 3, each one corresponding to an observation
time tobs. It appears that for short observation times, input is quasi-
linearly rescaled, while for longer observation times non linearity is
accentuated. This implies that, the instantaneous behavior of the IPL
stage is a linear gain control, while as observation goes on,emphasize
is made on the high amplitude IPL inputs.

3) The spike generation stage: the rate coding approach:The
current IG, that is generated by the IPL stage, passes through the
ganglionic stage yielding a spike-based code. Here we consider
the so-called rate coding hypothesis, to interpret the coding
mechanism of the retina. This is the most commonly used theory.
The rate coding assumes that, in a given predefined time bin∆T , the
count of spikes convey the major part of the stimulus information [4].

Through the two preceding stages, input currentI is rescaled
by a static gain control slopeGtobs and corrected by a static
non linear function. ThusIG is supposed constant over the time
interval [0, tobs] ⊂ [0,∆T [. This assumption is bio-plausible for a
sufficiently restrained observation timetobs. We further assume that
initial conditioning of V in [Ti, Ti+1[⊂ [0,∆T [ (cf. (8)) implies
C = 0 (cf. (10)). Then for a givent ∈ [Ti, Ti+1[, we get:

VG(t) =

(

IG

cG

∫ Ti+t

Ti

e
gG(s−Ti)

cG ds

)

e
−

gG(t−Ti)
cG ,∀ t ∈ [Ti, Ti+1[

implying:

VG(t) =
IG

gG

(

1− e
−

gG(t−Ti)
cG

)

. (11)
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Fig. 4. The rate code generated by the ganglion cells: the rate codeN =
f(IG) (solid line) and the real spiking frequencyF = f(IG) (dotted line).
Simulations are made for the following parameter values:δ = 4, gG = 10−2,
andcG = 10−2.

Under the assumptions we made, the behavior of the ganglion cell,
between two successive spikes is the same. ThusVG(t) is a periodic
function of time, and finding the firing timingTi+1, knowingTi, is
equivalent to the deduction of the period ofVG(t). This yields the
following formula for the period computation:

(Ti+1 − Ti) =
cG

gG
log

(

Ic

Ic − gLδ

)

. (12)

For further details about proofs, interested readers may refer to [3].
Through (12), we deduce the spiking frequency isF = 1

T
. The rate

code, in[0,∆T ], is the number of spikes fired isN , defined by:

N = bF∆T c

N =













gG∆T

cG log

(

1 +
gGδ

IG − gGδ

)













. (13)

We compute the function in (13) for different values ofIG. The
result in Figure 4, show the ganglion cell to be a quasi-uniform scalar
quantizer after a very short transitory stage around zero.

Based on a biologically realistic model of the retina, we have
defined now a rate coding scheme for temporal signals. We propose
a possible decoding algorithm in Section III-B.

B. Decoding pathway

Our aim, in this Section, is to recover̃I, the estimation of the input
I , knowing its rate codeN , and the model parameters. Though the
coding scheme in Section III-A is strongly related to actualbiological
retina behavior, we do not claim that the proposed decoding algorithm
is the one that is actually employed in the visual cortex.
The decoding algorithm goes exactly the opposite way of the coding
one, from the reverse ganglionic layer to the reverse gain control.

First, we recover̃IG, the estimation ofIG (cf. (7)). For this, we
apply the following reverse mapping:

ĨG =
gGδ

1− e
−

gG∆T

cGN

. (14)

Second, we recover̃VB, the estimation ofVB, knowing ĨG. For
this, we infer the reverse IPL stage mapping through a look uptable.
The voltageṼB , corresponding to values of̃IG that do not match the
table elements, are computed by spline interpolation.

Finally, we recover the input signal̃I, by the reverse bipolar gain
control. As the gain control in the first coding stage is linear, the
reverse gain control is a simple division.

Obviously, the recovered signal̃I does not match exactly the
original I . This is due to the floor operator in the spike generation



mechanism (cf. (8)). The behavior of the coder/decoder system is,
thus, analogous to a quantizer/ de-quantizer. We investigate the
characteristic behavior of the bioinspired quantizer, we defined, in
Section III-C.

C. The retina as a bioinspired quantizer: the overall systembehavior

Let us cascade the three layers of our system. We aim at defining
the characteristic behavior of the bioinspired quantizer as defined in
Sections III-A and III-B, and explore the evolution of it across time.
It appears that as the observation timetobs increases, our system goes
from coarse to fine, and from uniform to non-uniform.

The refining is intuitive and confirmed by actual neurophysiologic
experiments. Indeed the visual cortex perceives global aspects of the
stimulus first, then as time goes acquire more information about sharp
features.

Then the model quantizer is non-uniform. High magnitude signals
are mapped accurately, by a small quantization step, while small
magnitude signals are coarsely rendered. This is due to the non-linear
rectification in the IPL stage. Indeed, this rectification compresses
the dynamic range of small magnitude signals around zero andspan
higher ones in a linear fashion, this before the generation of spikes
in the ganglion cells. This non-uniformity tendency is accentuated as
the gain control gets higher across time.

Figure 5 shows an example map of a reconstructed inputĨ as a
function of an inputI , using the bioinspired quantizer, and this at
two different observation timings.
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Fig. 5. Input signal/reconstructed signal characteristic: Behavior evolution
of the cascaded three stages of the bioinspired model. On theleft tobs =
0.075∆T , on the righttobs = 0.27∆T .

Yet, telecommunication systems are already implemented for dy-
namic signal range compression, namely compandor circuits. Com-
panding is a technique that is widely used in telecommunication [8]
making the quantization steps unequal, as the IPL stage doesin our
case. It is also interesting to denote that companding is preceded, for
audio recordings, by a variable-gain amplifier, which is locally linear,
in the same manner as the bipolar cells gain control loop described
above.

IV. EXPERIMENTAL RESULTS

Our goal, in this Section is to test the performances of the
bioinspired system in terms of rate/distortion trade-off.In order
to do so, we chop the time axis intoδt-sized time bins centered
around different observation timingsτj . For eachτj , the bioinspired
quantizer has a different behavior, and thus yields a different neural
code(Ni)

τj
i>0. Here, we made the assumption of a firing rate code.

(Ni)
τj
i>0 is, thus, a series ofspike countsintegers. We, then, estimate

the rate of(Ni)
τj
i>0, and the distortion of the reconstructioñI(t) that

it allows. Our quantizer is tested for aniid Gaussian 1D signalI(t).
The rate of the neural code is estimated by its entropyHτj , defined
by:

H
τj = −

∑

i

p(N
τj
i )log(p(N

τj
i )). (15)
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Fig. 6. Rate/distortion trade-off: Comparison between theuniform scalar
quantizer with dead zone (dotted line ) and the bioinspired quantizer with
gain control.

The quality of the reconstruction is measured in terms of mean
squared error (MSE) between the original signalI and the recon-
structed oneĨ . We compare these measures to those of a scalar
uniform quantizer with dead zone. Such a quantizer is already a well
established standard, used in JPEG2000, and has been provento be
well suited for Laplace-like distributed sources. The results are shown
in the Figure 6.
The behavior of the bioinspired quantizer shows slight improvement
of the performances for low rate transmission, compared to the scalar
uniform quantizer with dead zone. Although, for median rates the
classical scalar uniform quantizer is clearly more efficient.

V. D ISCUSSION

We presented a bioinspired quantizer based on rate coding. The
system implemented relies on a biologically realistic model of the
retina. Interestingly, the behavior of the quantizer we specified is
similar to an analog-to-digital converter with a companding stage,
i.e., involving a non-linear rectification before applyinga uniform
quantizer. Though, two major differences are to be mentioned.
First, the bioinspired model quantizers emphasizes high magnitude
signals, while classical approaches aim at refining with more accuracy
low magnitudes, which are more probable (Lloyd-Max quantizer).
Second, the time dimension has been introduced in the quantization
mechanism. This allows further work to explore dynamics of the
rate/distortion trade-off and add time scalability to future bioinspired
quantization models. Future studies will take into accountspatial
synaptic dependencies and go a step further toward biological model
realism. The final goal of our investigations is to infer a possible
decoding procedure for actual neural recordings.
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