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Abstract

The most commonly used relative abundance index in stock assess-
ments of longline fisheries is catch per unit effort (CPUE), here defined
as the number of fish of the targeted species caught per hook and minute
of soak time. Longline CPUE can be affected by interspecific competition
and the retrieval of unbaited or empty hooks, and interannual variation in
these can lead to biases in the apparent abundance trends in the CPUE.
Interspecific competition on longlines has been previously studied but the
return of empty hooks is ignored in all current treatments of longline
CPUE. In this work we propose some different methods to build indices
to address the interspecific competition that relates to empty hooks. We
show that in the absence of information about empty hooks, the relative
abundance estimates have constant biases with respect to fish density and
this is typically not problematic for stock assessment. The simple CPUE
index behaves poorly in every scenario. Understanding the reasons for
empty hooks allows selection of the appropriate index. A scientific long-
line survey is conducted every two years in the Strait of Georgia, British
Columbia by Fisheries and Oceans Canada. The above methods are ap-
plied to build the time-series of indices from 2003 to 2009 for quillback
rockfish (Sebastes maliger). Due to variation in the incidence of non-target
species, the index trend obtained is moderately sensitive to the choice of
the estimator.

Résumé

L’halieutique étudie les conséquences des politiques de gestion des
pêches en modélisant l’abondance des populations d’intérêt. Des indices
d’abondance sont utilisés pour ajuster des modèles de dynamique de popu-
lation. Pour les pêches á la palangre l’indice d’abondance le plus couram-
ment utilisé est le nombre de prises par unité d’effort (CPUE), c’est-á-dire
le nombre de poissons de l’espèce étudiée divisé par le nombre d’hameçons.
La compétition entre espèces et les hameçons remontés sans appât peuvent
influencer ce type d’indice d’abondance. L’influence de la compétition
entre espèces sur les indices d’abondance de palangre a déjà été étudiée

1



mais les hameçons remontés sans appât et sans prise sont systématiquemnt
ignorés. Dans cet article nous proposons différentes méthodes pour coons-
truire des indices d’abondance pour la palangre qui tiennent compte de
la compétition et des hameçons vides. Nous montrons que même en cas
d’absence d’information sur l’origine des hameçons vides, les indices pro-
posés ont un biais constant, indépendant du niveau de compétition ce
qui ne pose pas de problème dans le cadre de la gestion de stock. Les
CPUE conduisent à de mauvaises estimations quelque soit le niveau de
compétition et la proportion d’hameçons vides. Comprendre la cause des
hameçons vides permet de sélectionner l’indice le plus approprié. Une cam-
pagne de suivi scientifique est organisée tous les deux ans dans le détriot
de Georgia en Colombie Britanique par Pêches et Océans Canada. Les
méthodes présentées sont appliquées à ce cas détude pour construire des
séries d’abondance de 2003 à 2009 pour des Sébastes de Roches Seabstes

maliger.

1 Introduction

Many fish stock assessments derive information about stock trends from anal-
yses of longline catch and effort records (IPHC, ICCAT, IATTC references).
The classical relative abundance index, Catch Per Unit Effort (CPUE), for pop-
ulations monitored using longline gear, is defined as the average number of
individuals of target species caught per hook and minute of soak time. This
commonly used CPUE index of abundance ignores the variability introduced
by the competition for baited hooks within and between species. Somerton and
Kikkawa (1995) propose two different indices, based on instantaneous rate of
catch from longline survey records which takes interspecific competition into
account. Haimovic and Àvila-da Silva (2007) claim that CPUE and the in-
stantaneous rate give the same results. Another important source of variability
in the abundance indices which has received relatively little attention is the
presence of empty hooks i.e., hooks returning without bait or fish.

This paper generalizes the use of instantaneous rates of catch from longline
surveys as relative abundance indices (as proposed by Somerton and Kikkawa
(1995) and Rothschild (1967)) and evaluates alternative approaches to dealing
with empty hooks in the formulation of longline survey stock trend indices.

The paper is divided into three main sections after the introduction. Sec-
tion 2 reviews existing methods for derivating relative abundance indices rom
longline catch and effort records. Section 3 presents our generalization of the
previous methods to account for empty hooks. Some simulation studies are con-
ducted to compare the indices under different levels of interspecific competition
and sources for empty hooks. Section 4 gives the results of the simulation stud-
ies and illustrates the behaviour of the indices for monitoring the abundance of
quillback rockfish (Sebastes maliger). The full technical details are outlined in
the appendix.
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2 Review of methods to derive abundance in-
dices from longline records

2.1 Catch Per Unit Effort (CPUE)

In a longline survey CPUE is defined as the ratio between the number of fish of
the target species caught NT and the number of hooks N times the soak time
S:

CPUE =
#Target

#hooks× SoakT ime
=

NT

N S
.

This index ignores the effects of competition and gear saturation.

2.2 The simple exponential model

Somerton and Kikkawa (1995) have proposed two alternative approaches to
deal with the issues of hook competition and gear saturation. Only one is useful
in our context because dealing with gear saturation requires observed capture
times which are not recorded in the available dataset. The number of available
baits on the longline is supposed to decrease at an exponential rate measuring
the overall pressure on the hooks. This overall pressure may be split into a sum
of relative abundance indices per species. Using this approach the kth catch
Cr,k for a soak time S and for species r = 1, . . . R is given by:

Cr,k =
λr

λ
N(1− e−λS) + εr,k, with εr,k

i.i.d
∼ N (0, σ2), (1)

where N stands for the initial number of hooks, λ is the overall pressure on
hooks, and λ =

∑

r λr is the sum of the specific abundance index per species,
and k is the number of the set. The parameters (λ1, . . . , λR) defined a relative
abundance index for each t species1.

A few of the drawbacks of this Simple Exponential Model (SEM) are the
assumptions of normality and homoscedasticity of the error terms. It is intuitive
that the variability should be higher for species with higher relative abundance,
i.e., the variance of the error term should not be constant but should depend in
some way on λt. Furthermore Nt,k is a discrete number (number of fish caught),
potentially small and the normal assumption is not accurate in this case.

2.3 Multinomial Exponential Model

This section reviews the underlying ideas of Somerton and Kikkawa (1995) and
proposes an alternative model which more closely mimics the behavior of the

1 Mostly one particular species is the target species, let r = 1 while the other species,

r > 1 are non-target species. In this context it is easier to consider only λ1 = λT the

relative abundance for the target species and λ2 = λNT the relative abundance index which

summarizes all the other species.
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fish. This model has been originally proposed by Rothschild (1967) and de-
scribes how the catch of a target species could be reduced by the catch of other
species.

Let us define TT as the time it took to catch an individual from the tar-
get species on one particular hook. TT is assumed to follow an exponential
distribution of rate λT , i.e

P (TT ≥ u) = e−λTu.

TNT is an exponential random variable with parameter λNT and models the
time it took to catch an individual from any of the non-target species. We can
define T = min {TT , TNT } as the time it took to catch an individual whatever
the species it is. Thanks to the property of the exponential distribution, T is
exponentially distributed with rate λ = λT + λNT . This property justifies the
decomposition of the overall relative abundance as a sum of specific abundance
given by Somerton and Kikkawa (1995).

After the soak period S, for one hook, there are only three possible outcomes:

• {I = 0} = { The hook is still baited.}. It means that the time for a cap-
ture is greater than the soak time. This event occurs with probability

P(I = 0) = P(T > S) = e−λS

• {I 6= 0} = { The hook is no longer baited.}.

P(I 6= 0) = P(T < S) = 1− e−λS .

Given the hook is no longer baited, there are two possible outcomes: the
catch is either from the target species, i.e. {I = T },which occurs with
probability

P(I = T ) = P(TT < TNT |T < S)P(T < S) =
λT

λ
(1− e−λS),

or the catch is from a non-target species, corresponding to the event
{I = NT } which occurs with probability:

P(I = NT ) = P(TNT < TT |T < S)P(T < S) =
λNT

λ
(1 − e−λS).

Assuming that all the hooks on a longline behave independently, the likeli-
hood is given by

L(λT , λNT ) =

(

N
NB

)(

NT

NT +NNT

)

(e−λS)NB (1−e−λS)NT+NNT

(

λT

λ

)NT
(

λNT

λ

)NNT

,

(2)
where
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• N is the number of hooks on the longline,

• NB is the number of baited hooks at the end of the soak time,

• NT is the number of individuals of the target species caught,

• NNT is the number of individuals of the non-target species caught.

The combinatorial terms arise since all the hooks are considered independent
and the order of the catch on the longline has no importance. This model was
originally proposed by Rothschild (1967) although presented here with a slightly
different approach. This model is called Multinomial Exponential Model (MEM)
since the vector (NB, NT , NNT ) follows a multinomial distribution whose vector
of probability depends on an exponential term.

If λNT is larger than λT , it corresponds to a high level of competition: for a
given relative abundance of the target species λT , the catch decreases as λNT ,
the non-target species relative abundance, increases.

2.4 Links between the indices

2.4.1 Links between MEM and SEM

The expected number of fish caught of the target species NT is the same under
the MEM and SEM assumptions and is given by:

E (NT ) = N
λT

λ

(

1− e−λS
)

.

Moreover, the models share the same parameters, λT and λNT . The main
difference is the error term. In the SEM, the error term is normally distributed
with a variance given by:

VarSEM (NT ) = Var(NNT ) = σ2,

while in the MEM the total number of fish caught has a multinomial distribution
and the variance is given by:

{

VarMEM (NT ) = N λT

λ
(1− e−λS)

(

1− λT

λ
(1− e−λS)

)

VarMEM (NNT ) = N λNT

λ
(1− e−λS)

(

1− λNT

λ
(1− e−λS)

)

.

Furthermore NT and NNT are assumed to be independent in the Simple Expo-
nential Model and not in the Multinomial Exponential Model.
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2.4.2 Links between CPUE and MEM

Under the MEM assumption, the expected CPUE of the target species is given
by:

E (CPUE) =
λT

λS
(1 − e−λS) −→

λS→0
λT

If the overall density index λ is small enough, meaning that there is little com-
petition, CPUE and the MEM index give the same results. This theoretical
result is consistent with the expected behavior.

3 Dealing with empty hooks

In longline experiments, it is common for some hooks to return empty; the
hook is no longer baited, but there is no fish on it. There could be several
explanations for these empty hooks such as mechanical removal of bait during
gear setting/retrieval, depredation by invertebrate or escape of fish with bait or
removal of fish by predators.

In this paper, we consider the hypothesis that unbaited hooks arise only
from the escape of fish. Therefore, the question about empty hooks is reduced
to “How should the empty hooks be allocated to the different species?” These
empty hooks provide information that we could use to improve the quality of our
abundance indices. This section details modification of the MEM to incorporate
this information and details some statistical properties of the indices built using
those versions of MEM. It also describes different ways to include the empty
hooks information into the SEM.

3.1 Full version of the Multinomial Exponential Model

We propose a modified version of the Multinomial Exponential Model to ac-
count for empty hooks. As opposed to the previous version of the MEM, here
each fish caught has a probability of escaping equal to pT , for target species,
and pNT , for non-target species.

We use three additional variables to fully specify the model: NE is the

number of observed empty hooks; N
(T )
E (respectively N

(NT )
E ) stands for the

number of target species (respectively non-target species) individuals which have
escaped and these two random variables are not observed. Assuming, as for
the simple version of MEM, that all hooks are independent, we are able to
conditionally describe the outcomes (figure 1).

• The number NB of baited hooks retrieved at the end of the soak time is
the realisation of a binomial random variable with probability of success
e−λS .

NB ∼ B
(

N, e−λS
)

.
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• Among the N −NB unbaited hooks, the total number of individuals from

target species caught is NT +N
(T )
E and is also binomially distributed:

NT +N
(T )
E |NB ∼ B

(

N −NB,
λ1

λ

)

.

• Given NT +N
(T )
E , the total number of individuals from target species on

the longlines is NT and is also binomially distributed:

NT |NT +N
(T )
E ∼ B

(

NT +N
(T )
E , (1− pT )

)

.

• Given NNT + N
(NT )
E , the total number of individuals from non-target

species on the longlines is NNT and has also a binomial distribution:

NNT |NNT +N
(NT )
E ∼ B

(

NNT +N
(NT )
E , (1− pNT )

)

.

Figure 1: Conditional description of the model. The observed quantities are
solid lines, the hidden quantities are dashed lines.

The full version of Multinomial Exponential Model is summed up through

a probability tree in figure 1. N
(NT )
E and N

(T )
E are missing quantities but the

sum NE of these two quantities is observed. Annex B.1 gives the main step to
define the likelihood of this model:

l(λT , λNT , pT , pNT ) =
N !

NB!NT !NNT !NE!

(

e−λS
)NB

(

1− e−λS
)N−NB

(

λT

λ
(1− pT )

)NT
(

λNT

λ
(1− pNT )

)NNT
(

λT pT + λNT pNT

λ

)NE

(3)

The full version of Multinomial Exponential Model may be considered as a
multinomial distribution:

(NB, NT , NNT , NE) ∼ M (N,α)

with α =

(

e−λS , (1 − e−λS)
λT

λ
(1− pT ), (1− e−λS)

λNT

λ
(1− pNT ), (1− e−λS)

λT pT + λNT pNT

λ

)
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In this full version the model is not identifiable since an equivalent version
could be expressed with only three parameters λ, λT (1−pT ) and λNT (1−pNT )
(see annex B.2 for more details). Some additional information is required to
estimate the parameters in this model. It is possible to add some biological
knowledge on the probability of escape through prior distribution in a Bayesian
framework but no information of this kind is available for our case study. This
point is discussed in section 5. In a frequentist approach some particular solu-
tions have to be chosen. In this paper we focus on two reasonable choices:

1. MEM1: empty hooks come only from non-target species, so pT is assumed
to be 0. Most of the time the target species is less abundant than all the
non-target species. Allocating the empty hooks to the non-target species
will at worst lead to an underestimation of the target species. Furthermore
hooks and baits are selected to catch and retain the target species.

2. MEM2: another reasonable choice is to assume that the probability of
escape are the same for target and non-target species, i.e pT = pNT . An
empty hook has been bitten by a fish but no information about the species
of this fish is available so that the empty hooks are allocated according to
the relative densities of each group.

3.2 Maximum likelihood estimation of MEM

As all the longline sets are supposed to be independent, the complete likelihood
is simply the product of the likelihood for each experiment given by formula 3.
At this stage we have to consider two different situations.

If the soak times are different for all the longline sets, no analytical formula
for the estimators is available, the estimation step has to be performed using a
non linear optimization algorithm.

Mostly, the longline experiments have been designed to share the same soak
time to reduce the causes of variation in the experiment. In this case, analytical
formula can be derived for MEM1 and MEM2 because all the information can
be summed up through the vector (NB+, NT+, NNT+, NE+) which corresponds

to (
∑L

l=1 NBl
,
∑L

l=1 NTl
,
∑L

l=1 NNTl
,
∑L

l=1 NEl
), where l is the number of the

longline set.
Even if the design of the experiment prescribes a constant soak time for

each set, the actual soak time can differ slightly due to weather conditions or
practical reasons. If the difference is not important, it is judicious to consider
an single soak time (the mean for instance) to avoid the need of a numerical
optimization which produces some instability in the estimations.

As detailed in appendix B.3, the maximum likelihood estimators are given
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by:

MEM1 MEM2














λ̂T = NT+

N+−NB+

1
S
log
(

N+

NB+

)

λ̂NT = NNT++NE+

N+−NB+

1
S
log
(

N+

NB+

)

p̂NT = NE+

NE++NNT+
, p̂T = 0















λ̂T = NT+

NT++NNT+

1
S
log
(

N+

NB+

)

λ̂NT = NNT+

NT++NNT+

1
S
log
(

N+

NB+

)

p̂T = NE+

NE++NT++NNT+
= p̂NT

(4)
Maximum likelihood estimators are asymptotically unbiased and the covari-

ance matrix is the inverse of Fisher Information Matrix (Severini, 2000). If
the total number of hooks N is large enough, the joint distributions of these
estimators can be approximated by a Multivariate Normal distribution. Asymp-
totically the covariance matrix for MEM1 is given by:

CovMEM1 =
λTλNT

N(1− e−λS)









(1−e−λS)2

S2e−λSλ2

λT

λNT
+ 1 (1−e−λS)2

S2e−λSλ2 − 1 0
(1−e−λS)2

S2e−λSλ2 − 1 1−e−λS

S2e−λSλ2

λNT

λT
+ 1 0

0 0 pNT (1−pNT )λ
λTλ2

NT









,

(5)
and for MEM2 by

CovMEM2
=

λTλNT

N(1 − e−λS)









(1−e−λS)2

S2e−λSλ2

λT

λNT
+ 1

1−p

(1−e−λS)2

S2e−λSλ2 − 1
1−p

0
(1−e−λS)2

S2e−λSλ2 − 1
1−p

(1−e−λS)2

S2e−λSλ2

λNT

λT
+ 1

1−p
0

0 0 p(1−p)
λT λNT









.

(6)
The result proposed by Rothschild (1967) concerning the asymptotic vari-

ance for the simple version of MEM with pT = pNT = 0 should be the same
replacing p or pNT by 0 in the above formula. Nevertheless the two formulas are
not compatible even if the estimators are. We suspect a mistake in the formula
proposed by Rothschild (1967).

3.2.1 Bayesian framework for MEM

The multinomial exponential model could also be estimated in a Bayesian frame-
work. The full specification of the Bayesian version of the MEM, requires the
definitionof some prior distributions for the parameters (λT , λNT , pT , pNT ). The
relative abundance index is always less than 1. Therefore, in our study, the pri-
ors have been chosen as poorly informative and independent.

λT ∼ β(1, 1) λNT ∼ β(1, 1).

If there is no informative prior on the probability of escape, the model is still non-
identifiable. In a Bayesian framework, an identifiable model can be diagnosed
since the posterior distribution is the same than the prior distribution. Nothing
has been learned from the data.
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To avoid this problem, some informative prior distributions could be defined
using biological knowledge or field experiment. This aspect hasn’t been inves-
tigated in this work. We just use the specific forms of the model (MEM1 or
MEM2) to remove the problem of identifiability.

The estimation procedure has been implemented using the JAGS software
(Plummer, 2008). An example of JAGS code is provided in section C.1 for
MEM1 and C.2 for MEM2 and all other codes are available on request.

3.3 Estimation for other indices

This section will discuss the estimation steps of all the indices previously pre-
sented and highlights the key points of the procedure.

3.3.1 Multiple CPUE

In a given region, you could have several sets of longlines deployed, so the
estimation step requires the fitting of one index using several observations.

If only one set is deployed, the CPUE is obtained by the catch over the
soak time times the number of hooks. A simple generalization of this index is
detailed in A and proposes to compute CPUE as

CPUE =

∑L

l=1 NTl
∑

l SlNl

,

where l = 1, . . . , L stands for the longline. If the number of hooks or the soak
times are different, the generalized CPUE computed is a weighted average of
all individual CPUE. A simple average is not satisfying, since for example, the
average will attribute the same weight to an experiment with 200 hooks and to
another experiment with only 50 hooks.

3.3.2 Simple Exponential model

In the following, two versions of SEM are derived depending on how unbaited
hooks are considered:

1. SEM1: empty hooks are assumed to arise only from the non-target species
and NE and NNT are pooled together.

2. SEM2: empty hooks are considered as a ”third” species, and an additional
relative abundance index is defined λE .

Hovg̊ard and Lassen (2000) proposes to estimate λ using

λ̂Hov =
− log (NB/N)

S
.

If all longline sets share the same soak time and the same initial number of
hooks N , the MLE for this model are almost the same than for the MEM
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except concerning the empty hooks.

SEM1



















λ̂T = NT+

N+−NB+

1
S
log
(

N+

NB+

)

λ̂NT = NNT++NE+

N+−NB+

1
S
log
(

N+

NB+

)

σ̂2 = 1
2L

∑L

l=1

(

NTl
−N λ̂T

λ̂
(1− e−λ̂S)

)2

+
(

NNTl
+NEl

−N λ̂NT

λ̂
(1− e−λ̂S)

)2

SEM2



















































λ̂T = NT+

N+−NB+

1
S
log
(

N+

NB+

)

λ̂NT = NNT+

N+−NB+

1
S
log
(

N+

NB+

)

λ̂E = NE+

N+−NB+

1
S
log
(

N+

NB+

)

σ̂2 = 1
3L

∑L

l=1

{

(

NTl
−N λ̂T

λ̂
(1− e−λ̂S)

)2

+
(

NNTl
−N λ̂NT

λ̂
(1− e−λ̂S)

)2

+

(

NEl
−N λ̂E

λ̂
(1 − e−λ̂S)

)2
}

To estimate σ at least two longline sets are required: otherwise those esti-
mations correspond to perfect match and there is no additional variability.
Since we are only interested in building abundance indices for the target species
and since the estimations of λ̂T in SEM1 and SEM2 are the same, in the fol-
lowing we only call this index SEM.

When the soak times or the initial number of hooks are different, a numerical
optimisation algorithm has to be used to defined the MLE for SEM1 and SEM2.
This approach should be avoided if possible due to numerical instability. From
a practical point of view the nlm function available in R software (R Develop-
ment Core Team, 2009) behaves badly. In this work we directly optimize the
loglikelihood function using function optim.
The analytical formulas for λT are exactly the same for SEM and MEM1: if soak
times and initial number of hooks are the same for all sets, there is absolutely
no difference between these two indices concerning the relative abundance of the
target species, which is not true for the non-target species. But this analytical
formula is only valid for SEM when soak times and initial number of hooks are
the same while MEM only requires the same soak times.

3.4 Simulation studies

Bias and variability of the estimators are evaluated in this section through
simulation studies. Several plausible scenarios have been studied to give some
robust results and advice about the behaviour of all the indices.

Specifying data generators is the first step of simulation studies. In our
specific case, we have at first sight different solutions. We can use the Simple
Exponential Model but this model doesn’t simulate any empty hooks, and it pro-
vides some non-integer catch because of the normal hypothesis. The two other
solutions (ie MEM1 and MEM2) will be used to study the different scenarios.
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This choice of data simulator gives obviously an advantage to MEM1 if the
data were simulated with MEM1 and to MEM2 in the other case.

For one set of fixed parameters (that is λT , λNT , L the total number of sets,
S the soak time, N the number of hooks on a longline) 5000 fake datasets are
generated and the corresponding estimated values for λT and λNT have been
computed. A relative bias and a coefficient of variation are derived from these
simulations. To study the impact of the estimation via numerical algorithm, we
also compute the estimators by maximizing the log likelihood using a non linear
optimization algorithm.

The values λT and λNT need to be chosen to reflect a plausible situation. In
this work, four values of each parameter have been used and all of the sixteen
combinations of these two parameters have been addressed.

Three different scenarios for unbaited hooks have been simulated:

Sc.1) There are no empty hooks. Each unbaited hook has caught a fish. This
situations corresponds to pNT = pT = 0.

Sc.2) The ability to escape is the same the across the species. The probability
of escape is set to 20%, this corresponds to pT = pNT = 0.2.

Sc.3) non-target species individuals are better at escaping. The probability of
escape is set to pNT = 0.2 for the non-target species and to pT = 0.02 for
the target species.

The results of this simulation study are presented in section 4.1.

3.5 Description of the B.C. inshore rockfish longline sur-
vey

Since 2003, Fisheries and Oceans Canada has conducted an annual scientific
longline survey in the Strait of Georgia with the fisheries research vessel CCGS
Neocaligus. Different regions of the Strait are covered each year, resulting in
each statistical area (PMFSC) being surveyed every two to three years. A 2 km
by 2 km grid is overlaid on all inshore rockfish habitat up to 100 m in depth, as
determined using Canadian Hydrographic Service (CHS) charts. These blocks
are stratified into shallow (41-70 m) and deep (71-100m) and 8% of the blocks, in
a given statistical area, are randomly selected for fishing each year (see Lochead
and Yamanaka 2007 for further details)..

The snap-type longline gear consists of 1800 ft of leaded groundline with
225 circle hooks (13/0) spaced 6 to 12 ft apart. Each hook is attached to the
snap by a 1.2 ft perlon gangion, crimped at both ends, and with a swivel at the
hook. The hooks are baited with Argentinean squid (sp?). Soak time for each
set is approximately two hours, measured as the time from deployment of the
last hook to retrieval of the first hook on board.

As the gear is retrieved, the condition of each hook is recorded as returning
with bait, with catch on the hook, empty (i.e. without bait or catch on the
hook), or unknown, if the hook does not return. Catch is recorded to the
species level for both fish and invertebrates.
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4 Results

4.1 Simulation studies

4.1.1 Competition but no empty hooks

Figure 2 presents the bias for two indices in absence of empty hooks. SEM,
MEM1, MEM2 produce exactly the same results because there is no empty
hooks and the analytical formula have been used.

Figure 2: Relative bias, defined as the absolute value of the bias divided by the
true value |λT−λ̂T |/λT , expressed in percentage computed over 5000 simulations
for 220 hooks per longline and 20 sets. Bias for SEM1, SEM2, MEM1 and MEM2
is the same in this case. On the right the bias computed for CPUE indices show
that the bias increases with the increase of relative abundance of the non-target
species.

The estimations are unbiased for abundance indices built on the exponential
model and so competition is effectively taken into account. On the other hand
bias in the CPUE index increases with the increase of the relative density of
non-target species. This result is a confirmation that CPUE index strongly
depends on competition and should be avoided. This behavior is always the
same in all situations which have been addressed in this simulation study.

The coefficient of variation presented in table 1 depends on the number of
data relying on N and L but also on the relative abundance, parameters λT and
λNT . This coefficient could be very high for low relative abundance situation.

The coefficient of variation of the estimators for the relative abundance de-
creases with the expected number caught, which is in this study LN λT

λ

(

1− e−λS
)

.
The relation between these two quantities is illustrated by figure 3. This ex-
pected number caught describes the actual available information on λT .

The bias study shows that CPUE behaves really badly when interspecific
competition occurs. In the following the results concerning this index will not
be shown.
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λNT

λT 5e-04 0.001 0.005 0.01
1e-05 43.2 44.8 50.9 56.7
5e-05 19.5 20.1 22.2 25.3
1e-04 13.8 14.4 15.9 17.9
5e-04 6.2 6.4 7.4 8.1

Table 1: Coefficient of variation (%) in estimates of λT using the MEM models.
Results For SEM, MEM1 and MEM2 are exactly the same since the soak time
is shared by all longline sets and there is no empty hook.

Figure 3: Coefficient of variation for the estimates of λT for MEM1 computed
over 5000 simulations as a function of the expected number of catch for target
species
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4.1.2 Competition and empty hooks

SEM and MEM have the same behaviour when no empty hooks are present in
the dataset. Simulations of empty hooks allow the comparison of the respective
behavior of those indices in presence of unbaited hooks. In our simulation
context, the soak time and the initial number of hooks are shared by all sets,
so that analytical formula can be used to compute the indices and SEM and
MEM1 produce the same results.

Since MEM1 and MEM2 relies on two different hypothesis concerning the
origin of the empty hooks, they give some different results. When all species are
as good at escaping (Sc.2) MEM2 produces unbiased estimators of the relative
abundance while SEM1, SEM2 and MEM1 tend to underestimate this relative
abundance. In the simulations used to produce figure 4, the probability of escape
for non-target and target fish has been set to 20%, which corresponds to the
underestimation of 20% for the relative abundance λT .

Figure 4: Simulations under Scii. MEM1, SEM1 and SEM2 produce the same
results and tend to underestimate the relative abundance. MEM2 is the ”true”
model in this situation and tends to produce unbiased estimate.

When the non-target species are better at escaping, MEM2 tends to overes-
timate the relative abundance of the target species. Results presented in figure
5 are produced when pT = 0.02 and pNT = 0.2. MEM2 attributes a proportion
of the empty hooks to the target species, this proportion depends on λT and
λNT . Since in this simulation most of the empty hooks arise from the non-target
species, the higher the relative abundance of non-target species is, the more the
relative abundance of target species is overestimated. The bias in the estimates
for MEM1 is constant and equals 2% which corresponds the missed fish from
the empty hooks.
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Figure 5: Simulations under Sc1: MEM1 and SEM underestimate the true
relative abundance by exactly the probability of escape for non-target species.
MEM2 highly overestimates the relative abundance.

4.1.3 Numerical instability

In order to study the numerical instability of the optimization algorithm, the
maximum likelihood estimators have been computed through the analytical for-
mula and using numerical optimisation algorithm on the same data set (with
shared S and shared N). Whatever scenario is used, the optimisation algorithm
behaves well, i.e, less than 5% of difference between the estimates computed
using the analytical formula and the estimates obtained by numerical optimiza-
tion except when the ratio between the relative abundance of non-target species
λNT and the relative abundance of the target species λT is very high. In the
extreme case, with λNT = 0.01 and λT = 1e−05 the average difference between
the two estimates varies from 10% to 40%. This bad behaviour occurs when the
log-likelihood peak is not strong enough. Some examples of this poor behaviour
concerning the optimisation step are illustrated on the real data in section 4.2.

4.2 Rockfish survey results

Figure 6 shows the different relative abundance indices obtained using the sci-
entific survey described in section 3.5. The confidence intervals have been com-
puted using a bootstrap procedure with 5000 resamples.

The estimate for the numerical version of SEM index exhibits a considerable
difference in trends and the confidence interval associated to this estimate is
huge. This is due to numerical instability problem. Indeed, there are very few
quillback caught in 2007 in area 13 as suggested by the decrease in the trend
for all other indices. Therefore, the numerical optimization procedure behaves
badly which produce a bad estimate but also a large variability using bootstrap
procedure.

Since favorable habitat for target species are mainly located in area 12 and
13 and since the management isn’t at the area scale but globally, data from area
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Figure 6: Four indices computed for area 13 for the quillback population. The
numerical optimisation has some stability issues for year 2007, the results should
be the same then MEM1 estimates.

12 and 13 have been pooled to form one dataset. The corresponding relative
abundance time series is shown in figure 7

Pooling the data from both areas produce more precise estimates as shown in
table 2 and avoids the numerical instability for the SEM index. The coefficient
of variation is divided by almost two when using the whole dataset. We didn’t
include the other areas of the Strait of Georgia in the study since they are known
to provide a poor habitat for quillback rockfish.

Given the uncertainty on the relative abundance indices, no change is statis-
tically significant in the relative abundance of quillback population in the strait
of Georgia.

5 Discussion

The first and most important conclusion of this study is that when competi-
tion between was accounted for simulated data, the classical longline CPUE
estimators gave some strongly biased estimates of stock trends in all cases eval-
uated. In contrast, the exponential model-based estimators showed much less
bias. Therefore it is advisable to avoid the use of classical CPUE as much as
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Figure 7: Four indices computed for area 12 and 13.

possible since this index doesn’t take competition into account. From one year
to another, the level of competition can vary and two CPUE indices computed
during two different years are not comparable which is unacceptable for a rela-
tive abundance index.

In the absence of empty hooks, the abundance indices built on SEM or MEM
are quite comparable even if the fundamental assumptions of SEM and MEM
are very different. If NT is considered as a sum over all hooks of the number of
hooks which have caught a target individual, the central limit theorem claims
that if the number of hooks is large enough NT exhibits a normal distribution.
The independence of hooks is not required, only some weak dependence is nec-
essary (see Billingsley (1995) for central limit theorem under weak dependence
conditions). SEM doesn’t assume the independence on hooks but NT and NNT

are considered as independent variables which is obviously false especially when
this model is used to take competition into account. This explains how the
number of non-target species caught NNT could decrease the number of target
species caught NT . In contrast MEM models the dependence between NT and
NNT but assumes the independence of hooks.

Ignoring empty hooks could produce bad indices because most of the empty
hooks correspond to fish escapement which should be counted in the relative
abundance index. Empty hooks are of major importance to building abundance
indices even if there is no perfect solution to deal with them. Biological knowl-
edge can be very useful for deciding how to deal with empty hooks and the
Bayesian framework offers an intuitive way to use this kind of information to
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Coefficient of variation (%)
Index Area 13 Area 12 and 13

2003 2004 2007 2003 2004 2007
MEM1 24.1 26.6 22.7 15.9 12.6 13.6
MEM2 23.5 29 23.1 15.6 13.6 13.3
SEM N 25.8 30.2 29.8 15.6 13.1 13.9
CPUE 26.4 28.1 24.7 16 13.4 14.1

Table 2: Coefficient of variation of the different relative abundance indices
expressed in percent. The variability strongly decreases when data are pooled
together. The large value for the coefficient of variation for 2007 for the numer-
ical version of SEM is due to optimization instability.

remove the non identifiability problem. But this biological knowledge is hard
to obtain since the escapement of fish from hooks is difficult to study. MEM1
and MEM2 require fully explicit choices concerning the empty hooks. Even if
this required choice is hard to make, the explicit choice could still be discussed.
In the SEM model the choice is made by default and it is even not explicit.
We recommend that practitioners design studies to collect information about
the ability of target and common non-target species to escape and work in a
Bayesian framework using the code provided in Annex C. The major advantage
is that the uncertainty about empty hooks is translated to uncertainty about
the relative abundance indices. If absolutely no information is available, the
recommendation is to use SEM1 since the bias on the relative abundance index
doesn’t depend on the abundance of non-target species. Furthermore, multi-
plicative constant bias as seen for MEM1 doesn’t produce biased estimates of
population dynamic parameters model since the multiplicative constant is ab-
sorbed by the coefficient of proportionnality which links abundance indices and
biomass.

One major drawback of all the models formulated in this paper is the as-
sumption of constant relative abundance along the longline set which is obvi-
ously not true. Different approaches could be explored to avoid this assumption.
The first one would be to record the change of habitat along the longline set
and using this as a covariate in the model. But it is mostly not possible to have
some information about the habitat except when the longline is observed during
the soak with a Remotely Operated Vehicle. Another possibility would be to
refine the modeling of the abundance index. We could for instance consider a
local relative abundance index λTh at hook h defined as the sum of the main
relative abundance λT plus a noise term. The noise term would be chosen as
an autoregressive model for example to use the information of the hooks in the
neighbourhood. This extra variability could account for the variability in the
habitat. Another perspect for dealing with the variability along the longline is
to define the abundance index as piecewise constant function along the longline
and trying to detect the change in this function using the tools of change-point
detection (Lavielle and Lebarbier, 2001).
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The possible variation of λT during the soak time is also a question of inter-
est. Some species could be more attracted by a fresh bait and therefore λ would
be supposed to decrease with time. This question of attractivity of the baits
has been studied by Fernö and Olsen (1995) in chapter 8 but currently there is
no solution to take this into account when building some abundance indices.
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A CPUE computed from several observations

A CPUE index may be considered as the estimation of the probability of suc-
cesses in a binomial trial. If NT stands for the number of success and p is the
probability of success over N × S trials, then

NT ∼ B(p,N × S).

The maximum likelihood estimator p is given by NT /(N × S) =CPUE. If
independent records NTl

for L longline sets are available with distribution
NTl

∼ B(p,Nl × Sl), a sufficient statistic is the sum of all the catch N+
T which

is distributed as
∑

l

NTl
= N+

T ∼ B(p,
∑

l

Nl × Sl).

The maximum likelihood estimator is defined as

∑L

l=1 NTl
∑

l SlNl

,

which defines a generalized CPUE definition.

B More details about the MEM

B.1 Likelihood of MEM with empty hooks

This section gives the key steps of the calculus for the likelihood given in formula
3. We use brackets to denote pdf ’s as many conditioning terms will appear
in the probabilistic expressions derived from the full version of Multinomial
Exponential Model. As in Gelfand and Smith (1990), the brackets denote either
a density or a discrete probability distribution.

The likelihood is then defined by:

l(λT , λNT , pT , pNT ) = [NB, NT , NNT , NE |λT , λNT , pT , pNT ] ,

= [NB|λT , λNT ] [NT , NNT , NE |NB, λT , λNT , pT , pNT ] .

By definition of the model [NB|λT , λNT ] is a binomial distribution. We
need then to define the joint distribution of (NT , NNT , NE) given NB the total
number of unbaited hooks. To obtain this distribution, we need to explicit the

integration term over the hidden quatities N
(E)
T and N

(E)
NT . To make the writing

easier to follow all the parameters will be omitted in the conditionning term.
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[NT , NNT , NE|NB] =

NE
∑

k=0

[

NT , NNT , N
(E)
T = k,N

(E)
NT = NE − k|NB

]

=

NE
∑

k=0

(

N −NB

NT + k

)(

λT

λ

)NT+k (
λNT

λ

)NNT+NE−k (

NT + k
k

)

pkT (1− pT )
NT

(

NNT +NE − k
NE − k

)

pNE−k
NT (1− pNT )

NNT

=

{(

λT

λ

)

(1− pT )

}NT
{(

λNT

λ

)

(1− pNT )

}NNT (N −NB)!

NT !NNT !
NE
∑

k=0

1

(NE − k)! k

(

λT

λ
pT

)k (
λNT

λ
pNT

)NE−k

=
(N −NB)!

NT !NNT !NE!

(

λT

λ
(1− pT

)NT
(

λNT

λ
(1 − pNT

)NNT
(

λT pT + λNT pNT

λ

)NE

The likelihood is then obtained by combining the binomial distribution of
NB with this previous result to give equation 3.

B.2 Identifiability

To prove that the full version of the MEM is not identifiable it is sufficient to
express the likelihood with only three parameters. Let us define α = λT

λ
(1−pT )

and β = λNT

λ
(1 − pNT ). Therefore the likelihood given in equation 3 may be

rewritten as:

l(λ, α, β) =
N !

NB!NT !NNT !NE !

(

e−λS
)NB

(

1− e−λS
)N−NB

(α)NT (β)NNT (1− α− β)NE .

(7)
This form of the model is identifiable and it is called the regular form of the

model.

B.3 Estimators

B.3.1 MEM Estimators

Using the regular form of the model given in equation 7, it is easy to derive the
log likelihood and obtained the maximum likelihood estimators:

λ̂ =
1

S
log

(

N

NB

)

, α̂ =
NT

NT +NNT +NE

, β̂ =
NTN

NT +NNT +NE

.

Those estimators are quite intuitive: for example α parameter represent the
relative density of catchable individuals from target species and it is naturally
estimated as the ratio between the the catch of target species and the total
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number of catch including empty hooks. The ambiguity of the model lies then
in the definition of the relative density, how much the catchable density has to
be increased?

The maximum of the logllikelihood function equals

log

(

N !

NB!NT ! NT ! NNT !NNE

)

+ log

(

NNB

B NNT

T NNT

T NNNT

NT NNE

E

NN

)

This value could be used to compute an AIC criteria.

In the following we will derive the maximum likelihood estimators in our two
specials cases of interest.

B.3.2 MEM1 Estimators

MEM1 corresponds to the assumption that the target species can’t escape, so
taht pT = 0, in this context the log likelihood is given by

L (λT , λNT , pNT ) =K −NBSλ+ (N −NB) log
(

1− e−λS
)

+NT log (λT )

+ (NNT +NE) log (λNT ) +NNT log (1− pNT )− (N −NB) log (λ) +NE log (pNT )

The first derivatives are then derived:

∂L

∂λT

=−NBS +
(N −NB)Se

−λS

1− e−λS
+

NT

λT

+
N −NB

λ
,

∂L

∂λNT

=−NBS +
(N −NB)Se

−λS

1− e−λS
+

NNT +NE

λNT

+
N −NB

λ
,

∂L

∂pNT

=−
NNT

1− pNT

+
NE

pNT

.

The maximum likelihood estimators given on the left side of equation 4 are
then obtained by determining the roots of this set of equations.

If N the number of hooks is large enough, the distribution of the estimators
may be approximated by a normal distribution with mean (λT , λNT , pNT ) and a
matrix variance which is the inverse of the Fisher information matrix F defined
by

F = −E

[

∂2

∂θ1∂θ2

]

,

where θ represents a generic vector of parameters.
It can be shown that the asymptotic variance matrix for MEM1 is given by:

CovMEM1 =
1

N









λTλNT

1−e−λS + 1−e−λS

S2e−λS

λ2
T

λ2 − λTλNT

1−e−λS + 1−e−λS

S2e−λS

λTλNT

λ2 0

− λTλNT

1−e−λS + 1−e−λS

S2e−λS

λT λNT

λ2

λTλNT

1−e−λS + 1−e−λS

S2e−λS

λ2
NT

λ2 0

0 0 λpNT (1−pNT )
λNT (1−e−λS)









(8)

23



B.3.3 MEM2 Estimators

The equivalent equations for MEM2 (corresponding to the assumption that the
probability of esacpe is the same for every species)with pT = pNT = p can be
obtained from the following LogLikelihood:

L (λT , λNT , p) =K −NBSλ+ (N −NB) log
(

1− e−λS
)

+NT log (λT )

+NNT log (λNT ) + (NNT +NT ) log (1− p)− (NT +NNT ) log (λ) +NE log (p)

The first derivatives are then derived:

∂L

∂λT

=−NBS +
(N −NB)Se

−λS

1− e−λS
+

NT

λT

+
NT +NNT

λ
,

∂L

∂λNT

=−NBS +
(N −NB)Se

−λS

1− e−λS
+

NT +NNT

λNT

+
N −NB

λ
,

∂L

∂p
=−

NT +NNT

1− p
+

NE

p
.

The maximum likelihood estimators are obtained by determining the roots
of this set of equations.

The asymptotic covariance matrix is then given by:

CovMEM2
=

1

N









λT λNT

(1−p)(1−e−λS)
+ 1−e−λS

S2e−λS

λ2
T

λ2 − λT λNT

(1−p)(1−e−λS)
+ 1−e−λS

S2e−λS

λTλNT

λ2 0

− λT λNT

(1−p)(1−e−λS) +
1−e−λS

S2e−λS

λT λNT

λ2

λTλNT

(1−p)(1−e−λS) +
1−e−λS

S2e−λS

λ2
NT

λ2 0

0 0 p(1−p)
1−e−λS









(9)

C Some useful codes

C.1 JAGS code for MEM1

var

# data

# Data is a matrix with 4 columns and NData lines

# Col 1 corresponds to Nb, Col2 to N1, Col3 to N2, col4 to Ne

NData, P[NData], Data[NData,4], N[NData],

#variable requiring initialisation

lambda1, lambda2, p,

#variable without initialisation, deduced from the code

alpha[NData, 4];

model {

/* prior density */

p ~ dbeta(0.1,0.1) ;
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lambda1 ~ dbeta(0.1,0.1);

lambda2 ~ dbeta(0.1,0.1);

lambda <- lambda1 + lambda2;

/* Model part */

for(j in 1:NData)

{

alpha[j,1] <- exp(-lambda * P[j]);

alpha[j,2] <- (1- exp(-lambda * P[j])) * lambda1 / lambda;

alpha[j,3] <- (1- exp(-lambda * P[j])) *lambda2/lambda *(1-p);

alpha[j,4] <- (1- exp(-lambda * P[j])) * lambda2 * p /lambda ;

Data[j,] ~ dmulti(alpha[j,], N[j]);

}

}

C.2 JAGS code for MEM2

var

# data

# Data is a matrix with 4 columns and NData lines

# Col 1 corresponds to Nb, Col2 to N1, Col3 to N2, col4 to Ne

NData, P[NData], Data[NData,4], N[NData],

# variable requiring initialisation

lambda1, lambda2, p,

# variable without initialisation, deduced from the code

alpha[NData, 4];

model {

/* prior density */

p ~ dbeta(0.1,0.1) ;

lambda1 ~ dbeta(0.1,0.1);

lambda2 ~ dbeta(0.1,0.1);

lambda <- lambda1 + lambda2;

/* Model part */

for(j in 1:NData)

{

alpha[j,1] <- exp(-lambda * P[j]);

alpha[j,2] <- (1- exp(-lambda * P[j])) * lambda1 * (1-p) / lambda;

alpha[j,3] <- (1- exp(-lambda * P[j])) *lambda2/lambda *(1-p);

alpha[j,4] <- (1- exp(-lambda * P[j])) * p ;

Data[j,] ~ dmulti(alpha[j,], N[j]);

}

}
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