
HAL Id: hal-00481324
https://hal.science/hal-00481324v1

Submitted on 8 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Inter-Block Backtracking with Interval
Newton

Bertrand Neveu, Gilles Trombettoni, Gilles Chabert

To cite this version:
Bertrand Neveu, Gilles Trombettoni, Gilles Chabert. Improving Inter-Block Backtracking with Inter-
val Newton. Constraints, 2010, 15 (1), pp.93-116. �10.1007/s10601-009-9072-5�. �hal-00481324�

https://hal.science/hal-00481324v1
https://hal.archives-ouvertes.fr


Constraints (2010) 15:93–116
DOI 10.1007/s10601-009-9072-5

Improving inter-block backtracking
with interval Newton

Bertrand Neveu · Gilles Trombettoni · Gilles Chabert

Published online: 20 May 2009
© Springer Science + Business Media, LLC 2009

Abstract Inter-block backtracking (IBB) computes all the solutions of sparse sys-
tems of nonlinear equations over the reals. This algorithm, introduced by Bliek et al.
(1998) handles a system of equations previously decomposed into a set of (small)
k × k sub-systems, called blocks. Partial solutions are computed in the different
blocks in a certain order and combined together to obtain the set of global solutions.
When solutions inside blocks are computed with interval-based techniques, IBB can
be viewed as a new interval-based algorithm for solving decomposed systems of non-
linear equations. Previous implementations used Ilog Solver and its IlcInterval
library as a black box, which implied several strong limitations. New versions come
from the integration of IBB with the interval-based library Ibex. IBB is now reliable
(no solution is lost) while still gaining at least one order of magnitude w.r.t. solving
the entire system. On a sample of benchmarks, we have compared several variants
of IBB that differ in the way the contraction/filtering is performed inside blocks and
is shared between blocks. We have observed that the use of interval Newton inside
blocks has the most positive impact on the robustness and performance of IBB. This

B. Neveu
INRIA CERTIS, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis Cedex, France
e-mail: Bertrand.Neveu@sophia.inria.fr

G. Trombettoni (B)
INRIA Université de Nice-Sophia, 2004 route des lucioles, BP 93,
06902 Sophia Antipolis Cedex, France
e-mail: trombe@sophia.inria.fr

G. Chabert
LINA Ecole des Mines de Nantes, 2004 route des lucioles, BP 93,
06902 Sophia Antipolis Cedex, France
e-mail: Gilles.Chabert@emn.fr



94 Constraints (2010) 15:93–116

modifies the influence of other features, such as intelligent backtracking. Also, an
incremental variant of inter-block filtering makes this feature more often fruitful.

Keywords Intervals · Decomposition · Solving sparse systems

1 Introduction

Interval techniques are promising methods for computing all the solutions of a system
of nonlinear constraints over the reals. They are general-purpose and are becoming
more and more efficient. They are having an increasing impact in several domains
such as robotics [21] and robust control [12]. However, it is acknowledged that
systems with hundreds (sometimes tens) nonlinear constraints cannot be tackled
in practice.

In several applications made of nonlinear constraints, systems are sufficiently
sparse to be decomposed by equational or geometric techniques. CAD, scene recon-
struction with geometric constraints [26], molecular biology and robotics represent
such promising application fields. Different techniques can be used to decompose
such systems into k × k blocks. Equational decomposition techniques work on the
constraint graph made of variables and equations [2, 15]. The simplest equational
decomposition method computes a maximum matching of the constraint graph. The
strongly connected components (i.e., the cycles) yield the different blocks, and a kind
of triangular form is obtained for the system. When equations model geometric con-
straints, more sophisticated geometric decomposition techniques generally produce
smaller blocks. They work directly on a geometric view of the entities and use a
rigidity property [10, 13, 15].

Once the decomposition has been obtained, the different blocks must be solved in
sequence. An original approach of this type has been introduced in 1998 [2] and
improved in 2003 [23]. Inter-Block Backtracking (IBB) follows the partial order
between blocks yielded by the decomposition, and calls a solver to compute the
solutions in every block. IBB combines the obtained partial solutions to build the
solutions of the problem.

1.1 Contributions

The new versions of IBB described in this paper make use of our new interval-based
library called Ibex [4, 5].

• Ibex allows IBB to become reliable (no solution is lost) while still gaining one
or several orders of magnitude w.r.t. solving the system as a whole.

• An extensive comparison on a sample of decomposed numerical CSPs allows
us to better understand the behavior of IBB and its interaction with interval
analysis.

• The use of an interval Newton operator inside blocks has the most positive
impact on the robustness and performance of IBB. Interval Newton modifies



Constraints (2010) 15:93–116 95

the influence of other features, such as intelligent backtracking and filtering on
the whole system (inter-block filtering—IBF).

• An incremental implementation of inter-block filtering leads to a better perfor-
mance.

• It is counterproductive to filter inside blocks with 3B [19] rather than with 2B.
However, first experiments show that using 3B only inside large blocks might
be fruitful.

2 Assumptions

We assume that the systems have a finite set of solutions. This condition also holds
on every sub-system (block), which allows IBB to combine together a finite set of
partial solutions. Usually, to produce a finite set of solutions, a system must contain
as many equations as variables. In practice, the problems that can be decomposed
are often under-constrained and have more variables than equations. However, in
existing applications, the problem is made square by assigning an initial value to a
subset of variables called input parameters. The values of input parameters may be
given by the user (e.g., in robotics, the degrees of freedom, determined during the
design of the robot, serve to pilot it), read on a sketch, or are given by a preliminary
process (e.g., in scene reconstruction [26]).

3 Description of IBB

IBB works on a Directed Acyclic Graph of blocks (in short DAG) produced by
any decomposition technique. A block i is a sub-system containing equations and
variables. Some variables in i, called input variables (or parameters), are replaced by
values when the block is solved. The other variables are called (output) variables.
There exists an arc from a block i to a block j iff an equation in j involves at least one
input variable assigned to a “value” in i. The block i is called a parent of j. The DAG
implies a partial order in the solving process.

3.1 Example

To illustrate the principle of IBB, we take the 2D mechanical configuration example
introduced in [2] (see Fig. 1). Various points (white circles) are connected with rigid
rods (lines). Rods impose a distance constraint between two points. Point h (black
circle) is attached to the rod 〈g, i〉. The distance from h to i is one third of the distance
from g to i. Finally, point d is constrained to slide on the specified line. The problem
is to find a feasible configuration of the points so that all constraints are satisfied. An
equational decomposition method produces the DAG shown in Fig. 1-right. Points a,
c and j constitute the input parameters (see Section 2).



96 Constraints (2010) 15:93–116

c

b

a

e f

g i

j

d

h

xb,yb

xa,ya xc,yc

xe,ye xf,yf

xg,yg

xh,yh

xi,y i

xj,y j

yd

1

2

4

3

5

Fig. 1 Didactic problem and its DAG

3.2 Description of IBB[BT]

The algorithm IBB[BT] is a simple version of IBB based on a chronological
backtracking (BT). It uses several arrays:

• solutions[i,j] is the j th solution of block i.
• #sols[i] is the number of solutions in block i.
• solIndex[i] is the index of the current solution in block i (between 0 and

#sols[i] −1).
• assignment[v] is the current value assigned to variable v.

Respecting the order of the DAG, IBB[BT] follows one of the induced total
orders, yielded by the list blocks. The blocks are solved one by one. The procedure
BlockSolve computes the solutions of blocks[i]. It stores them in solutions

and computes #sols[i], the number of solutions in block i. The found solutions
are assigned to block i in a combinatorial way. (The procedure assignBlock

instantiates the variables in the block: it updates assignment with the values given
by solutions [i, solIndex[i] ].) The process proceeds recursively to the
next block i + 1 until a solution for the last block is found: the values in assignment
are then stored by the procedure storeTotalSolution. Of course, when a block
has no (more) solution, we have to backtrack, i.e., the next solution of block i − 1 is
chosen, if any.



Constraints (2010) 15:93–116 97

The reader should notice a significant difference between IBB[BT] and the chro-
nological backtracking schema used in finite-domain CSPs. The domains of variables
in a CSP are static, whereas the set of solutions of a given block may change every
time it is solved. Indeed, the system of equations itself may change from a call to
another because the input variables, i.e., the parameters of the equation system,
may change. This explains the use of the variable recompute set to true when the
algorithm goes to a block downstream.

Let us emphasize this point on the didactic example. IBB[BT] follows one total
order, e.g., block 1, then 2, 3, 4, and finally 5. Calling BlockSolve on block 1 yields
two solutions for xb . When one replaces xb by one of its two values in the equations
of subsequent blocks (2 and 3), these equations have a different coefficient xb . Thus,
in case of backtracking, block 2 must be solved twice, and with different equations,
one for each value of xb .

4 IBB with interval-based techniques

IBB can be used with any type of solver able to compute all the solutions of a system
of equations (over the real numbers). In a long term, we intend to use IBB for solving
systems of geometric constraints in CAD applications. In such applications, certain
blocks will be solved by interval techniques while others, corresponding to theorems
of geometry, will be solved by parametric hard-coded procedures obtained (off-
line) by symbolic computation. In this paper, we consider only interval-based solving
techniques, and thus view IBB as an interval-based algorithm for solving decomposed
systems of equations.



98 Constraints (2010) 15:93–116

4.1 Background in interval-based techniques

We present here a brief introduction of the most common interval-based operators
used to solve a system of equations. The underlying principles have been developed
in interval analysis and in constraint programming communities.

The whole system of equations, as well as the different blocks in the decomposi-
tion, are viewed as numerical CSPs.

Definition 1 A numerical CSP P = (X, C, B) contains a set of constraints C and a
set X of n variables. Every variable xi ∈ X can take a real value in the interval xi

(B = x1 × ... × xn). A solution of P is an assignment of the variables in V such that
all the constraints in C are satisfied.

The n-set of intervals B is represented by an n-dimensional parallelepiped called
a box. Since real numbers cannot be represented in computer architectures, the
bounds of an interval xi should actually be defined as floating-point numbers. A
solving process reduces the initial box until a very small box is obtained. Such a box
is called an atomic box in this paper. In theory, an interval could be composed by
two consecutive floats in the end. In practice, the process is interrupted when all the
intervals have a width less than w_biss, where w_biss is a user-defined parameter.
It is worthwhile noting that an atomic box does not necessarily contain a solution.
Indeed, evaluating an equation with interval arithmetic may prove that the equation
has no solution (when the image of the corresponding box does not contain 0), but
cannot assert that there exists a solution in the box. However, several operators from
interval analysis can often certify that there exists a solution inside an atomic box.

Our interval-based solver Ibex uses interval-based operators to handle the blocks
(BlockSolve). In the most sophisticated variant of IBB, the following three steps
are iteratively performed. The process stops when an atomic box of size less than
w_biss is obtained.

1. Bisection: One variable is chosen and its domain is split into two intervals (the
box is split along one of its dimensions). This yields two smaller sub-CSPs which
are handled in sequence. This makes the solving process combinatorial.

2. Filtering/propagation: Local information is used on constraints handled indi-
vidually to reduce the current box. If the current box becomes empty, the
corresponding branch (with no solution) in the search tree is cut [17, 19, 25].

3. Interval analysis/unicity test: Such operators use the first and/or second deriva-
tives of the functions. They produce a “global” filtering on the current box. If
additional conditions are fulfilled, they may ensure that a unique solution exists
inside the box, thus avoiding further bisection steps.

4.2 Filtering/propagation

Propagation is performed by an AC3-like fixed-point algorithm. Several types of
filtering operators reduce the bounds of intervals (no gap is created in the cur-
rent box). The 2B-consistency (also known as Hull-consistency—HC) and the
Box-consistency [25] algorithms both consider one constraint at a time (like
AC3) and reduce the bounds of the involved variables. Box-consistency uses
an iterative process to reduce the bounds while 2B-consistency uses projection



Constraints (2010) 15:93–116 99

functions. The more expensive job performed by Box-consistency may pay when
the equations contain several occurrences of a same variable. This is not the case with
our benchmarks which are mostly made of equations modeling distances between
2D or 3D points, and of other geometric constraints. Hence, Box-consistency
has been discarded. The 3B-consistency [19] algorithm uses 2B-consistency
as a sub-routine and a refutation principle (shaving; similar to the Singleton Arc
Consistency [6] in finite domains CSPs) to reduce the bounds of every variable
iteratively. On the tested benchmarks our experiments have led us to use the
2B-consistency operator (and sometimes 3B-consistency) combined with an
interval Newton.

4.3 Interval analysis

We have implemented in our library the interval Newton (I-Newton) operator [22].
I-Newton is an iterative numerical process, based on the first derivatives of
equations, and extended to intervals. Without detailing this algorithm, it is worth
understanding the output of I-Newton. Applied to a box B0, I-Newton provides
three possible answers:

1. When the Jacobian matrix is not strongly regular, the process is immediatly
interrupted and B0 is not reduced [22]. This necessarily occurs when B0 contains
several solutions. Otherwise, different iterations modify the current box Bi to
Bi+1.

2. When Bi+1 exceeds Bi in at least one dimension, Bi+1 is intersected with Bi

before the next iteration. No existence or unicity property can be guaranteed.
3. When the box Bi+1 is included in Bi, then Bi+1 is guaranteed to contain a unique

solution (existence and unicity test).

In the last case, when a unique solution has been detected, the convergence onto
an atomic box of width w_biss in the subsequent iterations is very fast, i.e.,
quadratic. Moreover, the width of the obtained atomic box is often very small (even
less than w_biss), which highlights the significant reduction obtained in the last
iteration (see Table 3).

4.4 Interval techniques and block solving

Let us stress a characteristic of the systems corresponding to blocks when they are
solved by interval-based techniques: the equations contain coefficients that are not
punctual but (small) intervals. Indeed, the solutions obtained in a given block are
atomic boxes and become parameters of subsequent blocks. For example, the two
possible values for xb in block 1 are replaced by atomic boxes in block 2. This
characterictic has several consequences.

The precision sometimes decreases as long as blocks are solved in sequence. A
simple example is the a 1 × 1 block x2 = p where the parameter p is [0, 10−10]. Due to
interval arithmetics, solving the block yields a coarser interval [−10−5, 10−5] for x. Of
course, these pathological cases related to the proximity to 0, occur occasionally and,
as discussed above, interval analysis renders the problem more seldom by sometimes
producing tiny atomic boxes.



100 Constraints (2010) 15:93–116

The second consequence is that it has no sense to talk about a unique solution
when the parameters are not punctual and can thus take an infinite set of possible real
values. Fortunately, the unicity test of I-Newton still holds. Generalizing the unicity
test to non punctual parameters has the following meaning: if one takes any punctual
real value in the interval of every parameter, it is ensured that exactly one point
inside the atomic box found is a solution. Of course, this point changes according
to the chosen punctual values. Although this proposition has not been published
(to our knowledge), this is straightforward to extend the “punctual” proof to systems
in which the parameters are intervals.

Remark In the old version using the IlcInterval library of Ilog Solver [23], the
unicity test was closely associated to the Box-consistency. We now know that the
benefit of mixing Box and 2B was not due to the Box-consistency itself, but to
the unicity test that avoided bisection steps in the bottom of the search tree. It was
also due to the use of the centered form of the equations that produced additional
pruning.

4.5 Inter-block filtering (IBF)

In all the variants of IBB, it is possible to add an inter-block filtering (IBF) process:
instead of limiting the filtering process (e.g., 2B) to the current block i, we apply the
filtering process to the entire system.

In Section 6.2, we will detail a more incremental version of IBF, called IBF+, in
which the filtering process is applied to only certain blocks, called friend blocks (those
that can be filtered).

5 Different versions of IBB

Since 1998, several variants of IBB have been implemented [2, 23]. We can classify
them into three main categories from the simplest one to the most sophisticated one.
They differ in the way they manage, during the search for solutions, the current block
(with procedure BlockSolve) and the other blocks of the system.

The third version IBBc is the most sophisticated one. It corresponds to the
pseudo-code described in Section 3.2. IBBc defines one system per block in the
decomposition. Data structures are used to manage the inter-block backtracking: for
storing and restoring solutions of blocks, domains of variables and so on.

The first two versions are sufficiently simple to be directly integrated into Ibex.
IBBa can be viewed as a new splitting heuristic in a classical interval-based solving

algorithm handling the whole system.

• IBBa handles the entire system of equations as a numerical CSP. Most of the
operations, such as 2B or I-Newton, are thus applied to the whole system so
that IBBa necessarily calls inter-block filtering.

• The decomposition (i.e., the DAG of blocks) is just used to feed the new splitting
heuristic. IBBa can choose the next variable to be split only inside the current
block i. The specific variable inside the block i is chosen with a standard round

robin strategy.



Constraints (2010) 15:93–116 101

The second version IBBb is a bit more complicated and manages two systems at
a time: the whole system, like for IBBa, but also the current block which is managed
as an actual system of equations by Ibex. Like for IBBa, bisections are done in the
whole system (selecting one variable in the current block). Also, it is possible to run
a filtering process on the whole system, implementing a simple version of inter-block
filtering.

Contrarily to IBBa:

• It is possible to de-activate interblock-filtering (in the whole system).
• It is possible to run 2B and/or I-Newton in the current block only.

When 2B is run both in the current block and in the entire system (IBF), the two
filtering processes are managed as follows. First, 2B is run on the current block until
a fixed-point is reached. Second, 2B is run on the entire system.

The experiments will show that IBBa is not competitive with the other two ver-
sions because IBBa cannot run I-Newton in the current block. They also will show
that IBBc is more robust than IBBb and can incorporate the sophisticated features
described below.

6 Advanced features in IBBc

The following sections mention or detail how are implemented advanced features in
IBBc (called IBB for simplicity): intelligent backtracking, the recompute condition

which is a simple way to exploit the partial order between blocks provided by the
decomposition, a sophisticated variant of inter-block filtering. We also detail the
advantages of using interval-Newton inside blocks.

6.1 Exploiting the DAG of blocks

As shown in Section 3.2, IBB[BT] uses only the total order between blocks and
forgets the actual dependencies between them. However, IBBc is flexible enough to
exploit the partial order between blocks. Figure 1-right shows an example. Suppose
block 5 had no solution. Chronological backtracking would go back to block 4, find
a different solution for it, and solve block 5 again. Clearly, the same failure will be
encountered again in block 5.

It is explained in [2] that the Conflict-based Backjumping and Dynamic backtrack-

ing schemes cannot be used to take into account the structure given by the DAG.
Therefore, an intelligent backtracking, called IBB[GPB], was introduced, based on
the partial order backtracking [2, 20]. In 2003, we have also proposed a simpler
variant IBB[GBJ] [14] based on the Graph-based BackJumping (GBJ) proposed
by Dechter [7].

However, there is an even simpler way to exploit the partial order yielded by the
DAG of blocks: the recompute condition. This condition states that it is useless to
recompute the solutions of a block with BlockSolve if the parent variables have
not changed. In that case, IBB can reuse the solutions computed the last time the
block has been handled. In other words, when handling the next block i + 1, the
variable recompute is not always set to true (see Section 3.2). This condition has



102 Constraints (2010) 15:93–116

been implemented in IBB[GBJ] and in IBB[BT]. In the latter case, the variant is
named IBB[BT+].

Let us illustrate how IBB[BT+] works on the didactic example. Suppose that the
first solution of block 3 has been selected, and that the solving of block 4 has led to no
solution. IBB[BT+] then backtracks on block 3 and the second position of point f

is selected. When IBB[BT+] goes down again to block 4, that block should normally
be recomputed from scratch due to the modification of f . But x f and y f are not
implied in equations of block 4, so that the two solutions of block 4, which had been
previously computed, can be reused. It is easy to avoid this useless computation by
using the DAG: when IBB goes down to block 4, it checks that the parent variables xe

and ye have not changed.

Remark Contrarily to IBBa and IBBb , the recompute condition can be incorporated
into IBBc thanks to the management of sophisticated data structures.

6.2 Sophisticated implementation of inter-block filtering (IBF+)

IBF is integrated into IBBb and IBBc in the following way. When a bisection is
applied to a variable in a given block i, the filtering operators described above, i.e.,
2B and I-Newton, are first called inside the block. Second, IBF is launched on the
entire system.

In the latest versions of IBBb and IBBc, IBF is launched in a more incremental
way. The underlying local filtering (e.g., 2B) is run with a propagation queue initially
filled with only the variables inside the current block, which lowers the overhead
related to IBF when it is not efficient.

To perform a more sophisticated implementation of IBF, called IBF+, before
solving a block i, one forms a subsystem extracted from the friend blocks F ′

i of
block i. The filtering process will concern only the friend blocks, thus avoiding the
management of the other ones. The friend blocks of i are extracted as follows:

1. take the set Fi = {i...#blocks} containing the blocks not yet “instantiated”,
2. keep in F ′

i only the blocks in Fi that are connected to i in the DAG.1

To illustrate IBF+, let us consider the DAG of the didactic example. When block
1 is solved, all the other blocks are considered by IBF+ since they are all connected
to block 1. Any interval reduction in block 1 can thus possibly perform a reduction
for any variable of the system. When block 2 is solved, a reduction has potentially
an influence on blocks 3, 4, 5 for the same reasons. (Notice that block 3 is a friend
block of block 2 that is not downstream to block 2 in the DAG.) When block 3 is
solved, a reduction can have an influence only on block 5. Indeed, once blocks 1 and
2 have been removed (because they are “instantiated”), block 3 and 4 do not belong
anymore to the same connected component. Hence, no propagation can reach block
4 since the parent variables of block 5, which belong to block 2, have an interval of
width at most w_biss and thus cannot be reduced further.

1The orientation of the DAG is forgotten at this step, that is, the arcs of the DAG are transformed into
non-directed edges, so that the filtering can also be applied on friend blocks that are not directly
linked to block i.



Constraints (2010) 15:93–116 103

IBF+ implements only a local filtering on the friend blocks, e.g., 2B-consis-
tency on the tested benchmarks. It turns out that I-Newton is counterproductive
in IBF. First, it is expensive to compute the Jacobian matrix of the whole system.
More significantly, it is likely that I-Newton does not prune at all the search space
(except when handling the last block) because it always falls in the singular case.
As a rule of thumb, if the domain of one variable x in the last block contains two
solutions, then the whole system will contain at least two solutions until x is bisected.
This prevents I-Newton from pruning the search space. This explains why IBBa is
not competitive with the two other versions of IBB.

The experiments confirm that it is always fruitful to perform a sophisticated fil-
tering process inside blocks (i.e., 2B + I-Newton), whereas IBF or IBF+ (on the
entire system) produces sometimes, but not always, additional gains in performance.

6.3 Mixing IBF and the recompute condition

Incorporating IBF or IBF+ into IBBc[BT] is straightforward. This is not the case
for the variants of IBB with more complicated backtracking schemes. Reference [14]
gives guidelines for the integration of IBF+ into IBB[GBJ]. More generally, IBF+

adds in a sense some edges between blocks. It renders the system less sparse
and complexifies the recomputation condition. Indeed, when IBF+ is launched, the
parent blocks of a given block i are not the only exterior causes of interval reductions
inside i. The friend blocks of i have an influence as well and must be taken into
account.

For this reason, when IBF+ is performed, the recompute condition is more often
true. Since the causes of interval reductions are more numerous, it is more seldom
the case that all of them have not changed. This will explain for instance why the gain
in performance of IBB[BT+] relatively to IBB[BT] is more significant than the gain
of IBBc[BT+,IBF+] relatively to IBBc[BT,IBF+] (see experiments).

This remark holds even more for the simple IBF implementation where local fil-
tering is run on the entire system (and not only on friend blocks). In this case, the
recompute condition is simply always true, so that BT+ becomes completely ineffi-
cient and avoids the recomputation of zero block. In other terms, IBBc[BT,IBF]

and IBBc[BT+,IBF] are quasi-identical.

6.4 Discarding the non reliable midpoint heuristic

The integration of the Ibex solver underlies several improvements of IBB. As pre-
viously mentioned, using a white box allows us to better understand what happens.
Also, IBBc is now reliable. The parasitic solutions problem has been safely han-
dled (see Section 6.5) and an ancient midpoint heuristic is now abandoned. This
heuristic replaced every parameter, i.e., input variable, of a block by the midpoint
of its interval. Such a heuristic was necessary because the IlcInterval library
previously used did not allow the use of interval coefficients. Ibex accepts non
punctual coefficients so that no solution is lost anymore, thus making IBB reliable.
The midpoint heuristics would however allow the management of sharper boxes, but
the gain in running time would be less than 5% in our benchmarks. The price of
reliability is not so high!



104 Constraints (2010) 15:93–116

6.5 Handling the problem of parasitic solutions

With interval solving, parasitic solutions are obtained when:

• several atomic boxes are returned by the solver as possible solutions;
• these boxes are close one to each other;
• only one of them contains an actual solution and the others are not discarded

by filtering.

Even when the number of parasitic solutions is small, IBB explodes because of
the multiplicative effect of the blocks, i.e., because the parasitic partial solutions are
combined together. In order that this problem occurs more rarely, one can reduce
the precision (i.e., enlarge w_biss) or mix several filtering techniques together. The
use of interval analysis operators like I-Newton is also a right way to fix most of the
pathological cases (see experiments).

It appears that IBBa and IBBb are not robust against the parasitic solutions
problem that often occurs in practice. IBBc handles this problem by taking the union
of the close boxes (i.e., the hull of the boxes). IBBc considers the different blocks
separately, so that all the solutions of a block can be computed before solving the next
one. This allows IBBc to merge close atomic boxes together. Note that the previous
implementations of IBBc might lose some solutions because no hull between close
boxes was performed. Instead, only one of the close boxes was selected and might
lead to a failure in the end when the selected atomic box did not contain a solution.

6.6 Certification of solutions

As mentioned in Section 4.1, certifying the existence and the unicity of a solution
inside an atomic box returned by the solver requires interval analysis techniques.
With IBB, we use an interval Newton to contract every block and to guarantee the
solutions that are inside. IBB can thus often certify solutions of a decomposed system.
Indeed, a straightforward induction ensures that a total solution is certified iff all the

corresponding partial solutions are certified in every block.

Among the ten benchmarks studied below, only solutions of Mechanism and
Chair have not been certified.

6.7 Summary: benefit of running I-Newton inside blocks

Finally, as shown in the experiments reported below, the most significant impact on
IBB is due to the integration of an interval Newton inside the blocks:

• I-Newton has a good power of filtering, thus reducing time complexity.
• Due to its quadratic convergence, I-Newton often allows us to reach the finest

precision, i.e. an even better precision than w_biss. This is of great interest
because the solutions of a given block become coefficients (input parameters)
in blocks that are downstream in the DAG. Thus, when no I-Newton is used,
the precision may decrease during block solving, generally obtaining at the end
a precision which is worse than w_biss.
Second, with thinner input parameters, the loss in performance of IBB, as com-
pared to the use of the discarded (non reliable) midpoint heuristic, is negligible.

• I-Newton often allows us to certify the solutions.



Constraints (2010) 15:93–116 105

• Hence, the combinatorial explosion due to parasitic solutions is drastically
limited.

Moreover, the use of I-Newton alters the comparison between variants of IBB.
In particular, in the previous versions, we concluded that IBF was counterproductive,
whereas it is not always true today. Also, the interest of intelligent backtracking
algorithms is clearly put into question, which confirms the intuition shared by the
constraint programming community that a better filtering (due to I-Newton) re-
moves backtracks (and backjumps). Moreover, since I-Newton has a good filtering
power, obtaining an atomic box requires less bisections. Hence, the number of calls
to IBF is reduced in the same proportion.

7 Experiments

We have applied several variants of IBB on the benchmarks described above.

7.1 Benchmarks

Exhaustive experiments have been performed on 10 benchmarks made of geometric
constraints. They compare different variants of IBB and show a clear improvement
w.r.t. solving the whole system.

Some benchmarks are artificial problems, mostly made of quadratic distance con-
straints (Figs. 2 and 3). Mechanism and Tangent have been found in [16] and [3].
Chair is a realistic assembly made of 178 equations induced by a large variety of geo-
metric constraints: distances, angles, incidences, parallelisms, orthogonalities [14].

The DAGs of blocks for the benchmarks have been obtained either with an
equational method (abbrev. equ. in Table 1) or with a geometric one (abbrev. geo.).
Ponts and Tangent have been decomposed by both techniques.

A problem defined with a domain of width 100 (see column 6 of Table 1) is gen-
erally similar to assigning (−∞,+∞) to every domain. The intervals in Mechanism

and Sierp3 have been selected around a given solution in order to limit the total
number of solutions. In particular, the equation system corresponding to Sierp3

would have about 240 solutions, so that the initial domains are limited to a width 1.
Sierp3 is the Sierpinski fractal at level 3, that is, 3 Sierpinski at level 2 (i.e., Ponts)

Ponts
(Sierpinski2)

StarTangent
Mechanism

Fig. 2 2D benchmarks: general view



106 Constraints (2010) 15:93–116

Chair
Tetra Hour_glass

Fig. 3 3D benchmarks: general view

put together. The time spent for the equational and geometric decompositions is
always negligible, i.e., a few milliseconds for all the benchmarks.

7.2 Brief introduction to Ibex

All the tests with IBB have been conducted using the interval-based library, called
Ibex, implemented in C++ by the third author [4, 5]. The hull consistency (i.e.,
2B-consistency) is implemented with the famous HC4 that builds a syntactic
tree for every constraint [1, 17]. A “width” parameter r_hc4 must be tuned:
a constraint is pushed in the propagation queue if the projection on one of its
variables has reduced the corresponding intervals more than r_hc4 (ratio of interval
width). I-Newton is run when the largest interval in the current box has a width
less than ceiling_newton. For using 3B-consistency [19], one must specify the
width of the smallest interval that the algorithm tries to refute. This parameter
ratio_var_shave (in short r_vs) is given as a ratio of interval width. Two atomic
boxes are merged iff a unique solution has not been certified inside both and the
boxes are sufficiently close to each other, that is, for every variable, there is a distance

Table 1 Details about the benchmarks

GCSP Dim. Dec. Size Size of blocks Dom. #sols w_biss

Mechanism 2D equ. 98 98 = 1 × 10, 2 × 4, 27 × 2, 26 × 1 10 448 5.10−6

Sierp3 geo. 124 124 = 44 × 2, 36 × 1 1 198 10−8

PontsE equ. 30 30 = 1 × 14, 6 × 2, 4 × 1 100 128 10−8

PontsG geo. 38 38 = 13 × 2, 12 × 1 100 128 10−8

TangentE equ. 28 28 = 1 × 4, 10 × 2, 4 × 1 100 128 10−8

TangentG geo. 42 42 = 2 × 4, 11 × 2, 12 × 1 100 128 10−8

Star equ. 46 46 = 3 × 6, 3 × 4, 8 × 2 100 128 10−8

Chair 3D equ. 178 178 = 1 × 15, 1 × 13, 1 × 9, 5 × 8, 100 8 5.10−7

3 × 6, 2 × 4, 14 × 3, 1 × 2,

31 × 1

Tetra equ. 30 30 = 1 × 9, 4 × 3, 1 × 2, 7 × 1 100 256 10−8

Hourglass equ. 29 29 = 1 × 10, 1 × 4, 1 × 3, 10 × 1 100 8 10−8

Type of decomposition method (Dec.); number of equations (Size); Size of blocks: NxK means N
blocks of size K; Interval widths of variables (Dom.); number of solutions (#sols); bisection precision,
i.e., domain width under which bisection does not split intervals (w_biss)



Constraints (2010) 15:93–116 107

dist less than 10−2 between the two boxes (10−4 for the benchmark Star). Most of
the reported CPU times have been obtained on a Pentium IV 3 Ghz.

7.3 Interest of system decomposition

The first results show the dramatic improvement due to IBB as compared to four
interval-based solvers. All the solvers use a round-robin splitting strategy. Ilog
Solver [11] uses a filtering process mixing 2B-consistency, Box-consistency
and an interval analysis operator for certifying solutions. The relatively bad CPU
times simply show that the IlcInterval library has not been improved for several
years. They have been obtained on a Pentium IV 2.2 Ghz.

On Table 2, Ibex uses a 3B+Newton filtering algorithm. RealPaver [8, 9]
generally uses HC4+Newton filtering (better results are obtained by weak3B +

Newton only for TangentE; the weak 3B-consistency is described in [8]) The 3B

operator of Ibex behaves better than that of RealPaver on these benchmarks
essentially because it manages a parameter r_vs which is a ratio of interval and
not a fixed width. Note that RealPaver uses the default values of the different
parameters. We have also applied the Quad operator [18] that is sometimes very
efficient to solve polynomial equations. This operator appears to be very slow on the
tested benchmarks.

7.3.1 Tuning parameters

We would like to stress that it is even easier to tune the parameters used by IBB with
Ibex (i.e., r_hc4 and ceiling_newton) than the parameters used by Ibex applied
to the entire system (i.e., r_hc4, ceiling_newton and ratio_var_shave).
First, there is one less parameter to be tuned with IBB. Indeed, as shown in
Section 7.7, this is counterproductive (w.r.t. CPU time) to use 3B-consistency with
IBB. Second, the value of ceiling_newton can have a significant impact on CPU

Table 2 Interest of IBB

GCSP Ibex RealPaver Ilog IBBc IBBb
Ibex
I BB Precision

Solver [BT+] [BT,IBF]

Mechanism > 4000 (117) XXX > 4000 1.55 1.65 75 2.10−5

Sierp3 36 > 4000 > 4000 4 1.08 33 4.10−11

Chair > 4000 XXX > 128 eq. 0.36 1.36 > 104 10−7

Tetra 18.2 42 > 4000 0.96 1.42 19 2.10−14

PontsE 7.2 6.9 103 0.97 1.21 7 7.10−14

PontsG 3.2 1.9 294 1.52 0.43 8 10−13

Hourglass 0.25 0.32 247 0.019 0.029 13 10−13

TangentE 9.6 22∗ 191 0.15 0.15 64 5.10−14

TangentG 14.6 XXX XXX 0.10 0.16 146 4.10−14

Star 18.8 12 1451 0.18 0.15 125 2.10−11

The columns in the left report the times (in seconds) spent by three interval-based solvers to handle
the systems globally. The column IBBc[BT+] and IBBb[BT,IBF] report the CPU times obtained
by two interesting variants of IBB. Gains of at least one order of magnitude are highlighted by the
column Ibex/IBB. The last column reports the size of the obtained atomic boxes. The obtained
precision is often better than the specified parameter w_biss (see Table 1) thanks to the use of
I-Newton. An entry XXX means that the solver is not able to isolate solutions (see Section 6.5)



1
0
8

C
o

n
stra

in
ts

(2
0
1
0
)

1
5
:9

3
–
1
1
6

Table 3 Variants of IBB with HC4+Newton filtering inside blocks

GCSP 1 2 3 4 5 6 7

IBBb[BT] IBBc[BT] IBBa[BT,IBF] IBBb[BT,IBF] IBBc[BT,IBF+] IBBc[BT+] IBBc[BT+,IBF+]

Mechanism 146 160 11000 165 196 155 195

22803 22803 35007 22111 22111 22680 22066

1635 1635 – 1629 1629 1544 1156

Sierp3 317 628 29660 108 307 402 258

35685 35685 2465 5489 5484 19454 4354

21045 21045 – 4272 4272 12242 3455

Chair 94 97 1080 136 163 36 127

7661 7661 6601 6825 6825 2368 4304

344 344 – 344 344 97 148

Tetra 108 109 4370 142 142 96 127

10521 10521 66933 9843 9843 9146 8568

235 235 – 235 235 100 100

PontsE 99 100 706 121 123 97 118

6103 6103 23389 5880 5880 5986 5776

131 131 – 115 115 79 67



C
o

n
stra

in
ts

(2
0
1
0
)

1
5
:9

3
–
1
1
6

1
0
9

PontsG 147 233 224 43 71 152 71

14253 14253 4505 2669 2669 7154 2669

9283 9283 – 1155 1155 6585 1155

Hourglass 2.1 2.7 18 2.9 4.2 1.9 4.2

59 59 341 59 59 48 59

57 57 – 53 53 35 53

TangentE 11 15 5370 15 21 15 21

313 313 40747 308 308 304 308

427 427 – 427 427 423 427

TangentG 12 16 XXX 16 24 10 24

817 817 – 817 816 102 817

411 411 – 411 411 238 396

Star 31 35 2400 15 20 18 6

2475 2475 5243 1347 1347 1534 192

457 457 – 254 254 325 34

Every entry contains three values: (top) the CPU time for obtaining all the solutions (in hundredths of second); (middle) the total number of bisections performed
by the interval solver; (bottom) the total number of times BlockSolve is called



110 Constraints (2010) 15:93–116

time with a global solving while it is not the case with IBB. Overall, a user of IBB
must finely tune only the parameter r_hc4 used by HC4.

Table 3 reports the main results we have obtained with several variants of IBB.
Tables 4, 5 and 6 highlight specific points.

7.4 Poor results obtained by IBBa

Table 3 clearly shows that IBBa is not competitive with IBBb and IBBc. As shown
in Table 2, the results in CPU time obtained by IBBa are close to or better than
those obtained by Ibex applied to the entire system (with 3B, I-Newton and a
round-robin splitting strategy): Tables 2 and 6 underline that IBBa is able to render
Mechanism and Chair tractable.

Table 6 also reports the results obtained by IBBa with 3B (i.e., IBF is performed
by 3B). Recall that IBBa can be viewed as a splitting strategy driven by the decom-
position into blocks (i.e., a total order between blocks). Thus, these results mainly
underline that the IBBa splitting heuristic is better than round-robin. We see below
that a relevant filtering inside blocks, performed in IBBb and IBBc, bring an even
better performance.

7.5 IBBb versus IBBc

IBBa is significantly less efficient than IBBb and IBBc because it does not use
I-Newton inside blocks.

The comparison between IBBb and IBBc can be summed up in several points
mainly deduced from Tables 3 and 5:

• All the variants of IBBb and IBBc obtain similar results on all the benchmarks
(provided that HC4+Newton filtering is used inside blocks).

• IBBb is a simpler implementation of IBB than IBBc. The main reason is that
no sophisticated data structures are used by IBBb . This explains that the CPU
times obtained by IBBb[BT] are better than those obtained by IBBc[BT]

(see columns 1 and 2 in Table 3). Also, IBBb[BT,IBF] is more efficient than
IBBb[BT,IBF] (compare column 4 of Table 3 and column 2 of Table 5).

Table 4 No interest of intelligent backtracking

GCSP IBBc IBBc IBBc IBBb IBBc IBBc IBBc

[BT] [BT+] [GBJ] [BT,IBF] [BT,IBF+] [BT+,IBF+] [GBJ,IBF+]

Sierp3 628 402 288 108 307 258 252

35684 19454 13062 5489 5484 4354 4260

21045 12242 8103 4272 4272 3455 3175

BJ=2974 BJ=135

Star 35 18 17 15 20 6 6

2474 1534 1500 1347 1346 192 192

457 325 277 254 254 34 34

BJ=6 BJ=0

The number of backjumps is drastically reduced by the use of IBF (6 → 0 on Star; 2974 →

135 on Sierp3). The times obtained with IBF are better than or equal to those obtained with
intelligent backtracking schemes. Only a marginal gain is obtained by IBBc[GBJ,IBF+] w.r.t.
IBBc[BT+,IBF+] for Sierp3



Constraints (2010) 15:93–116 111

Table 5 Comparison between
IBF and IBF+ in IBBc

GCSP IBBc IBBc IBBc IBBc

[BT+] [BT(+),IBF] [BT,IBF+] [BT+,IBF+]

Mechanism 155 199 196 195

22680 22111 22111 22066

1544 1629 1629 1156

Sierp3 402 828 307 258

19454 5484 5484 4354

12242 4272 4272 3455

Chair 36 226 163 127

2368 6840 6825 4304

97 344 344 148

Tetra 96 149 142 127

9146 9842 9843 8568

100 235 235 100

PontsE 97 126 123 118

5986 5880 5880 5776

79 115 115 67

PontsG 152 126 71 71

7154 2669 2669 2669

6585 1155 1155 1155

Hourglass 1.9 5.5 4.2 4.2

48 59 59 59

35 53 53 53

TangentE 15 32 21 21

304 308 308 308

423 427 427 427

TangentG 10 39 24 24

102 816 816 816

238 411 411 396

Star 18 32 20 6

1534 1347 1347 192

325 254 254 34

Thus, a same IBB algorithm is better implemented by the IBBb scheme.
• Using the BT+ backtracking scheme (related to the recompute solution) is always

better than using the standard BT. The overhead is negligible and it avoids
solving some blocks (compare for instance the number of solved blocks in
columns 2 and 6 of Table 3).
This is a good argument in favor of the IBBc version.

• Tables 3 and 5 shows that the interest of IBF is not clear. However, it seems that
IBF is useful for hard instances for which a lot of choice points lead to failure and
backtracking. For instance, Chair has only 8 solutions and implies thrashing in
the search tree.
Table 4 reports the only two benchmarks for which backjumps actually occur
with an intelligent backtracking. It shows that the gain obtained by an intelligent
backtracking (IBB[GBJ])) is compensated by a gain in filtering with IBF.
Note that IBF was clearly counterproductive in old versions of IBB that did not
use I-Newton to filter inside blocks. Indeed, a smaller filtering power implied
more bisections and thus a larger number of calls to IBF.

Overall, the four versions of IBB that are the most efficient are IBBb[BT],
IBBb[BT,IBF], IBBc[BT+], IBBc[BT+,IBF+] (see Tables 2 and 5).



1
1
2

C
o

n
stra

in
ts

(2
0
1
0
)

1
5
:9

3
–
1
1
6

Table 6 Use of 3B

GCSP Ibex-2B Ibex-3B IBBa[BT,IBF-2B] IBBa[BT,IBF-3B] IBBc[BT+]-2B IBBc[BT+]-3B IBBc[BT+]-3B>8

Mechanism >400000 >400000 11000 17300 155 389 156

– – 22680 35007 2435 4236 23452

– – – – 1544 1544 1544

Sierp3 >400000 3580 29660 3850 402 1028 –

– 453 2465 551 19454 12138 –

– – – – 12242 12242 –

Chair >400000 >400000 1080 4040 36 80 35

– – 6601 329 2368 144 1458

– – – – 97 97 97

Tetra 75900 1820 4370 1310 96 123 80

3409073 1337 66933 1999 9146 350 570

– – – – 100 100 100

PontsE 1070 720 706 354 97 117 117

34457 843 23389 383 5986 320 334

– – – – 79 79 79



C
o

n
stra

in
ts

(2
0
1
0
)

1
5
:9

3
–
1
1
6

1
1
3

PontsG 623 317 224 306 152 400 –

26099 407 4505 561 7154 5662 –

– – – – 6585 6585 –

Hourglass 32 25 18 25 1.9 3.6 2.2

285 27 341 35 48 20 46

– – – – 35 35 35

TangentE 17800 960 5370 260 15 39 –

568189 2457 40747 325 304 254 –

– – – – 423 423 –

TangentG XXX 1460 XXX 380 10 18 –

– 543 – 389 102 38 –

– – – – 238 238 –

5240 1880 2400 1950 18 42 –

Star 28445 615 5243 691 1534 1126 –

– – – – 325 324 –

The columns 2 and 3 report the results obtained by Ibex on the entire system with resp. 2B filtering and 3B filtering. Columns 4 and 5 report the results obtained
by IBBa with IBF performed resp. by 2B and 3B. For obtaining the last three columns, one investigated three different approaches for filtering inside blocks: with
2B, with 3B and with a mixed approach: 2B is used for blocks of size less than 9 and 3B is used for the largest blocks



114 Constraints (2010) 15:93–116

Two other points must be considered for a fair comparison between these four
versions of IBB.

Since IBBb[BT,IBF] uses an incremental IBF (i.e., pushing initially in the propa-
gation queue only the variables of the current block), the overhead w.r.t. IBBb[BT]

is small: it is less than 50% when IBF does not reduce anything. If you compare the
numbers of bisections and solved blocks in columns 1 and 4 of Table 3, these numbers
are close in the two columns for Mechanism, Chair, Tetra, PontsE, Hourglass,
TangentE, TangentG, which indicates that IBF prunes nothing or only a few.
However, the loss in performance of IBBb[BT, IBF] lies (only) between 15% and
50%. The gain for the three other instances is substantial.

This suggests than IBBb[BT,IBF] is more robust (w.r.t. the CPU time com-
plexity) than IBBb[BT], making it more attractive.

The second point cannot be deduced from the tables because it is related to
robustness.

Experiments with old versions of IBB without I-Newton inside blocks clearly
showed the combinatorial explosion of IBBb involved by the parasitic solution
problem. The use of I-Newton limits this problem, except for Mechanism. Instead
of computing the 448 solutions, IBBb[BT] and IBBb[BT,IBF] compute 680 solu-
tions because it is not endowed with the parasitic solutions merging. However, it is
important to explain that the problem needed also to be fixed by manually selecting
an adequate value for the parameter w_biss. In particular, IBBb undergoes a
combinatorial explosion on Chair and Mechanism when the precision is higher
(i.e., when w_biss is smaller). On the contrary, the IBBc version automatically
adjusts w_biss in every block according to the width of the largest input variable
(parameter) interval. IBBc is thus more robust than IBBb and can add sophisticated
features such as solution merging, the recompute condition and a finer implementa-
tion of IBF (with friend blocks).

These observations lead us to recommend 2 (or 3) versions of IBB:

• IBBb[BT,IBF] which is simple to be implemented (available in Ibex) and is
often efficient when I-Newton behaves well;

• the more sophisticated version IBBb[BT+] (generally without and sometimes
with IBF+) that is very useful when the interval-based solver cannot isolate
solutions.

The following sections detail some points leading to the above recommendation.

7.6 IBF versus IBF+

Table 5 clearly shows that the IBF+ implementation, that can only be used with IBBc,
leads to gains in performance w.r.t. the simple IBF.

One can also observe that IBF+ lowers the interest of BT+ w.r.t. to BT.

7.7 IBB and 3B

Table 6 yields some indications about the interest of 3B. The columns 2 and 3 suggest
that 3B applied to the entire system seems fruitful on sparse systems. It is even
generally better than IBBa (with 2B). This suggests that a strong filtering process
(i.e., 3B) has about the same impact as a good splitting strategy (i.e., IBBa).



Constraints (2010) 15:93–116 115

The last three columns explain why we have chosen 2B and not 3B to filter inside
blocks. The last column reports a new experiment in which 3B is used only on the
largest blocks. Indeed, due to combinatorial considerations, we believe that 3B can
seldom be efficient for handling small systems [24]. The first results are not very
convincing, but experiments must be performed on more benchmarks.

Although not reported, we have also experimented IBBa and IBBb whose IBF is
implemented with 3B. This variant is counterproductive, but seems to be more ro-
bust, that is, IBB can more easily isolate solutions (when I-Newton is not effective).
For instance, it does not require merging close atomic boxes of Mechanism to find
exactly 448 solutions.

8 Conclusion

In this article, we have proposed new versions of IBB that use the new interval-based
library Ibex. Discarding the old midpoint heuristic has rendered IBB reliable.

The main impact on robustness and performance is due to the combination of
local filtering (e.g., 2B) and interval analysis operators (e.g., interval Newton) inside
blocks. Using 3B instead of 2B seems not promising except maybe for large blocks,
as shown by first experiments.

Two other advanced features have shown their efficiency to limit choice points
during search: inter-block filtering (IBF) and the recompute condition that avoids
solving some blocks during search (BT+). We are now able to provide clear recom-
mendations about these features.

• The best implementation of IBF (IBF+) is based on the computation of the
subset of blocks that can actually be filtered when the current block is handled.

• It is not easy to know in advance which feature among IBF+ and BT+ has the
greatest impact on time complexity. In addition, using IBF+ makes BT+ less
effective.

• Inter-block backtracking schemes that are more sophisticated than BT+, such as
GBJ and GPB, have not proven their efficiency, especially thanks to the use of
IBF that removes most of the potential backjumps.

Thus, we recommend two versions of IBB. First, IBBb[BT,IBF] is a simple
implementation directly available in Ibex [4, 5]. It is very simple, very fast (the
overcost in CPU time related to the call to IBF is always less than 50% and sometimes
pays off significantly). It works well when I-Newton inside blocks can isolate
solutions. Second, IBBc[BT+] (or IBBb[BT,IBF+]) is a more sophisticated version
that makes the approach more robust when I-Newton cannot certify or isolate
solutions.

In addition to the dramatic gain in performance w.r.t. a global solving, IBB is
simpler to be tuned. Indeed, only the parameter r_hc4 used by HC4 needs to be
finely tuned.

Apart from minor improvements, IBB is now mature enough to be used in CAD
applications. Promising research directions are the computation of sharper Jacobian
matrices (because, in CAD, the constraints belong to a specific class) and the design
of solving algorithms for equations with non punctual coefficients.



116 Constraints (2010) 15:93–116

References

1. Benhamou, F., Goualard, F., Granvilliers, L., & Puget, J.-F. (1999). Revising hull and box
consistency. In ICLP (pp. 230–244).

2. Bliek, C., Neveu, B., & Trombettoni, G. (1998). Using graph decomposition for solving continu-
ous CSPs. In Proc. CP’98, LNCS (Vol. 1520, pp. 102–116).

3. Bouma, W., Fudos, I., Hoffmann, C. M., Cai, J., & Paige, R. (1995). Geometric constraint solver.
Computer Aided Design, 27(6), 487–501.

4. Chabert, G. (2009). Ibex—An Interval based EXplorer. www.ibex-lib.org.
5. Chabert, G., & Jaulin, L. (2009). Contractor programming. Artificial Intelligence. Accessed 18

March 2009.
6. Debruyne, R., & Bessière, C. (1997). Some practicable filtering techniques for the constraint

satisfaction problem. In Proc. of IJCAI (pp. 412–417).
7. Dechter, R. (1990). Enhancement schemes for constraint processing: Backjumping, learning, and

cutset decomposition. Artificial Intelligence, 41(3), 273–312.
8. Granvilliers, L. (2003). RealPaver user’s manual, version 0.3. University of Nantes.

www.sciences.-univ-nantes.fr/info/perso/permanents/granvil/realpaver.
9. Granvilliers, L., & Benhamou, F. (2006). RealPaver: An interval solver using constraint satisfac-

tion techniques. ACM Transactions on Mathematical Software, 32(1), 138–156.
10. Hoffmann, C., Lomonossov, A., & Sitharam, M. (1997). Finding solvable subsets of constraint

graphs. In Proc. constraint programming CP’97 (pp. 463–477).
11. ILOG, Av. Galliéni, Gentilly (2000). Ilog solver V. 5, users’ reference manual.
12. Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied interval analysis. New York:

Springer.
13. Jermann, C., Neveu, B., & Trombettoni, G. (2003). Algorithms for identifying rigid subsystems

in geometric constraint systems. In Proc. IJCAI (pp. 233–38).
14. Jermann, C., Neveu, B., & Trombettoni, G. (2003). Inter-Block backtracking: Exploiting the

structure in continuous CSPs. In Proc. of 2nd int. workshop on global constrained optimization
and constraint satisfaction (COCOS’03).

15. Jermann, C., Trombettoni, G., Neveu, B., & Mathis, P. (2006). Decomposition of geometric
constraint systems: A survey. International Journal of Computational Geometry and Applications
(IJCGA), 16(5–6), 379–414.

16. Latham, R. S., & Middleditch, A. E. (1996). Connectivity analysis: A tool for processing geomet-
ric constraints. Computer Aided Design, 28(11), 917–928.

17. Lebbah, Y. (1999). Contribution à la résolution de contraintes par consistance forte. Ph.D. thesis,
Université de Nantes.

18. Lebbah, Y., Michel, C., Rueher, M., Daney, D., & Merlet, J. P. (2005) Efficient and safe global
constraints for handling numerical constraint systems. SIAM Journal on Numerical Analysis,
42(5), 2076–2097.

19. Lhomme, O. (1993). Consistency techniques for numeric CSPs. In IJCAI (pp. 232–238).
20. McAllester, D. A. (1993). Partial order backtracking. Research note, artificial intelligence labo-

ratory, MIT. ftp://ftp.ai.mit.edu/people/dam/dynamic.ps.
21. Merlet, J.-P. (2002). Optimal design for the micro parallel robot MIPS. In Proc. of IEEE

international conference on robotics and automation, ICRA ’02, Washington DC, USA (Vol. 2,
pp. 1149–1154).

22. Neumaier, A. (1990). Interval methods for systems of equations. Cambridge: Cambridge
University Press.

23. Neveu, B., Jermann, C., & Trombettoni, G. (2005). Inter-Block backtracking: Exploiting the
structure in continuous CSPs. In Selected papers in the 2nd int. worksh. on global constrained
optimization and constraints, COCOS, LNCS (Vol. 3478, pp. 15–30).

24. Trombettoni, G., & Chabert, G., (2007). Constructive interval disjunction. In Proc. of CP (pp.
635–650).

25. Van Hentenryck, P., Michel, L., & Deville Y. (1997). Numerica: A modeling language for global
optimization. Cambridge: MIT.

26. Wilczkowiak, M., Trombettoni, G., Jermann, C., Sturm, P., & Boyer, E. (2003). Scene modeling
based on constraint system decomposition techniques. In Proc. ICCV.

http://www.ibex-lib.org
http://www.sciences.univ-nantes.fr/info/perso/permanents/granvil/realpaver
ftp://ftp.ai.mit.edu/people/dam/dynamic.ps

	Improving inter-block backtracking with interval Newton
	Abstract
	Introduction
	Contributions

	Assumptions
	Description of IBB
	Example
	Description of IBB[BT]

	IBB with interval-based techniques
	Background in interval-based techniques
	Filtering/propagation
	Interval analysis
	Interval techniques and block solving
	Inter-block filtering (IBF)

	Different versions of IBB
	Advanced features in IBBc
	Exploiting the DAG of blocks
	Sophisticated implementation of inter-block filtering (IBF+)
	Mixing IBF and the recompute condition
	Discarding the non reliable midpoint heuristic
	Handling the problem of parasitic solutions
	Certification of solutions
	Summary: benefit of running I-Newton inside blocks

	Experiments
	Benchmarks
	Brief introduction to Ibex
	Interest of system decomposition
	Tuning parameters

	Poor results obtained by IBBa
	IBBb versus IBBc
	IBF versus IBF+
	IBB and 3B

	Conclusion
	References



