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Summary. The standard boundary element method applied to the time harmonic Helmholtz
equation yields a numerical method with O(N3) complexity when using a direct solution of
the fully populated system of linear equations. Strategies to reduce this complexity are dis-
cussed in this paper. The O(N3) complexity issuing from the direct solution is first reduced
to O(N2) by using iterative solvers. Krylov subspace methods as well as strategies of pre-
conditioning are reviewed. Based on numerical examples the influence of different parameters
on the convergence behavior of the iterative solvers is investigated. It is shown that precondi-
tioned Krylov subspace methods yields a boundary element method of O(N2) complexity. A
further advantage of these iterative solvers is that they do not require the dense matrix to be
set up. Only matrix–vector products need to be evaluated which can be done efficiently using
a multilevel fast multipole method. Based on real life problems it is shown that the compu-
tational complexity of the boundary element method can be reduced to O(N log2 N) for a
problem with N unknowns.

12.1 Introduction

The standard boundary element method, that is the calculation and storage of the
dense matrices H and G and the direct solution of the system of linear equations,
requires O(N2) memory locations and O(N3) arithmetic operations. This makes
the method hardly applicable to the solution of problems of practical interest. How-
ever, the fact that the BEM requires only a discretization of the boundary Γ of the
fluid domain Ω is advantageous when solving radiation or scattering problems in-
volving complex shaped radiators or scatterers.

The following chapter discusses possibilities to increase the efficiency of the
BEM such that it will be applicable to problems of practical interest. Two direc-
tions are issued. Firstly, the iterative solution of the system of linear equations and
secondly the efficient evaluation of the product of the matrices H and G with a
vector as needed within the iterative solution process.
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12.2 Iterative Solution

Iterative methods have been widely used for solving linear systems in various fields.
For the linear system Ax = b, an iterative method gives successive approximations
xi at each step i from an initial approximation x0 in a systematic way, until the
residual norm ||ri|| = ||b − Axi|| sufficiently decreases. If the iterative process
rapidly converges, iterative methods are much faster than direct methods, such as
Gaussian elimination.

Iterative methods are classified into two groups: stationary methods and nonsta-
tionary methods. In the former methods, the coefficients for renewal of the approx-
imation xi do not depend on the iteration count. Jacobi, Gauss–Seidel, Successive
Over–Relaxation (SOR), and Symmetric Successive Over–Relaxation (SSOR) meth-
ods, etc. belong to this group. The latter methods use iteration–dependent coefficients
so that the computations can involve renewal information obtained at each iteration.
The Krylov subspace methods are most popular in this group.

The Krylov subspace methods, which were selected as one of the top 10 algo-
rithms of the 20th century in SIAM News [19], are very effective for large systems of
linear equations. A Krylov method successively gives the approximations xi in the
process of increasing the dimensionality of the Krylov subspace, which is spanned
by the Krylov sequence generated by the initial residual r0 and the system matrixA.
The Krylov subspace methods become more powerful when they are used with pre-
conditioning technique for improvement of iterative convergence. One special fea-
ture of the methods is that the system matrixA is not explicitly necessary, and only
the products of the matrix A with vectors (matrix–vector products) are required.
Therefore, the Krylov methods are applicable with fast evaluation of the products
without generatingA.

In the field of computational acoustics, there exist many examples using the
Krylov methods: FE [45, 46] and BE [43, 55] analyses for interior problems, BE
analyses for exterior problems [6, 54, 57, 60], structure–acoustic problems [17], etc.

This chapter describes the outline of the Krylov subspace iterative methods and
its application to the BEM. For the details about iterative methods, see References [8,
10, 53, 66], for example.

12.2.1 The Krylov Subspace Methods

Consider that the linear system of equations

Ax = b (12.1)

is solved with an iterative method. The initial residual r0 is expressed as:

r0 = b−Ax0, (12.2)

where x0 denotes the initial approximate solution of x. The Krylov subspace meth-
ods are iterative methods in which the approximate solution xn is taken as satisfying
the next condition,
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Fig. 12.1 Relationship among subspaces.

xn = x0 + zn, zn ∈ Kn(A; r0), (12.3)

where Kn(A; r0) denotes the n–dimensional Krylov subspace spanned by a Krylov
sequence {Air0}i≥0:

Kn(A; r0) = span{r0,Ar0, . . . ,A
n−1r0}. (12.4)

The iteration residual rn is expressed as follows:

rn = b−Axn = r0 −Azn ∈ Kn+1(A; r0). (12.5)

Figure 12.1 illustrates relationship among subspaces. Extension of the subspace with
each iteration enables one to express better approximations of xn.

Krylov subspace methods require an approach for identification of the approxi-
mate solution xn as follows.

• The minimum norm residual approach: identify rn for which the norm ||b−Ax||
is minimal over Kn(A; r0).

||rn|| = min
x∈x0+Kn(A;r0)

||b−Ax||. (12.6)

• The Ritz–Galerkin approach: identify rn that rn is orthogonal to the current
subspace.

wHrn = 0, w ∈ Kn(A; r0), (12.7)

wherewH denotes the conjugate transpose ofw.

Classification

Lanczos, Arnoldi and Bi–Lanczos Types

In the Krylov subspace methods, an orthogonal basis for the Krylov subspace is
required for stability of computation. The Krylov subspace methods are classified
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by the algorithms for production of an orthogonal basis and by the approaches for
identification of the approximate solution xn mentioned above.

If A is a Hermitian matrix, one can compute an orthogonal basis for the Krylov
subspace Kn(A; r0) based on only three–term reccurence relations. This process
is called the Lanczos process. The methods based on the Lanczos process have the
advantage that the operation count and the required memory per iteration step do not
increase with the number of iteration.

If A is a non–Hermitian matrix such as that obtained with the BEM, one cannot
compute an orthogonal basis with short reccurence relations. One have to keep all
elements of the orthogonal basis computed in the iterative process, to obtain the
next element. This process is called the Arnoldi process. The methods based on
the Arnoldi process can be applied any regular matrices, whereas they have a major
disadvantage that the operation count and required memory per iteration step rise
linearly with the number of iteration.

There is an inexpensive process for computation of bases for non–Hermitian ma-
trices, where bi–orthogonal bases are computed instead of an orthogonal basis. In
addition to the Krylov subspace Kn(A; r0), one can consider another Krylov sub-
space Kn(AH ; r∗0), and construct bi–orthogonal bases {vi} and {uj} for the two
subspaces, satisfying the following relation

vHi uj = 0, i �= j, (12.8)

where r∗n denotes the shadow residual, satisfying r∗H0 r0 �= 0. This process is called
the Bi–Lanczos process, where one can compute the bi–orthogonal bases with only
three–term reccurence relations, like the Lanczos process. The main drawback of
the methods based on this process is the possibility of break down in the iterative
process, which does not occur in methods based on the Lanczos process. Since the
above approaches Equations (12.6) and (12.7) for identification of xn cannot be
directly used with the Bi–Lanczos algorithm, the following approach is used instead.

• The Petrov–Galerkin approach: find rn so that rn is orthogonal to the other sub-
space Kn(AH ; r∗0)

wHrn = 0, w ∈ Kn(AH ; r∗0). (12.9)

Table 12.1 shows popular Krylov subspace methods classified by the process for
computation of the basis and the approach for identification of the approximate so-
lution.
There is a short description of the representative methods below.

Conjugate Gradient (CG) [38] : The most basic method based on the Lanczos pro-
cess. This method is used for linear systems with positive–definite Hermitian matri-
ces, and extremely effective. This cannot be directly used for the BEM.

Generalized Minimal Residual (GMRes) [52] : This method is based on the Arnoldi
process and known as one of the robust methods. This is applicable to the linear sys-
tems with non–Hermitian matrices and often used for sound field analyses using the
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Table 12.1 Classification of Krylov subspace methods.

Lanczos Arnoldi Bi–Lanczos

Ritz–Galerkin CG FOM –
Minimum norm residual MinRes GMRes –

Petrov–Galerkin – – BiCG

BEM. The major drawback is that the amount of operation and memory required per
iteration step rise linearly with the number of iteration. Thus, one needs to restart
the process every l iterations to overcome this limitation (GMRes(l)). It is quite dif-
ficult to choose an appropriate value for l, since GMRes may converge slowly, or
completely fail to converge if l is too small.

Bi–Conjugate Gradient (BiCG) [26, 41] : This method is based on the Bi–Lanczos
process and can be applied to the systems with non–Hermitian matrices. Unlike the
methods based on the Arnoldi process, the amount of operation and required mem-
ory per iteration step do not rise with the number of iteration. However, BiCG re-
quires not only the original system matrix but also its conjugate transpose. Another
drawback is that the method might be break down, or converge very irregular.

BiCG–based Methods

BiCG is an alternative of the methods based on the Arnoldi process in efficiency,
whereas it has some disadvantages mentioned above. A lot of variants of BiCG, here
we call the BiCG–based methods, have been developed to improve these disadvan-
tages. All of the methods shortly described below do not need the conjugate trans-
pose of the system matrix. The convergence behavior of the methods of this group
including BiCG is hardly known.

Conjugate Gradient Squared (CGS) [63] : CGS often converges or diverges much
faster than BiCG, because the residual polynomial of CGS is the square of that of
BiCG. The convergence behavior may be irregular for large problems, due to round–
off errors.

Biconjugate Gradient Stabilized (BiCGStab) [65] : This method has smoother con-
vergence behavior than CGS, keeping its rapid convergence. This is regarded as the
product of BiCG and GMRes(1).

Generalized Product Type of Biconjugate Gradient (GPBiCG) [75] : This method
is derived from generalization of BiCG–based methods. This is effective when the
eigenvalues of the system matrix are complex.

BiCGStab2 [33], BiCGStab(l) [61] and TFQMR [28], etc. are also well known.

Methods Based on Normal Equations

There is another class of Krylov subspace methods for non–Hermitian matrices.
These methods are based on the application of the methods for Hermitian matri-
ces to the normal equations. Popular methods of this class are CGNE and CGNR, in
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which CG is applied to the systems (AHA)x = AHb and (AAH)(A−Hx) = b,
respectively. These methods have a disadvantage that the matrices of normal equa-
tions are more ill–conditioned than the original matrices. The convergence may be
slow.

12.2.2 Preconditioning

Preconditioning is a well known technique for improvement of convergence when
one attempts to solve linear systems using iterative methods. A matrix M =
M1M2, which approximates the system matrixA in some way, transforms the orig-
inal system into the following system with more favorable properties for iterative
solution:

M−1
1 AM−1

2 (M2x) =M−1
1 b. (12.10)

In general, a good preconditioner M should meet the following requirements: the
preconditioned system should be easy to solve, and the preconditioner should be
cheap to construct and apply. For the detail review on preconditioning techniques, an
intensive review paper [10] can be available. We describe below some precondition-
ing techniques, which can be used for the BEM.

Diagonal Preconditioning

The preconditionerM consists of just the diagonal of the matrix A. This precondi-
tioning is applicable without extra memory and time, and easy to apply to almost all
kinds of the BEM. This preconditioning was reported to be effective for the BEM for
some fields, for example, the thermal and elastic BEM [47], whereas reported not so
effective for the acoustic BEM [43, 72].

Incomplete Factorizations

Preconditioners based on incomplete factorizations of the system matrix, such as
incomplete LU (ILU) and incomplete Cholesky (IC) factorizations, have been widely
used. In ILU preconditioning, the system matrix A is incompletely factorized as a
preconditioner M = LU ≈ A, where L and U are lower and upper triangular
matrices, respectively. If the system matrix is Hermitian and positive definite, IC
factorization can be applied, which is a special case of ILU factorizations.

It is better to make ILU factorization near to complete factorization for good con-
vergence, but resulting in high cost. Actually, complete LU factorization is equivalent
to Gaussian elimination, and L and U obtained by complete factorization generally
have many fill–in (nonzero) entries. There are some dropping strategies for discard-
ing fill–ins to make ILU preconditioners. ILU(k) allows fill–ins only to a certain level
k. ILU(0) corresponds to allowance of fill–ins only at positions for which the corre-
sponding entries ofA are nonzero. ILU(k) has some disadvantages; for example, the
computational cost rapidly increases with k, and the storage and computational cost
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cannot be predicted in advance. ILUT(τ , p) [51] is a threshold–based ILU factor-
ization. This employs a dual dropping strategy and more powerful than ILU(k); the
threshold τ for dropping elements having small magnitude and the maximum number
p of fill–in elements in each row of L and U are used to control the computational
costs for factorization and application of the preconditioner.

ILU preconditioners are usually applied to sparse linear systems. They are very
expensive when this is directly applied to the system with a dense system matrix,
typically obtained with the BEM. Some techniques have been proposed to overcome
this limitation. Please see 12.2.3.

Sparse Approximate Inverses (SPAI)

The basic idea of this class is that M−1 ≈ A−1 is explicitly computed and used as
a preconditioner. The computational cost for naive construction and application of
M−1 is very high, since M−1 is usually dense. In SPAI preconditioning, a sparse
matrix M−1 ≈ A−1 is computed as the solution of the constrained minimization
problem

min
M−1∈S

||AM−1 − I||F , (12.11)

where S is a set of sparse matrices and ||·||F denotes the Frobenius norm of a matrix.
This results in n independent least–squares problems for each columns ofM−1. The
computational cost mainly depends on how to give the sparsity pattern S. To use this
for dense linear systems, S must be sufficiently sparse.

12.2.3 Application to the BEM

The Krylov subspace methods require repeated calculation of matrix–vector prod-
ucts from the system matrix A and vectors, which occupies quite a large amount
of operations in the iterative process. If A is a N × N dense matrix as generally
obtained with the BEM, the operation count for a matrix–vector product is O(N2).
Thus, if the number of iteration is sufficiently smaller than N , the Krylov meth-
ods remarkably reduce the total operation count for solving the system compared
with direct methods, which require O(N3) operations. In addition, more reduction
of the operation count can be achieved by using methods for efficient evaluation of
the matrix–vector products, such as the fast multipole method (FMM). The required
memory is also reduced sharply by using such methods, because it is not necessary
to store the entire system matrix A. For more details on the efficient evaluation of
matrix–vector products, please see Section 12.3.

Iterative Methods for the BEM

The BEM gives a linear system with a non–Hermitian matrix, to which the iterative
methods based on the Arnoldi or Bi–Lanczos process and based on normal equations
are applicable. For an advanced BEM that does not store the entire system matrix,
it is difficult to apply the methods that require the conjugate transpose of the system
matrix, such as BiCG, QMR and the methods for the normal equations.

7



Preconditioners for the BEM

There are not many preconditioners effective for non–Hermitian dense matrices, be-
cause preconditioners usually have been proposed for the sparse matrices. For the
preconditioners for dense linear systems, see References [14,15,67,70] and the refer-
ences therein. Moreover, fewer preconditioners are applicable to the advanced BEM
that does not store the entire system matrix.

One class of preconditioners for the BEM is based on the splitting of the bound-
ary integral operators [5,14]. The system matrixA is splitted into two matricesAnear

andAfar, the former of which is sparse and composed of the influence parts between
near elements. ILU factorization is done for the matrixAnear, and the results are used
for the preconditioning to the original system withA. This technique is very suitable
for the advanced BEM that does not store the entireA, because this type of the BEM
requires to generateAnear in the same manner as the standard BEM. This technique
has been proved to be very effective through some investigations, where practical
acoustic problems were calculated with the advanced BEM using the regular grid
method (RGM) [59] and the FMM [59, 72]. For the standard BEM, a simple way of
making a substitute of Anear is to take the tri–diagonal band of A together with the
anti–diagonal corner elements a1n and an1 [5].

12.2.4 Convergence Behavior for the BEM

The rate at which an iterative method converges relates directly to its computational
time. Regarding non–Hermitian matrices, the convergence of iterative methods is not
clear, and depends greatly on the properties of the matrices [8].

There are some studies on the convergence for the acoustic BEM [2–5,14–17,37,
43, 44, 59, 72, 74]. Many of them are especially for exterior problems with Burton–
Miller formulation [3,16,37,59,74], because iterative methods do not converge well
in this case. Preconditioning techniques were mainly discussed in References [5,14–
16, 37]. Detailed comparison through numerical experiments has been done for a
variety of practical problems [43, 59, 72].

The following refers to general tendencies on the convergence, giving the exam-
ples using the collocation BEM with constant elements. The multilevel fast multipole
algorithm (MLFMA) is used for efficient evaluation of matrix–vector products. For
more details on MLFMA, see Section 12.3. The following equation is used as a stop-
ping criterion for the linear system,

|ri|
|b| =

|b−Axi|
|b| ≤ ε, (12.12)

where | · | is the Euclidean norm. ε = 10−6 is used, unless noted otherwise. Instead
of the number of iteration, the number of matrix–vector products is counted. This
is because the operation of matrix–vector products accounts for the greater part of
the iterative process, and iterative methods have different numbers of matrix–vector
products per iteration. For example, CGS requires two matrix–vector multiplications
per iteration, whereas GMRes requires one.
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Fig. 12.2 Effect of different kinds of formulation on the number of matrix–vector prod-
ucts for an exterior problem with a vibrating cube. The iterative method is unpreconditioned
BiCGStab, DOF is 6,144, and ε = 10−3.

Effect of Formulation

The convergence behavior is affected by the formulation of the BEM: basic formu-
lation (singular formulation: SF), normal derivative formulation (hypersingular for-
mulation: HF), and formulation by Burton and Miller (BM) [13] to avoid fictitious
eigenfrequency difficulties. Figure 12.2 shows the history of the residual norms for
an exterior problem with a vibrating cube. The fictitious eigenfrequencies for SF and
for HF are also shown in the upper part of the figure. The convergence with HF and
with BM is slower than that with SF at all frequencies. This is because the matrices
obtained with HF generally have eigenvalues which are not clustered compared to
those with SF (i.e., HF matrices are ill–conditioned), and BM matrices inherit the ill
condition from HF matrices.

It has been reported that the hypersingular equation can be reduced to weakly
singular one by using the high–order Galerkin BEM, resulting in improvement of
the matrix condition and the convergence behavior with BM [37, 74].

Effect of Boundary Shapes

The shape of boundary can greatly affect the convergence behavior. There is a ten-
dency that the convergence is more rapid with smoother surface [43,72]. Figure 12.4
shows the history of the residual norms for two interior models (Figure 12.3), which
have nearly the same DOF and ratio of the element width to the wavelength. Slower
convergence is seen for the problem with a complex shape (auditorium) than with a
simple shape (cube), when both the problems are under the same boundary condition.
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Fig. 12.3 Analysis models for interior problems: a cube (simple shape) and an auditorium
(complex shape).

Fig. 12.4 Effect of shapes and boundary conditions on the iteration residual. α is the absorp-
tion coefficient on the surfaces. The formulation is SF, the iterative method is unpreconditioned
GPBiCG, DOF is 24,576 (cube) and 24,514 (auditorium).

Effect of Boundary Conditions

The larger the absorption coefficient α is, the faster the convergence is [43,72], as is
seen in Figure 12.4. This is the general tendency, independent of calculated problems
and iterative methods. As shown in Figure 12.5, a little absorption greatly improves
the convergence, compared to the case of perfectly rigid boundaries.

Effect of Preconditioning

The following refers to the effect of ILUT(τ , p) [51], which is one of the powerful
preconditioners, on the convergence behavior with Burton–Miller formulation. In
particular, it focuses on the effect of the parameter p, which greatly affects memory
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Fig. 12.5 Effect of absorption coefficients α on the iteration residual for an auditorium at
63 Hz. The formulation is SF, the iterative method is unpreconditioned BiCGStab, and DOF
is 6,110.

Fig. 12.6 An engine model: (a) relative vibration velocity level distribution, and (b) relative
SPL distribution at 1,977 Hz. The formulation is BM, and DOF is 42,152.

requirements. This preconditioner is referred to as ILUT(p) with τ = 10−5 in the
below.

Figure 12.7 shows the history of the residual norms with three kinds of iterative
methods, for an exterior problem with a vibrating engine, Figure 12.6. In this case,
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Fig. 12.7 Effect of the number of fill–in elements p for ILUT(p) on the iteration residual for
the engine problem at 3 kHz. The formulation is BM, and DOF is 42,152.

all the unpreconditioned methods do not converge at all, while ILUT preconditioning
remarkably improves the convergence of all the methods. In addition, the effect of
ILUT(p) increases with p. As for GMRes(∞) (no restarting), even small p greatly
improves the convergence, making GMRes(∞) the fastest among the methods. From
the viewpoint of convergence behavior, GMRes(∞) with ILUT preconditioning is
generally recommended for calculation in Burton–Miller formulation.

Figure 12.8 shows the effect of the restart number l for GMRes(l) on the iteration
residual. The residual norms stagnate from every restart point [59, 72], resulting in
slower convergence of GMRes(l) than CGS and GPBiCG, depending on ILUT(p),
see Figure 12.7. It is stated that one had better avoid restarting in GMRes(l) for re-
ducing computational time. If the restarting cannot be avoided due to the restriction
of memory storage, preconditioned BiCG–based methods possibly converge faster
than GMRes(l). For fast convergence of GMRes(l) with ILUT(p), one should con-
sider the trade–off between the two parameters l and p in the restriction of memory
storage.

12.3 Efficient Evaluation of the Matrix–Vector Product

Within the iterative solution of the dense linear system arising from a solution of
the Helmholtz equation using Boundary Element Method, namely, when calculating
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Fig. 12.8 Effect of the restart number l for GMRes(l) on the iteration residual for the engine
problem at 3 kHz. The formulation is BM, l = 100, and DOF is 42,152.

the matrix–vector product z = (I −A)u one of the following quantities has to be
evaluated

zj =
∫
Γ

ϕj(x)ϕ(x) dΓ ·u −
∫
Γ

ϕj(y)
∫
Γ

k(x − y)ϕ(x) dΓ dΓ ·u (12.13)

when using a Galerkin method,

zj = uj −
∫
Γ

k(x − yj)ϕ(x) dΓ ·u (12.14)

when using a Collocation method or

zj = uj − wik(xi − yj)ϕ(xi)·u (12.15)

when using a Nyström method for all j = 1, . . . , N with N being the number of
unknowns of the given problem. Due to the fact that the kernel

k(x − y) = αG(x,y) + β∇xG(x,y)·νx (12.16)

with the fundamental solution G(x,y) has non–local support this operation costs
O(N2) arithmetic operations.

Several possibilities to achieve a reduction of the complexity have been proposed
in the literature.

One approach consists in using a suitable wavelet basis together with a drooping
strategy to sparsify the dense matrixA [12,21,27,39]. The most challenging part of
this approach is the direct evaluation of the matrixA in the wavelet basis.

A second approach consists in a low rank approximation of A together with
efficient H–matrix techniques [9, 35]. Such an approach is based only on smooth-
ness properties of the kernel function without necessarily knowing it explicitly. This
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is a very important point when considering numerical implementation. A possible
change of the kernel function, as long as the smoothness properties are satisfied,
does not require a complete recoding of the numerical algorithms.

A third approach is based on a suitable approximation of a specific kernel func-
tion in order to separate the x and y dependency of the kernel function. For two
points x and y with |x − y| > � > 0 the kernel Equation (12.16) is a smooth func-
tion, thus an approximation k(x,y) ≈ h(y−yc)μ(yc−xc)g(x−xc) can be used to
replace the original kernel function. Such an approximation is in general linked to a
specific kernel k(·). Hence, changing the kernel function in general requires a com-
plete recoding of the numerical algorithms. The use of such a kernel approximation
forms the basis of methods like regular grid method [11], panel clustering [36,56] or
the fast multipole method [18, 31]. The latter method, especially its multilevel vari-
ant, seems to be the most widely accepted method as it covers the very low to high
frequency range. An overview of the state–of–the–art of the fast multipole method
can be found in the textbook [32].

12.3.1 Basic Concept of the Fast Multipole Method

The usage of the Fast Multipole Method for the solution of boundary value problems
for the Laplace equation goes back to Greengard and Rohklin [31]. The application
of this method for two–dimensional scattering problems can be found in [49]. It was
again Rohklin [50] who extended it to the three–dimensional case. The Fast Multi-
pole Method for the three–dimensional Helmholtz equation will be derived related
to the work done by Anderson [7] and Rahola [48] which is often referred to as the
“fast multipole method without multipoles”.

The Fast Multipole Method was first used to calculate particle interactions.
From this point of view (integration replaced by summation) Equation (12.13) to
Equation (12.15) can be regarded as the communication of every point yj on the
surface with all other points xi on the surface, hence the direct evaluation of these
equations has O(N2) complexity. Avoiding the evaluation of the interaction of all
(yj ,xi) pairs will reduce the complexity of the algorithm. This can be achieved by
splitting the direct path yj − xi. Therefore sets of points zi are introduced where
the information of assigned points xi is aggregated. Thereafter, only the interaction
between aggregation points is evaluated. Information is redistributed from the points
zj to the associated points yj on the surface Γ after all interactions have been calcu-
lated. This situation is depict in Figure 12.9.

The idea behind the Fast Multipole Method is to replace (approximate) the kernel
function k(x − y) for all well separated point x and y with |x − y| > � by

k(x − y) ≈ g(y − z2)μ(z2 − z1)h(z1 − x) (12.17)

≈ g(c2)μ(a)h(c1) .

Such a factorization of the kernel can be obtained using the truncation of the series
expansion of the fundamental solution of the Helmholtz equation. The use of a kernel
Equation (12.17) instead of the original kernel Equation (12.16) leads to an approxi-
mate factorization of the matrixA in Equation (12.13) to Equation (12.15) such that

14



Fig. 12.9 Splitting of the yj −xi path such that yj −xi = (yj −z2)+(z2−z1)+(z1−xi).

A ≈ (I −Anear −V BW ) whereAnear, V , B andW are sparse matrices. In the
following the application of the Fast Multipole Method to Equation (12.14) will be
considered. Its application to the Galerkin–Method can be found in [25].

12.3.2 Series Expansion of the Fundamental Solution

The fundamental solution G(x,y)

G(x,y) =
eik|x−y|

4π|x − y| =
eikr

4πr
, r = |x − y|, x �= y (12.18)

of the Helmholtz equation in three dimensions can be expressed in terms of spherical
Hankel and Bessel functions, Legendre polynomials and spherical harmonics. For
a detailed description we refer to [1].

The derivation of the desired formula Equation (12.17) is mainly based on the
truncation of the series expansion of the fundamental solution Equation (12.18). For
|a| > |c| the fundamental solution can be written as, see [1, 10.1.45],

eik|a+c|

4π|a + c| =
ik
4π

∞∑
l=0

(2l + 1)(−1)lh(1)
l (k|a|)jl(k|c|)Pl(â·ĉ) (12.19)

with the spherical Hankel function h(1)
l , the spherical Bessel function jl and the

Legendre polynomial Pl of order l. The notation x̂ = x/|x|, |x| �= 0 has been used
for vectors on the unit sphere. Using the partial wave expansion of the plane wave
(see [1, 10.1.47])

eikx̂·z =
∞∑
l=0

il(2l + 1)jl(k|z|)Pl(x̂·ẑ) (12.20)

and making use of the orthogonality of the Legendre polynomials yields the follow-
ing identity

∫
S2
eiky·ŝPm(ŝ·x̂) do(ŝ) =

∞∑
l=0

il(2l + 1)jl(k|y|)
∫

S2
Pm(ŷ·ŝ)Pl(ŝ·x̂) do(ŝ)

= 4πimjm(k|y|)Pm(x̂·ŷ) . (12.21)
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Equation (12.21) enables to replace the function jl(k|c|)Pl(â·ĉ) in Equation (12.19)
which depends on the product of â · ĉ by a product of two functions each depending
on â or ĉ. Combining Equations (12.21) and (12.19) results in

eik|a+c|

4π|a + c| =
ik
4π

∞∑
l=0

(2l + 1)ilh(1)
l (k|a|) 1

4π

∫
S2
eikc·ŝPl(ŝ·â) do(ŝ) . (12.22)

By setting a = z1 − z2 and c = (z2 − y) + (x − z1) the fundamental solution
Equation (12.18) can be expressed as follows

eik|x−y|

4π|x − y| =
ik
4π

∞∑
l=0

(2l + 1)ilh(1)
l (k|z2 − z1|)

× 1
4π

∫
S2
eik (y−z2)·ŝeik (z1−x)·ŝPl(ŝ·(ẑ2 − z1)) do(ŝ) (12.23)

for all point x and y satisfying the admissibility condition

|(z2 − y) + (x − z1)| < |z2 − z1| . (12.24)

In the same manner the series expansion for the gradient of the fundamental solution

∇xG(x,y) =
ik
4π

∞∑
l=0

(2l + 1)ilh(1)
l (k|z2 − z1|)

× 1
4π

∫
S2
eik (y−z2)·ŝ(−ikŝ)eik (z1−x)·ŝPl(ŝ·(ẑ2 − z1)) do(ŝ) (12.25)

is obtained. Thus, for all pairs (x,y) with |(z2 − y) + (x − z1)| < |z1 − z2| the
kernel function k(x − y) can be replaced by

k(x − y) = αG(x,y) + β∇xG(x,y)·νx =

=
ik
4π

∞∑
l=0

(2l+ 1)ilh(1)
l (k|z2 − z1|) 1

4π

∫
S2
eik (y−z2)·ŝ(αik + βk2ŝ·νx)

× Pl(ŝ·(ẑ2 − z1))eik (z1−x)·ŝ do(ŝ) (12.26)

This rather technical representation of the kernel function is not yet in the desired
form of Equation (12.17) as the infinite summation and the integration can not be in-
terchanged. But after truncation of the infinite summation Equation (12.26) becomes

k(x − y) = αG(x,y) + β∇xG(x,y)·νx

≈
∫

S2

eik (y−z2)·ŝ

4π︸ ︷︷ ︸
g(y − z2, ŝ)

μM (z2 − z1, ŝ)
︸ ︷︷ ︸
μM (z2 − z1, ŝ)

(αik + βk2ŝ·νx)eik (z1−x)·ŝ

︸ ︷︷ ︸
h(z1 − x, ŝ)

do(ŝ)

≈
∫

S2
g(y − z2, ŝ)μM (z2 − z1, ŝ)h(z1 − x, ŝ) do(ŝ)
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with

μM (z2 − z1, ŝ) =
1
4π

M∑
l=0

(2l+ 1)ilh(1)
l (k|z2 − z1|)Pl(ŝ·(ẑ2 − z1)) . (12.27)

To apply this expansion to the fast evaluation of Equation (12.14) for all points
yj on Γ , the surface Γ has to be splitted according to the admissibility condition
Equation (12.24). Therefore, the elements of the surface triangulation T are grouped
to clusters τj with the radius ρj and the center zj . Thereafter, the far and near field
of a cluster τj are defined as follows

F(τj) := {τi| ρi + ρj < η|zj − zi|} far field of τj

N (τj) := {τi| τi /∈ F(τj)} near field of τj .

The parameter η ∈ (0, 1) defines the number of buffered clusters. The series expan-
sion of the kernel k(x − yj) for a point yj with yj ∈ τj can now be used for all
x ∈ τi with τi ∈ F(τj). The interaction of the cluster τj with the remaining clusters
N (τj) – the near field of τj – has to be calculated directly using standard boundary
element techniques.

Using the splitting of the elements of the surface triangulation with respect to
yj ∈ τj Equation (12.14) becomes

zj = uj −
∫
Γ∩N (τj)

k(x − yj)ϕ(x) dΓ

︸ ︷︷ ︸
=: Anear<j,:>

·u−
∫
Γ∩F(τj)

k(x − yj)ϕ(x) dΓ

︸ ︷︷ ︸
=: Afar<j,:>

·u

The second term forms the j–th row of the sparse matrix Anear. The contribu-
tion of all clusters τi belonging to the far field of τj can be approximated using
Equation (12.26)

∫
Γ∩F(τj)

k(x − yj)ϕ(x) dΓ ·u =

=
∑

τi∈F(τj)

∫
τi

k(x − yj)ϕ(x) do(x)·u

≈
∑

τi∈F(τj)

∫
τi

∫
S2

eik (y−zj)·ŝ

4π
μM (zj − zi, ŝ)(αik + βk2ŝ·νx)

× eik (zi−x)·ŝ do(ŝ)ϕ(x) do(x)·u .

Changing the order of integration and summation yields
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∫
Γ∩F(τj)

k(x − yj)ϕ(x) dΓ ·u =

≈
∫

S2

eik (y−zj)·ŝ

4π

∑
τi∈F(τj)

μM (zj − zi, ŝ)

×
∫
τi

(αik + βk2ŝ·νx)eik (zi−x)·ŝϕ(x) do(x)·u
︸ ︷︷ ︸

=: Ψτi(zi, ŝ)

do(ŝ) .

The function Ψτi(zi, ŝ) is often referred to as far field pattern of the cluster τi. Using
this notation gives

∫
Γ∩F(τj)

k(x − yj)ϕ(x) dΓ ·u ≈
∫

S2

eik (y−zj)·ŝ

4π

×
∑

τi∈F(τj)

μM (zj − zi, ŝ)Ψτi(zi, ŝ)

︸ ︷︷ ︸
=: Υ τj (zj , ŝ)

do(ŝ) .

All far field pattern Ψτi(zi, ŝ) with τi ∈ F(τj) have been converted to the near
field pattern Υ τj (zj , ŝ) of the cluster τj . Thus, the contribution of the far field of the
cluster τj to the j–th row of the matrix–vector–product can be approximated via

∫
Γ∩F(τj)

k(x − yj)ϕ(x) dΓ ·p ≈
∫

S2

eik (y−zj)·ŝ

4π
Υ τj (zj , ŝ) do(ŝ) (12.28)

using the near field pattern Υ τj (zj , ŝ) of the cluster τj . Finally Equation (12.14),
j–th row of z = (I −A)u, becomes

zj ≈ uj −Anearj·u −
∫

S2

eik (y−zj)·ŝ

4π
Υ τj (zj , ŝ) do(ŝ) . (12.29)

To use Equation (12.29) to evaluate a matrix–vector product in a first step the far
field pattern Ψτi(zi, ŝ)

Ψτi(zi, ŝ) =
∫
τi

(αik + βk2ŝ·νx)eik (zi−x)·ŝϕ(x) do(x)·p (12.30)

=
N∑
i=1

pi

∫
τi∩suppϕi

(αik + βk2ŝ·νx)eik (zi−x)·ŝϕi(x) do(x)

must be calculated for all τ ∈ T . This corresponds to the evaluation of a surface
integral over a smooth function. Hence, standard Gaussian quadrature can be applied.
In a second step the near field pattern Υ τj(zj , ŝ) of a cluster τj
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Υ τj(zj , ŝ) =
∑

τi∈F(τj)

12 Fast solution methods 

μM (zj − zi, ŝ)Ψ τi (zi, ŝ) (12.31)

is the translation of the previously calculated far field pattern of all η–admissible
clusters of τj . Therefore, the operator μM (zj − zi, ŝ) is referred to as translation
operator. In a third step the sound pressure at the point yj on the surface Γ is the
results of the integration over the unit sphere

p(yj) =
∫

S2

eik (y−zj)·ŝ

4π
Υ τj (zj , ŝ) do(ŝ) . (12.32)

For a numerical implementation of the above equations a suitable truncation of the
infinite sum in Equation (12.23) and numerical integration over the unit sphere as
well as the error introduced by doing so requires some attentions.

12.3.3 Truncation of the Series Expansion and Integration on the Unit Sphere

For the numerical implementation of the Fast Multipole Method the infinite sum over
l in Equation (12.23) has to be truncated for a certain integer M

μ(a, ŝ) ≈ μM (a, ŝ) =
1
4π

M∑
l=0

(2l + 1)ilh(1)
l (k|a|)Pl(ŝ·â) . (12.33)

One would expect that for increasing M the Fast Multipole Method gives greater
accuracy. This holds true only in exact arithmetic as the sum over l diverges as M
tends to infinity. In exact arithmetic the growth of h(1)

l (k|a|) is implicitly balanced
by the decay of jl(k|c|)Pl(ĉ · â) but which has been replaced by

jl(k|c|)Pl(ĉ·â) =
1

4πil

∫
S2
eikc·ŝPl(ŝ·â) do(ŝ) .

As the integration over the unit sphere has to be undertaken numerically

∫
S2
f(ŝ) do(ŝ) ≈

KI∑
i=1

wif(ξ̂i)

using a quadrature rule with the nodes ξ̂i and the weights wi (i = 1, . . . ,KI) the val-
ues of jl(k|c|)Pl(ĉ·â) appear only to a finite precision and the index of truncationM
has to be chosen according to the accuracy of the numerical integration. As the value
ofKI determines the efficiency of the algorithm the smallest possible value should be
used. A detailed analysis of the truncation error was presented by Darve [22]. The au-
thor shows (Proposition 1 and 2) that for η ≤ 2/

√
5 there exist constantsC1, C2, C3

and D1, D2, D3 such that if M ≥ C1 +C2k|c| +C2 log(k|c|) +C3 log ε−1 terms
are kept in the sum in Equation (12.33) and the quadrature rule integrates exactly the
first K ≥ D1 + D2k|c| + D2 log(k|c|) + D3 log ε−1 spherical harmonics on S

2,
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then the error introduced by truncation and numerical integration when replacing the
fundamental solution by the truncated series expansion Equation (12.22) is bounded
by ε. Darve further states “Practically a good choice for K is K ≥ 2M”. Out of the
numerical tests [20,34,62] the authors empirically gave formulas for the value ofM
of the following type

M = k|c| +
d

1.6
log(k|c| + π) (12.34)

where the value of d controls the number of significant digits in the approximation.
For numerical implementation the value of K is often fixed to K = 2M . Conse-
quently, the quadrature rule has to be exact up to the first K spherical harmonics.
Using a Gaussian quadrature rule Q̂M which integrates exactly the first 2M spher-
ical polynomials – see [64, Theorem 2.7-1] for details – KI = (M + 1)(2M + 1)
sample points of each far field and near field pattern as well for each translation
operator need to be stored.

12.3.4 Aspects of the Numerical Implementation

To evaluate

zj = (I −A)j·u = uj −
N∑
i=1

ui

∫
Γ∩suppϕi

k(x − yj)ϕi(x) dΓ (12.35)

at each collocation point yj , j = 1, . . . , N with less than O(N2) arithmetic com-
plexity using the Fast Multipole Method the elements of the surface triangulation
must be grouped into clusters. It is assumed that each element Δi of the surface
triangulation T can be uniquely assigned to a cluster τi with the radius ρi and the
center zi. The maximal cluster radius is defined as

ρ := max
i=1,...,NC

ρi

with the number of clustersNC. Thereafter the order of expansion of the fundamental
solution M in Equation (12.33) is set to

M = max(M0, 2kρ+
d

1.6
log(2kρ+ π)) . (12.36)

The constant M0 ensures that a sufficient number of coefficients is kept even at
small wavenumbers k. Commonly M0 = 4 is a good choice. Further details on
the treatment of the low frequency range using the Fast Multipole Method we refer
to [23, 24, 30, 40, 69]. Integration on the unit sphere is performed using a quadrature
rule Q̂M that integrates exactly the first 2M spherical polynomials. The partition
of the surface Γ is based on Equation (12.24). Two clusters τi and τj are called η–
admissible with respect to the parameter η ∈ (0, 1) if

ρj + ρi < η|zi − zj| (12.37)
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holds true, i.e. the sum of their radii is smaller than the distance between their clus-
ter centers. Thereafter, the interaction of all η–admissible clusters can be calculated
using Equation (12.26) and for the collocation point yj ∈ τj Equation (12.35) be-
comes

zj = (I −A)j·u

≈ uj −
N∑
q=1

uq
∑

τi∈N (τj)

∫
τi∩suppϕq

k(x − yj)ϕq do(x)

︸ ︷︷ ︸
=: Anearj,q

−
∑
α

1
4π
wαe

ik(yj−zj)·ξ̂α

︸ ︷︷ ︸
=: Vj,jα

∑
τi∈F(τj)

μM (zj − zi, ξ̂α)︸ ︷︷ ︸
=: Bjα,iα

Ψ τi(ξ̂α)

(12.38)

with

Ψ τi(ξ̂α) =
N∑
q=1

uq

∫
suppϕq∩τi

1
4π
eik(zi−x)·ξ̂α

(
αik + βk2ξ̂α·νx

)
ϕq(x) do(x)

︸ ︷︷ ︸
=: Wiα,q

Using the notations introduced above the matrix–vector–product now reads as

z = (I −A)u ≈ (I −Anear − V BW )u

where Anear, V , B, andW are sparse matrices. The matrix Anear contains all
nearby interactions that must still be calculated using standard boundary element
techniques and the original kernel function Equation (12.16). The remaining interac-
tions are evaluated using the Fast Multipole Method.

It can be shown by counting the non–zero elements inAnear, V , B andW that
the effort for evaluating one matrix–vector product is O(N3/2), cf. [22]. Therefore,
a further reduction of the complexity of the algorithm is highly desirable. Obviously
still O(N2

C) interactions of clusters have to be calculated. However, one will find
that many of the η–admissible clusters would stay η–admissible if their radii were
larger. In other words the interaction of larger parts of the surface could have been
calculated using the series expansion. Hence, to increase the efficiency of the Fast
Multipole Method the size of the clusters has to be enlarged as long as they stay
η–admissible and evaluating of their interactions must be performed when they have
reached the largest possible radius. This leads to the so called Multilevel Fast Multi-
pole Algorithm (MLFMA).

12.3.5 The Multilevel Fast Multipole Algorithm

When looking at the Fast Multipole Method described in Section 12.3.1 it turns out
that there are pairs of clusters τi and τj which would satisfy the admissible condition
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Equation (12.37) even with larger radii ρi andρj or in other words more interactions
of points on the surface could have been evaluated at once using the Fast Multipole
Method. The main idea of the Multilevel Fast Multipole Algorithm is to enlarge
the radii of the clusters adaptively using a hierarchy of clusters, a so–called cluster
tree. The admissibility condition Equation (12.37) is then applied at every level l
of the tree. Only these clusters interact on level l which are η–admissible and their
fathers on the next higher level are not η–admissible. The interaction of the remaining
clusters will be calculated at a higher level. The shift of the far and near field pattern
Ψτ andΥ τ through the different levels of the cluster tree is undertaken using the
following relation

Ψτ1z2
(ẑ) = Ψτ1z1

(ẑ)eik(z2−z1)·ẑ (12.39)

Υ τ1z2
(ẑ) = Υ τ1z1

(ẑ)eik(z2−z1)·ẑ , (12.40)

following directly from Equation (12.23). Analyzing the complexity of the multilevel
version of the Fast Multipole Method shows that the application of the Fast Multipole
Method on O(logN) levels of a cluster tree leads to an algorithm of O(N log2N)
complexity [18, 22, 62]. Two important differences of the multilevel and the single–
level algorithm must be addressed. Firstly, the splitting of the elements of the surface
triangulation must be replaced by a hierarchy of such splittings based on a cluster
tree. Secondly, as cluster radii differ on different levels the expansion length M in
Equation (12.36) must be adapted and in addition to the shift of the near and far field
pattern interpolation and filtering of the data will be necessary when passing infor-
mation between different levels. Using the notation Bl for the translation operator
on level l, Il+1

l for the shift and interpolation operator from level l to level l+ 1 and
F l+1
l for the shift and filter operator from level l + 1 to level l the approximation of

the product of a vector u with the system matrix A can be written in the following
form

Au ≈ Anearu+ V (F 1
0 (F 2

1 (F 3
2 (. . . )I3

2 +B2)I2
1 +B1)I1

0 +B0)Wu .

Similar to the single–level version first the far field pattern of the vector u is eval-
uated. But in the multilevel version the translation operator Bl translates far field
pattern to the near field pattern on level l only for admissible clusters on level l
whose fathers on level l + 1 are not admissible. Then the far field pattern from level
l is shifted to level l+1. Once the highest level of the cluster tree is reached the near
field pattern from level l is shifted to level l − 1 and accumulated to the pattern of
level l− 1. When the lowest level of the cluster tree is reached the accumulated near
field pattern is converted to a sound pressure on the surface Γ .

12.3.6 Construction of the Cluster Tree

A cluster tree is a hierarchy of sets containing the elements of the surface triangu-
lation. Starting on the coarsest level where the elements of the surface triangulation
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Fig. 12.10 Binary cluster tree based on the elements Δi on the triangulation T of the bound-
ary Γ .

form a single set, sets of clusters on the next finer level are obtained by a succes-
sive subdivision of the previous sets. The newly obtained sets are referred to as sons
and will become the father sets for the corresponding sets of the next finer level.
As each set is subdivided into two subsets, see Figure 12.10, a binary cluster tree
is obtained [29]. The process is stopped when the number of elements in a set is
smaller than a given value. A different strategy where the subdivision is obtained by
a successive subdivision of a cube in R

3 yielding an oct–tree [22, 55] will not be
considered here.

Once the cluster tree is build up, for each of its levels the radius ρ and the center z
of a cluster is defined as the radius and center, respectively, of the smallest open ball
B(ρ, z) containing τ entirely. Further, the clusters have to satisfy τi ∩ τj = ∅ if i �= j
and Γ = ∪iτi. It is pointed out that the elements of T within a cluster do not neces-
sarily have to be adjacent elements.

12.3.7 Interpolation and Filtering on the Sphere

The proper handling of the shifting of near and far field patterns through various lev-
els of the cluster tree is of crucial importance for the efficiency of the multilevel fast
multipole algorithm. As the radius of the clusters changes from level to level of the
cluster tree, the number of coefficients to be kept according to Equation (12.34) is
also different for each level of the cluster tree. To obtain the complexity estimates of
the algorithm given above the number of coefficients M in Equation (12.33) must
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be adapted according to the radius of the clusters on each level. Hence, on lower
levels fewer coefficients are needed than on higher levels. Consequently, the number
of sample points on the unit sphere needed for numerical integration also changes.
Thus, the values at the new sample points needed when moving up and down the
tree must be interpolated of the values from the previous level. As a consequence
of [22, Proposition 1 and 2] this operation must not influence the number of spher-
ical harmonics, which are required to have, so that the interpolation error is in the
same order as the truncation error. Hence, interpolation must not introduce higher
order harmonics. This can be guaranteed by using spherical harmonic analysis when
interpolating sample points.

The spherical harmonic analysis consists of expanding a function f given at a set
of points (ϕi, θj), i = 0, . . . , N and j = 0, . . . , 2N on the unit sphere in terms of
spherical harmonics Y mn , that is calculating a set of coefficients αnm such that

f(ϕi, θj) =
N∑
n=0

n∑
m=−n

αnmY
m
n (ϕi, θj) (12.41)

holds true. The required function values at a new set of points (ϕ̃i, θ̃j), i =
0, . . . , Ñ and j = 0, . . . , 2Ñ are now obtained using the above expansion

f(ϕ̃i, θ̃j) =
min(N,Ñ)∑
n=0

n∑
m=−n

αnmY
m
n (ϕ̃i, θ̃j) . (12.42)

The values of N and Ñ in Equation (12.42) determine interpolation or filtering. In
the case where Ñ is larger thanN Equation (12.42) is referred to as interpolation oth-
erwise it is referred to as filtering. Using the orthogonality properties of the spherical
polynomials the coefficients αnm are given by

αnm =
∫

S2
f(ϕ, θ)Y

m

n (ϕ, θ) do(ŝ) =

1∫

−1

2π∫

0

f(ϕ, t)Y
m

n (ϕ, t) dt dϕ (12.43)

with the substitution t = cos(θ). The numerical implementation of the interpolation
and filtering consist of several steps. First, the integration over the ϕ–direction can
be seen as a Fourier–transformation

βim =
2π

2M + 1

2M∑
j=0

f(ϕj , θi)e−i 2π
2M+1 jm .

Integration with respect to t in Equation (12.43) and summation over n in Equati-
on (12.42) yield the new Fourier coefficients β̃im

β̃im =
M

′∑
n=0

Cmn C
m
n

M∑
j=0

wjP
|m|
n (tj)βjmP |m|

n (t̃i) .
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An algorithm for large M, M
′

that is more efficient than the direct evaluation of
the double summation above was presented in [71]. It is base on the Christoffel–
Darboux formula [1] and the application of a one dimensional Fast Multipole Method
to evaluate the arising matrix–vector product in an efficient manner.

Data at the new sample points (ϕ̃i, θ̃j) is obtained by an inverse Fourier–trans-
formation of β

′
im

f(ϕ̃j , θ̃i) =
M

′∑
m=−M ′

β̃ime
i 2π

2M
′+1

jm
. (12.44)

With a proper choice of M and M
′

the above required Fourier–transformations can
be implemented efficiently using fast algorithms.

12.3.8 Implementation of the Algorithm

The application of the Multilevel Fast Multipole Algorithm for the Helmholtz equa-
tion is divided into two parts. In the first part commonly referred to as setup–step the
following operations have to be performed

• definition of the number of elements of the surface triangulation nelem contained
in a leave of the cluster tree

• construction of the cluster tree and definition of number of levels
nlevel = c log(N) that will be used,

• definition of expansion order on each level,
M l = max(M0, 2kρl + d

1.6 log(2kρl + π)),
• adjustment of M l such that fast Fourier–transformation can be applied in the

filter and interpolation step,

• definition of the parameter η and construction of an admissible–list of each clus-
ter at each level according to Equation (12.37),

• calculation of the matrix Anear of the interactions of non–η–admissible clusters
on level zero and

• calculation of the sparse matricesWiα,q andBjα,iα .

Details on the choice of the values for nelem, nlevel and M l can be found in [55,73].
Often the matrix V in Equation (12.38) is not explicitly calculated and the numerical
integration over the unit sphere, see Equation (12.28) is performed directly at each
matrix–vector–product.

The evaluation of a matrix–vector–product v = (I −A)u using the Multilevel
Fast Multipole Algorithm, often referred to as apply–step, is realized using the fol-
lowing algorithm:
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Algorithm apply:

input: u
output: z = (I −Anear)u −Afaru

1. Ψ = Wu ! far field pattern of sound pressure distribution u on Γ
2. do l = 0, nlevel ! up tree
3. for all clusters i on level l do
4. for all clusters j on level l do
5. if (i, j) η–admissible ∧ (f(i), f(j)) not η–admissible
6. Υ τi(ΞMl) = μM

l

(zi − zj , ΞMl)Ψ τj (ΞMl)
7. end
8. end
9. Ψ τi(ΞMl+1)=interpol(Ψ τi,M l,M l+1)
10. Ψ τf(i)(ΞMl+1) = Ψ τf(i)(ΞMl+1) + Ψ τi(ΞMl+1)eik(zf(i)−zi)·ΞMl+1

11. end
12. end
13. do l = nlevel − 1, 0 ! down tree
14. for all boxes i on level l do
15. Υ τi(ΞMl+1) = Υ τf(i)(ΞMl+1)eik(zi−zf(i))·ΞMl+1

16. Υ τi(ΞMl) = Υ τi(ΞMl) + filter(Υ τi(ΞMl+1),M l+1,M l)
17. end
18. end
19. for all clusters i on level 0 do
20. z2j =

∑
α

1
4πwαe

ik(yj−zj)·ξ̂αΥ τi(ξ̂α)
21. end
22. z1 = Anearu
23. z = u− z1 − z2

The functions interpol and filter transfer data given on a set of points ΞMl

to a set of points ΞMl+1 and vice versa as discussed in Section 12.3.7.
The implementation of the algorithm above shows that a large part of the mem-

ory required for the multipole part is needed to store the data μM (zj − zi, ΞMl) =
μM (z, ΞMl) with z = [z1, z2, z3] which is the translation operator that translates far
field pattern to near field pattern. This is a drawback of the use of a binary cluster tree
over an oct–tree. Taking a closer look at the structure of the data shows the depen-
dence on the absolute values of the components4 of z only. Hence, using a suitable
permutation P the values μM ([±|z1,2|,±|z2,1|,±|z3|], ΞMl) can be calculated out
of the values of μM ([|z1|, z2|, |z3|], ΞMl) yielding to the situation that the memory
requirement is now negligible. To increase the probability that the difference of two
cluster centers z = zj − zi differs only by the signs of the components the position
of the cluster centers can be restricted to points on a regular grid [ih, jh, kh]. This
yields a situation quite similar to that of an oct–tree obtained by a successive subdi-
vision of a cube. If however necessary, a further compression of the data μM can be
achieved by the recalculation of μM (z, ΞMl) as it is needed. An efficient algorithm

4The components 1 and 2 of z may be interchanged.
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for this task is given in [68]. There the authors use a one–dimensional Fast Multipole
Method to evaluate

μM (z, ŝ) =
M∑
i=0

αiPi(ẑ·ŝ) (12.45)

with αl = (2l + 1)ilh(1)
l (k|z|) in an efficient manner. The evaluation of μM at

O(M2) locations needs only O(M2 log(1/ε)) arithmetic operations where ε deter-
mines the accuracy of the approximation. Thereafter, only the coefficients αi which
depend on the modulus of z need be stored.

12.3.9 An Example

The Multilevel Fast Multipole Algorithm described above will be used to demon-
strate that the boundary element method can be applied efficiently to large scale
problems.

The objective of the following numerical example is the prediction of the quality
of an anechoic chamber in the low frequency range. The fact that the acoustic lining
of such a chamber is not sufficiently absorbing at low frequencies creates several in-
conveniences. First, from a practical point of view, remaining reflections of the walls
perturb experimental results. Secondly, from a numerical point of view, neither the
geometry of the lining nor sound propagation within the absorbing material can be
neglected. This excludes the use of the model of a rectangular cavity where walls are
equipped with a local admittance condition to account for the acoustic lining. There-
fore the numerical model must respect the real geometry of the lining and modelling
of the absorbing material requires special attention. Here an admittance matrix – in-
stead of a scalar value –, taking into account for sound propagation within a specific
part of the lining and its vicinity, was used to represent the behaviour of the acous-
tical treatment. Hence, on the air lining interface the sound pressure p at a specific
part of the surface is coupled with the surface velocity vν on that part and its vicinity
via

vν = Y p (12.46)

with the dense and frequency dependent matrix Y . The approximation, that only the
surface velocity at the vicinity is considered, can been seen as a localisation of the
non–local behavior of an absorbing material.

Numerical results will be compared with experimental data obtained from mea-
surements carried out in the large anechoic chamber of the LMA, see Figure 12.11.
The 1.5 dB region in the 20 to 200 Hz frequency range was obtained by measuring
the sound pressure radiated by a bass–reflex box. For a detailed description of the ex-
periment we refer to [58]. The anechoic chamber at the LMA has inner dimensions
of 5.4 × 6.3 × 11.4 m3 measured from wedge tip to wedge tip. Each of the 3720
wedges consists of a rectangular parallelepiped measuring .3 × .3 × .4 m3 forming
the base of the wedge and a tapering section of .7 m in length. Wedges are made
of melamine foam. To calculate the admittance matrix Y a central wedge and its
8 adjacent wedges have been used. As all of the wedges are identical only a single
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Fig. 12.11 Interior of the large anechoic chmaber of the LMA (left sub–figure) and a photo
of a sample of 3 × 3 elements of the acoustic lining (right sub–figure).

admittance matrix Y (ω) ∈ C
324×36 is needed. However, to take into account for

the anisotropy of the melamine foam three different matrices Y i, representing the
three different material orientations, have actually been used. These matrices were
precalculated in the frequency range of 20 to 200 Hz with a frequency resolution of
1 Hz using a finite element method. The geometry of the wedges has been modelled
using 9 elements resulting in a mesh size of ≈.3 m. Using linear discontinuous basis
functions [42] yields a linear system with N=138 280 unknowns and standard bound-
ary element methods, requiring ≈ 300 Gb of memory to hold the system matrix,
are hardly applicable. Therefore a six–level fast multipole method was applied. The
leaves of the cluster tree contained up to nelem = 4 surface elements. The parameter
η in Equation (12.37) was set to η = .7. The memory requirement of the algorithm
at 200 Hz is given in the left sub–table of Table 12.2. It can be seen that the matrices
of the near field interactions occupy almost all of the required memory. The matrix
named “work” represents the working space needed for the multipole algorithm to
hold the far and near field patterns on the different levels. The expansion lengthM in
Equation (12.36) varied from 5 to 16 depending on the level. The memory required
to hold the translation operator μM, matrix B in Table 12.2, is indeed negligible, as
stated in Section 12.3.8, due to the performed compression. Each stored operator has
be reused ≈ 1500 times. Computational resources, the time and the number of float-
ing point operations required to perform a matrix–vector–product, are given in the
right sub–table of Table 12.2. It is pointed out that due to the admittance boundary
condition the product Anearu reads as Anearu = Hnearu −GnearY u. Therefore
the near field part of the matricesH and G must be stored seperately. Performing a
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Fig. 12.12 1.5 dB regions for two source positions in the chamber obtained using numerical
simulations.

single product (I−A)u took 72.0 s on a SGI Origin3800 and required 6.4e9 floating
point operations. In contrast the standard BEM would require at least N2 ≈19.1e9
floating point operations. The above given computational resources have been mea-
sured using a performance counter library5.

The linear system was solved using the GMRes [52] solver. Depending on fre-
quency 80...120 iterations were necessary to obtain a residual of ε = 10−6. The total
solution time was 2.5. . . 4 hours per frequency on a SGI Origin3800 of the Center for
Information Services and High Performance Computing at the Technische Univer-
sität Dresden, Germany. Numerical results are compared with experimental data in
Figure 12.12 for two different source positions. A solid dot represents the numerical
result. The bounds of the 1.5 dB region obtained from experimental data are repre-
sented by a solid line. For both source positions numerical and experimental results
agree well for frequencies higher than 100 Hz.

The example shows that the BEM can be applied to large scale problems. Es-
pecially when the boundary of the fluid domain has a complex shape the boundary
element method is competitive to the finite element method as meshing the complex
geometry of the fluid domain can be avoided.

12.4 Conclusion

Fast solution methods have been discussed to overcome the O(N3) complexity of
the standard boundary element method when using a direct solution of the system
of linear equations. By the use of an iterative solver the complexity can be reduced
to O(N2), if the number of required iterations is much less than the number of un-
knowns N . Krylov subspace methods are the most suitable class of iterative solvers
in the context here. The convergence of the iterative solvers is fairly accelerated

5http://www.fz-juelich.de/zam/PCL
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Table 12.2 Memory requirement (left table) and computational resources needed to perform
one matrix–vector product (right table) when using a six–level fast multipole algorithm. The
first line, labeled “Equation (12.46)”, represents the application of the boundary condition.
The last column of the right table gives the performance of the algorithm with respect to the
peak–performance of the computer’s processor.

Memory
Matrix [Mb]

Hnear 2148
Gnear 2148
W 111
B 5
work 107

total 4519

CPU–time Flops Flop rate
line of apply [s] [%] [Mflops] [%] [%]

Eq. (12.46) 5.3 7.4 1569.5 24.3 73.5
1 0.6 0.8 34.6 0.5 14.3
22 1.3 1.8 16.2 0.3 3.2
20 1.1 1.5 214.6 3.3 48.1
6 23.5 32.7 2807.5 43.5 29.8
9–10 7.2 10.0 371.6 5.8 12.8
15–16 7.0 9.8 365.9 5.7 13.0
22 25.9 35.9 1074.1 16.6 10.4

total 72.0 100.0 6454.0 100.0 22.4

by strategies of preconditioning. Preconditioners based on the splitting of the sys-
tem matrix are effective for the BEM that generates the dense system matrix. The
sparse matrix corresponding to the near field interaction is factorized using an in-
complete LU decomposition. The use of the hyper singular formulation leads to ill–
conditioned matrices that cause slow convergence. Furthermore the properties of the
boundary of the domain have a significant influence on the required number of iter-
ations. In general it can be stated that complex shapes and low absorption will cause
slow convergence.

A further reduction can be achieved through the use of fast BEMs which avoid the
explicit set–up of the dense system matrix. Especially the multilevel fast multipole
method seems to be the most widely accepted as such fast method. Based on the
truncation of the series expansion of the fundamental solution, the fast multipole
method yields an approximate factorization of the system matrix. The application of
this method on multiple levels of a cluster tree enables the evaluation of a matrix–
vector product with O(N log2N) complexity. Therefore, the iterative solution of
the linear system together with the multilevel fast multipole method yields a very
efficient numerical method. The obtained higher efficiency of the accelerated BEM
makes this numerical method applicable to real life problems.
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