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Abstract

Let I be an open interval, M be a real manifold, Ṫ ∗M its cotangent

bundle with the zero-section removed and Φ = {ϕt}t∈I a homogeneous

Hamiltonian isotopy of Ṫ ∗M . Let Λ ⊂ Ṫ ∗M×Ṫ ∗M×T ∗I be the conic

Lagrangian submanifold associated with Φ. We prove the existence

and unicity of a sheafK onM×M×I whose microsupport is contained

in the union of Λ and the zero-section and whose restriction to t = 0 is

the constant sheaf on the diagonal of M ×M . We give applications of

this result to problems of non displaceability in contact and symplectic

topology. In particular we prove that some strong Morse inequalities

are stable by Hamiltonian isotopies and we also give results of non

displaceability for positive isotopies in the contact setting.

Introduction

The microlocal theory of sheaves has been introduced and systematically de-
veloped in [9, 10], the central idea being that of the microsupport of sheaves.
More precisely, consider a real manifoldM of class C∞ and a field k. Denote
by D

b(kM) the bounded derived category of sheaves of k-modules on M .
The microsupport SS(F ) of an object F of Db(kM) is a closed subset of the
cotangent bundle T ∗M , conic for the action of R+ on T ∗M and co-isotropic.
Hence, this theory is “conic”, that is, it is invariant by the R+-action and is
related to the homogeneous symplectic structure better than the symplectic
structure of T ∗M .
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In order to treat non homogeneous symplectic problems, a classical trick is
to add a variable which replaces the homogeneity. This is performed for com-
plex symplectic manifolds in [15] and later in the real case by D. Tamarkin
in [16] who adapts the microlocal theory of sheaves to the non homogeneous
situation and deduce a new and very original proof of the classical non-
displaceability theorem conjectured by Arnold. Note that a link between
sheaf theory and symplectic topology already appeared in [14].

In this paper, we will also find a new proof of the non-displaceability
theorem and other related results, but when remaining in the homogeneous
symplectic framework, which makes the use of sheaf theory much easier.
In other words, instead of adapting microlocal sheaf theory to treat non
homogeneous geometrical problems, we translate these geometrical problems
to homogeneous ones and apply the classical microlocal sheaf theory. Note
that the converse is not always possible: there are interesting geometrical
problems, for example those related to the notion of positive Hamiltonian
isotopies, which make sense in the homogeneous case and which have no
counterpart in the purely symplectic case.

Our main tool is, following the title of this paper, a quantization of Hamil-
tonian isotopies in the category of sheaves. More precisely, consider a homo-
geneous Hamiltonian isotopy Φ = {ϕt}t∈I of Ṫ

∗M (the complementary of the
zero-section of T ∗M) defined on an open interval I of R containing 0 such
that ϕ0 = id and ϕt = id outside of A ×M T ∗M for a compact subset A of
M . Denoting by Λ ⊂ Ṫ ∗M × Ṫ ∗M × T ∗I the conic Lagrangian submanifold
associated with Φ, we prove that there exists a unique K ∈ D

b(kM×M×I)
whose microsupport is contained in the union of Λ and the zero-section of
T ∗(M ×M × I) and whose restriction to t = 0 is the constant sheaf on the
diagonal of M ×M .

We give a few applications of this result to problems of non displaceability
in symplectic and contact geometry. The classical non displaceability con-
jecture of Arnold says that, on the cotangent bundle to a compact manifold
M , the image of the zero-section of T ∗M by an Hamiltonian isotopy always
intersects the zero-section. This conjecture (and its refinements, using Morse
inequalities) have been proved by Chaperon [1] who treated the case of the
torus using the methods of Conley and Zehnder [5], then by Hofer [7] and
Laudenbach and Sikorav[13]. For related results in the contact case, let us
quote in particular Chaperon [2], Chekanov [3] and Ferrand [6].

In this paper we recover the non displaceability result in the symplectic
case as well as its refinement using Morse inequalities. Indeed, we deduce

2



these results from their homogeneous counterparts which are easy corollar-
ies of our theorem of quantization of homogeneous Hamiltonian isotopies.
We also study positive Hamiltonian isotopies (which make sense only in the
contact setting): we prove that the conormal bundle to a point cannot be
interchanged with the conormal bundle to another point by such an isotopy,
as soon as M is not compact, a variant of a result of [4].

Acknowledgments We have been very much stimulated by the interest of
Claude Viterbo for the applications of sheaf theory to symplectic topology
and it is a pleasure to thank him here.

We are also extremely grateful to Emmanuel Ferrand who pointed out
to us the crucial fact that the Arnold non displaceability problem could be
treated through homogeneous symplectic methods.

1 Microlocal theory of sheaves, after [10]

In this section, we recall some definitions and results from [10], following
its notations with the exception of slight modifications. We consider a real
manifold M of class C∞.

Some geometrical notions ([10, § 4.2, § 6.2])

A C1-map f : M −→ N is called smooth if its differential dxf : TxM −→ Tf(x)N
is surjective for any x ∈M . For a locally closed subset A of M , one denotes
by Int(A) its interior and by A its closure. One denotes by ∆M or simply ∆
the diagonal of M ×M .

One denotes by τM : TM −→ M and πM : T ∗M −→ M the tangent and
cotangent bundles to M . If L ⊂ M is a (smooth) submanifold, one denotes
by TLM its normal bundle and T ∗

LM its conormal bundle. They are defined
by the exact sequences

0 −→ TL −→ L×M TM −→ TLM −→ 0,

0 −→ T ∗
LM −→ L×M T ∗M −→ T ∗L −→ 0.

One identifies M with the zero-section T ∗
MM of T ∗M . One sets Ṫ ∗M :=

T ∗M \ T ∗
MM and one denotes by π̇M : Ṫ ∗M −→ M the projection.
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Let f : M −→ N be a morphism of real manifolds. To f are associated the
tangent morphisms

TM

τM

��

f ′
// M ×N TN

τM
��

fτ
// TN

τN

��

M M
f

// N.

(1.1)

By duality, we deduce the diagram:

T ∗M

πM

��

M ×N T
∗N

πN
��

fdoo
fπ

// T ∗N

πN

��

M M
f

// N.

(1.2)

One sets

T ∗
MN := Ker fd = f−1

d (T ∗
MM).

Note that, denoting by Γf the graph of f in M ×N , the projection T ∗(M ×
N) −→M × T ∗N identifies T ∗

Γf
(M ×N) and M ×N T

∗N .
Now consider the homogeneous symplectic manifold T ∗M : it is endowed

with the Liouville 1-form given in a local homogeneous symplectic coordinate
system (x; ξ) on T ∗M by

αM = 〈ξ, dx〉.

The antipodal map aM is defined by:

aM : T ∗M −→ T ∗M, (x; ξ) 7→ (x;−ξ).(1.3)

If A is a subset of T ∗M , we denote by Aa instead of aM (A) its image by the
antipodal map.

We shall use the Hamiltonian isomorphism H : T ∗T ∗M ∼−→ TT ∗M given
in a local symplectic coordinate system (x; ξ) by

H(〈λ, dx〉+ 〈µ, dξ〉) = −〈λ, ∂ξ〉+ 〈µ, ∂x〉.
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Microsupport ([10, § 5.1, 6.5])

For simplicity, we consider a field k, but this assumption could be weakened
by assuming that k is a commutative ring with finite global dimension (e.g.
k = Z). We denote by D

b(kM) the bounded derived category of sheaves
of k-modules on M . We denote by ωM ∈ D

b(kM) the dualizing complex
on M . Recall that ωM is isomorphic to the orientation sheaf shifted by the
dimension. Recall the definition of the microsupport (or singular support)
SS(F ) of a sheaf F ([10, Def. 5.1.2]).

Definition 1.1. Let F ∈ D
b(kM) and let p ∈ T ∗M . One says that p /∈ SS(F )

if there exists an open neighborhood U of p such that for any x0 ∈ M
and any real C1-function ϕ on M defined in a neighborhood of x0 with
(x0; dϕ(x0)) ∈ U , one has RΓ{x;ϕ(x)≥ϕ(x0)}(F )x0 ≃ 0.

In other words, p /∈ SS(F ) if the sheaf F has no cohomology supported
by “half-spaces” whose conormals are contained in a neighborhood of p.

• By its construction, the microsupport is R+-conic, that is, invariant by
the action of R+ on T ∗M .

• Denoting by T ∗
MM the zero-section of T ∗M , identified with M , the

intersection of SS(F ) with T ∗
MM coincides with the support of F .

• The microsupport is additive: if F1 −→ F2 −→ F3
+1
−→ is a distinguished

triangle in D
b(kM), then SS(Fi) ⊂ SS(Fj) ∪ SS(Fk) for all i, j, k ∈

{1, 2, 3} with j 6= k.

In the sequel, for a locally closed subset Z ofM , we denote by kZ the constant
sheaf with stalk k on Z, extended by 0 on M \ Z.

Example 1.2. (i) If F is a local system on M , then SS(F ) = T ∗
MM ∩

π−1
M (Supp(F )).

(ii) If N is a smooth closed submanifold of M and F = kN , then SS(F ) =
T ∗
NM , the conormal bundle to N in M .

(iii) Let ϕ be C1-function with dϕ(x) 6= 0 when ϕ(x) = 0. Let U = {x ∈
M ;ϕ(x) > 0} and let Z = {x ∈ M ;ϕ(x) ≥ 0}. Then

SS(kU) = U ×M T ∗
MM ∪ {(x;λdϕ(x));ϕ(x) = 0, λ ≤ 0},

SS(kZ) = Z ×M T ∗
MM ∪ {(x;λdϕ(x));ϕ(x) = 0, λ ≥ 0}.
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For a precise definition of being involutive (or co-isotropic), we refer to [10,
Def 6.5.1]

Theorem 1.3. Let F ∈ D
b(kM). Then its microsupport SS(F ) is involutive.

Localization ([10, § 6.1])

Now let A be a subset of T ∗M and let Z = T ∗M \ A. The full subcat-
egory D

b
Z(kM) of Db(kM) consisting of sheaves F such that SS(F ) ⊂ Z is

triangulated. One sets

D
b(kM ;A) := D

b(kM)/Db
Z(kM),

the localization of Db(kM) by D
b
Z(kM). Hence, the objects of Db(kM ;A) are

those of Db(kM) but a morphism u : F1 −→ F2 in D
b(kM) becomes an iso-

morphism in D
b(kM ;A) if, after embedding this morphism in a distinguished

triangle F1 −→ F2 −→ F3
+1
−→, one has SS(F3) ∩ A = ∅.

When A = {p} for some p ∈ T ∗M , one simply writes D
b(kM ; p) instead

of Db(kM ; {p}).

Functorial operations ([10, § 5.4])

Let M and N be two real manifolds. We denote by qi (i = 1, 2) the i-th
projection defined on M ×N and by pi (i = 1, 2) the i-th projection defined
on T ∗(M ×N) ≃ T ∗M × T ∗N .

Definition 1.4. Let f : M −→ N be a morphism of manifolds and let Λ ⊂
T ∗N be a closed R+-conic subset. One says that f is non-characteristic for
Λ (or else, Λ is non-characteristic for f , or f and Λ are transversal) if

f−1
π (Λ) ∩ T ∗

MN ⊂M ×N T
∗
NN.

A morphism f : M −→ N is non characteristic for a closed R+-conic subset
Λ if and only if fd : M ×N T

∗N −→ T ∗M is proper on f−1
π (Λ) and in this case

fdf
−1
π (Λ) is closed and R+-conic in T ∗M .

Theorem 1.5. (See [10, § 5.4].) Let f : M −→ N be a morphism of manifolds,
let F ∈ D

b(kM) and let G ∈ D
b(kN).

(i) Assume that f is proper on Supp(F ). Then SS(Rf!F ) ⊂ fπf
−1
d SS(F ).
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(ii) Assume that f is non characteristic with respect to SS(G). Then
SS(f−1G) ⊂ fdf

−1
π SS(G).

The corollary below is a particular case of the microlocal Morse lemma
(see [10, Cor. 5.4.19]) and follows immediately from Theorem 1.5 (ii). The
classical theory corresponds to the constant sheaf F = kM .

Proposition 1.6. Let F ∈ D
b(kM), let ϕ : M −→ R be a function of class C1

and assume that ϕ is proper on supp(F ). For t ∈ R, set Mt = ϕ−1(]−∞, t[).
Let a < b in R and assume that dϕ(x) /∈ SS(F ) for a ≤ ϕ(x) < b. Then the
natural morphism RΓ(Mb;F ) −→ RΓ(Ma;F ) is an isomorphism.

There exist estimates of the microsupport for characteristic inverse images
and (in some special situations) for non proper direct images but we shall
not use them here.

Kernels([10, § 3.6])

Let Mi (i = 1, 2, 3) be manifolds. For short, we write Mij :=Mi ×Mj (1 ≤
i, j ≤ 3) and M123 =M1 ×M2 ×M3. We denote by qi the projection Mij −→
Mi or the projection M123 −→ Mi and by qij the projection M123 −→ Mij .
Similarly, we denote by pi the projection T ∗Mij −→ T ∗Mi or the projection
T ∗M123 −→ T ∗Mi and by pij the projection T ∗M123 −→ T ∗Mij . We also need
to introduce the map pa12, the composition of p12 and the antipodal map on
T ∗M2.

Let Λ1 ⊂ T ∗M12 and Λ2 ⊂ T ∗M23. We set

Λ1 ◦Λ2 := p13(p
a
12

−1Λ1 ∩ p
−1
23 Λ2).

We consider the operation of convolution of kernels:

◦
M2

: Db(kM12
)× D

b(kM23
) −→ D

b(kM13
)

(K1, K2) 7→ K1 ◦
M2

K2 := Rq13!(q
−1
12 K1 ⊗ q−1

23 K2).

Let Λi = SS(Ki) ⊂ T ∗Mi,i+1 and assume that





(i) q13 is proper on q−1
12 supp(K1) ∩ q

−1
23 supp(K2),

(ii) pa12
−1Λ1 ∩ p23

−1Λ2 ∩ (T ∗
M1
M1 × T ∗M2 × T ∗

M3
M3)

⊂ T ∗
M1×M2×M3

(M1 ×M2 ×M3).

(1.4)
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It follows from Theorem 1.5 that under the assumption (1.4) we have:

SS(K1 ◦
M2

K2) ⊂ Λ1 ◦Λ2.

If there is no risk of confusion, we write ◦ instead of ◦
M2

.

We will also use a relative version of the convolution of kernels. For a
manifold I, K1 ∈ D

b(kM12×I) and K2 ∈ D
b(kM23×I) we set

K1 ◦ |IK2 := Rq13|I !(q
−1
12|I

K1 ⊗ q−1
23|I

K2),(1.5)

where qij|I is the projection M123 × I −→ Mij × I. The above results extend
to the relative case.

Quantized contact transformations ([10, § 7.2])

Consider two manifolds M and N , two conic open subsets U ⊂ T ∗M and
V ⊂ T ∗N and a homogeneous contact transformation χ:

T ∗M ⊃ U ∼−→
χ

V ⊂ T ∗N.(1.6)

Denote by V a the image of V by the antipodal map aN on T ∗N and by Λ
the image of the graph of ϕ by idU ×aN . Hence Λ is a conic Lagrangian
submanifold of U × V a. A quantized contact transformation (a QCT, for
short) above χ is a kernel K ∈ D

b(kM×N) such that SS(K) ∩ (U × V a) ⊂ Λ
and satisfying some technical properties that we do not recall here so that
the kernel K induces an equivalence of categories

K : Db(kN ;V ) ∼−→ D
b(kM ;U).(1.7)

Given χ and p ∈ U , q = χ(p) ∈ V , there exists such a QCT after replacing
U and V by sufficiently small neighborhoods of p and q.

The functor µhom ([10, § 4.4, 7.2])

The functor of microlocalization along a submanifold has been introduced
by Mikio Sato in the 70’s and has been at the origin of what is now called
“microlocal analysis”. A variant of this functor, the bifunctor

µhom : Db(kM)op × D
b(kM) −→ D

b(kT ∗M)(1.8)
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has been constructed in [10]. Since Supp(µhom(F, F ′)) ⊂ SS(F ) ∩ SS(F ′),
(1.8) induces a bifunctor for any open subset U of T ∗M :

µhom : Db(kM ;U)op × D
b(kM ;U) −→ D

b(kU).

Let us only recall the properties of this functor that we shall use. Consider
a smooth function ψ : M −→ R defined in a neighborhood of x0 ∈ M and set
N := {x ∈ M ;ψ(x) = ψ(x0)}. Then, setting p = dψ(x0), we have for any
F ∈ D

b(kM),

RΓ{ψ(x)≥ψ(x0)}(F )x0 ≃ µhom(kN , F )p.

Moreover if χ is a contact transform as in (1.6) and if K is a QCT as in (1.7),
then K induces a natural isomorphism for any F,G ∈ D

b(kN ;V )

χ−1(µhom(F,G)|V ) ∼−→ µhom(K ◦F,K ◦G)|U .(1.9)

Simple sheaves ([10, § 7.5])

Let Λ ⊂ Ṫ ∗M be a locally closed conic Lagrangian submanifold and let p ∈ Λ.
Simple sheaves along Λ at p are defined in [10, Def. 7.5.4].

When Λ is the conormal bundle to a smooth submanifold N ⊂ M , that
is, when the projection πM |Λ : Λ −→ M has constant rank, then an object
F ∈ D

b(kM) is simple along Λ at p if F ≃ kN [d] in D
b(kM ; p) for some shift

d ∈ Z.
If SS(F ) is contained in Λ on a neighborhood of Λ, Λ is connected and F

is simple at some point of Λ, then F is simple at every point of Λ.
If Λ1 ⊂ T ∗M12 and Λ2 ⊂ T ∗M23 are locally closed conic smooth La-

grangian submanifolds and if Ki ∈ D
b(kMi,i+1

) (i = 1, 2) are simple along
Λi, then K1 ◦K2 is simple along Λ1 ◦Λ2 under some conditions (see [10,

Th. 7.5.11]). In particular, simple sheaves are stable by QCT.
Now, let M and N be two manifolds with the same dimension. Let

F ∈ D
b(kM×N). Set

F−1 = v−1RHom (F, ωM ⊠ kN ) ∈ D
b(kN×M),(1.10)

where v : N×M −→M×N is the swap. Let qij be the (i, j)-th projection from
N ×M × N . Then we have F−1 ◦F = Rq13!(q

−1
12 F

−1 ⊗ q−1
23 F ). Let δ : N −→

N ×N be the diagonal embedding. Then we have δ−1(F−1 ◦F ) ≃ Rq2!(F ⊗
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RHom (F, ωM ⊠kN )). Hence δ
−1(F−1 ◦F ) ≃ Rq2!(F ⊗RHom (F, q!2kN)) −→

Rq2!(q
!
2kN) −→ kN gives a morphism

F−1 ◦F −→ k∆N
.

Proposition 1.7 ([10, Proposition 7.1.8, Proposition 7.1.9, Theorem 7.2.1]).
Let pM ∈ Ṫ ∗M and pN ∈ Ṫ ∗N , and we assume the following conditions.

(i) Supp(F ) −→ N is proper,

(ii) F is cohomologically constructible (see [10, Def. 3.4.1]),

(iii) SS(F ) ∩ (Ṫ ∗M × T ∗
NN) = ∅,

(iv) SS(F ) ∩ (T ∗M × {paN}) = {(pM , p
a
N)},

(v) SS(F ) is a Lagrangian submanifold of T ∗(M × N) on a neighborhood
of (pM , p

a
N),

(vi) F is simple along SS(F ) at (pM , p
a
N),

(vii) SS(F ) −→ T ∗N is a local isomorphism at (pM , p
a
N).

Then the morphism F−1 ◦F −→ k∆N
is an isomorphism in D

b(kN×N ; (pN , p
a
N)).

2 Deformation of the conormal to the diago-

nal

As usual, we denote by ∆M or simply ∆ the diagonal of M ×M . We denote
by p1 and p2 the first and second projection from T ∗(M ×M) to T ∗M and
by pa2 the composition of p2 and the antipodal map on T ∗M .

Consider a C∞-function f(x, y) defined on an open neighborhood Ω0 ⊂
M ×M of the diagonal ∆M . We assume that

(i) f |∆M
≡ 0,

(ii) f(x, y) > 0 for (x, y) ∈ Ω0 \∆M ,

(iii) the Hessian
∂2f

∂xi∂xj
(x, y) is positive-definite for (x, y) ∈ ∆M .
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Such a pair (Ω0, f) exists.

Proposition 2.1. Assume that (Ω0, f) satisfies the conditions (i)–(iii). Let
U be a relatively compact open subset of M . Then there exist an ε > 0 and
an open subset Ω of M ×M satisfying the following conditions:

(a) ∆U ⊂ Ω ⊂ Ω0 ∩ (M × U),

(b) Zε := {(x, y) ∈ Ω ; f(x, y) ≤ ε} is proper over U by the map induced by
the second projection,

(c) for any y ∈ U , the open subset {x ∈M ; (x, y) ∈ Ω, f(x, y) < ε} is home-
omorphic to Rn,

(d) dxf(x, y) 6= 0, dyf(x, y) 6= 0 for (x, y) ∈ Ω \∆M ,

(e) setting ΓZε
= {(x, y; ξ, η) ∈ T ∗(Ω) ; f(x, y) = ε, (ξ, η) = λdf(x, y), λ < 0},

the projection pa2 : T
∗(M × U) −→ T ∗U induces an isomorphism ΓZε

∼−→
pa
2

Ṫ ∗U and the projection p1 : T
∗(M ×U) −→ T ∗M induces an open embed-

ding ΓZε
→֒ Ṫ ∗M .

Proof. Replacing Ω0 with the open subset

∆M ∪ {(x, y) ∈ Ω0 ; dxf(x, y) 6= 0, dyf(x, y) 6= 0} ,

we may assume from the beginning that Ω0 satisfies (d).
Let F : Ω0 −→ T ∗M be the map (x, y) 7→ dyf(x, y). This map sends ∆M to

T ∗
MM and is a local isomorphism. Then there exists an open neighborhood

Ω′ ⊂ Ω0 of ∆M such that F |Ω′ : Ω′ −→ T ∗M is an open embedding. Hence by
identifying Ω′ as its image, we can reduce the proposition to the following
lemma. Q.E.D.

Lemma 2.2. Let p : E −→ X be a vector bundle of rank n, i : X −→ E the zero-
section, SE = (E\i(X))/R>0 the associated sphere bundle and q : E\i(X) −→
SE the projection. Let f be a C∞-function on a neighborhood Ω of the zero-
section i(X) of E. Assume the following conditions:

(i) f(z) = 0 for z ∈ i(X),

(ii) f(z) > 0 for z ∈ Ω \ i(X),

(iii) for any x ∈ X the Hessian of f |p−1(x) at the origin is positive-definite.
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Then, for any relatively compact open subset U of X, there exist ε > 0 and
an open subset Ω′ ⊂ Ω ∩ p−1(U) containing i(U) that satisfy the following
conditions:

(a) {z ∈ Ω′ ; f(z) ≤ ε} is proper over U ,

(b) {z ∈ Ω′ ; 0 < f(z) < ε} −→ (SE ×X U)×]0, ε[ given by z 7→ (q(z), f(z))
is an isomorphism,

(c) for any x ∈ X and t ∈]0, ε[, the set {z ∈ Ω′ ∩ p−1(x) ; f(z) < t} is
homeomorphic to R

n.

Since the proof is elementary, we omit it.

Recall (1.10).

Theorem 2.3. We keep the notations in Proposition 2.1 and assume further
that U is connected. Set L = kZε

∈ D
b(kM×U). Then SS(L) ⊂ ΓZε

∪ Zε and
L−1 ◦L ∼−→ k∆U

.

Proof. Set Z = Zε. We have SS(L−1 ◦L) ⊂ T ∗
∆U

(U × U) ∪ T ∗
U×U(U × U).

By Proposition 1.7, there exists a morphism L−1 ◦L −→ k∆U
which is an

isomorphism in D
b(kU×U ; Ṫ

∗(U × U)). Hence if K −→ L−1 ◦L −→ k∆U

+1
−−→

is a distinguished triangle, then SS(K) ⊂ T ∗
U×U(U × U) and hence K has

locally constant cohomologies. Let δ : U −→ U×U be the diagonal embedding.
Then we have δ−1(L−1 ◦L) ≃ Rq2!(L⊗RHom (L,kM×U)⊗q

!
2kU). Since L ≃

kZ and RHom (L,kM×U) ≃ kInt(Z), we have δ−1(L−1 ◦L) ≃ Rq2!(kInt(Z) ⊗

q!2kU ). Since the fibers of Int(Z) −→ U are homeomorphic to R
n, we have

Rq2!(kInt(Z) ⊗ q!2kU) ≃ kU . Thus we obtain that δ−1(L−1 ◦L) ≃ kU , and

hence δ−1K ≃ 0. Since K has locally constant cohomologies and U × U is
connected, we conclude that K ≃ 0. Q.E.D.

3 Quantization of homogeneous Hamiltonian

isotopies

Let I be an open interval of R containing the origin and let Φ: Ṫ ∗M × I −→
Ṫ ∗M be a map such that ϕt := Φ(·, t) : Ṫ ∗M −→ Ṫ ∗M is a homogeneous
symplectic isomorphism for each t ∈ I and is the identity for t = 0. We
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denote by Λt the Lagrangian submanifold of Ṫ ∗M× Ṫ ∗M associated with ϕt,
that is, the image by the antipodal map of the second factor of Ṫ ∗M × Ṫ ∗M
of the graph of ϕt:

Λt =
{
(ϕt(v), v

a) ; v ∈ Ṫ ∗M
}
.

Consider the differential

∂Φ

∂t
: Ṫ ∗M × I −→ T Ṫ ∗M ≃ T ∗Ṫ ∗M.

We make the hypothesis



there exists a function f : Ṫ ∗M × I −→ R homogeneous of
degree 1 such that ∂Φ

∂t
= Hf , where Hf is the Hamiltonian

vector field of f .

(3.1)

After identifying T ∗I with I×R, we can define the Lagrangian submanifold:

Λ :=
{(

Φ(v, t), va, t,−f(Φ(v, t), t)
)
; v ∈ Ṫ ∗M, t ∈ I

}
(3.2)

⊂ Ṫ ∗M × Ṫ ∗M × T ∗I,

and we have

Λt = Λ ◦T ∗
t I.

Lemma 3.1. The set Λ∪T ∗
M×M×I(M ×M × I) is closed in T ∗(M ×M × I).

Proof. In local homogeneous symplectic coordinates (x, y; ξ, η) ∈ T ∗(M×M),
(t; τ) ∈ T ∗I, the construction of Λ implies that for any compact set C ⊂
M×M×I there exists D > 0 such that |τ | ≤ D|ξ|, |ξ| ≤ D|η| and |η| ≤ D|ξ|
for any (x, y, t; ξ, η, τ) ∈ Λ ∩ π−1

M×M×I(C). Hence the same inequalities hold

on the closure Λ of Λ. Hence if (x, y, t; ξ, η, τ) ∈ Λ \ (Ṫ ∗M × Ṫ ∗M × T ∗I),
then ξ = η = 0 and τ = 0, and hence it belongs to the zero-section. Q.E.D.

In the course of the proof of Theorem 3.3 below we shall need an elementary
lemma that we state without proof.

Lemma 3.2. Let X be a smooth manifold, U ⊂ X an open subset with
smooth boundary ∂U and locally on one side of its boundary, let Y ⊂ X × I
be a smooth hypersurface satisfying
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(a) Y is transversal to X × {0},

(b) Y0 = ∂U , where Yt = Y ∩ (X × {t}),

(c) there exists a compact C ⊂ X such that Y ∩((X \C)×I) = (∂U \C)×I.

Then there exists ε > 0 and an open subset V ⊂ X×] − ε, ε[ with smooth
boundary ∂V and locally on one side of its boundary such that ∂V = Y ∩
(X×]− ε, ε[).

Recall that for F ∈ D
b(kM×N), the object F−1 is defined in (1.10). For

an object K ∈ D
b(kM×M×I) and t0 ∈ I, we set

Kt0 = K|t=t0 ≃ K ◦kt=t0 ∈ D
b(kM×M).

We introduce the hypothesis on Φ:

{
Φ is the identity outside of π̇−1

M (A)× I, where A is a compact
subset of M and π̇M : Ṫ ∗M −→M is the projection.

(3.3)

Theorem 3.3. Assume that Φ satisfies hypotheses (3.1) and (3.3). Let us
consider the following conditions on K ∈ D

b(kM×M×I):

(a) SS(K) ⊂ Λ ∪ T ∗
M×M×I(M ×M × I),

(b) K0 ≃ k∆,

(c) K ≃ k∆M×I on
(
(M×M)\(A×A)

)
×I. In particular, the two projections

Supp(K) ⇉M × I are proper,

(d) Kt ◦K
−1
t ≃ K−1

t ◦Kt ≃ k∆.

Then we have

(i) The conditions (a) and (b) imply the other two conditions (c) and (d).

(ii) There exists K satisfying (a)–(d).

(iii) Moreover such a K satisfying the conditions (a)–(d) is unique up to a
unique isomorphism.

We shall call K a quantization of Φ on I, or a quantization of {ϕt}t∈I .

14



Proof. (A) We shall prove first that (a) and (b) imply the other conditions.
We have outside of A×A× I:

SS(K) ⊂ T ∗
∆M×I(M ×M × I) ∪ T ∗

M×M×I(M ×M × I)(3.4)

⊂ T ∗(M ×M)× T ∗
I I.

Hence K is constant on the fibers of M × M × I −→ M × M outside of
A× A× I. Since K|t=0 ≃ k∆M

, we obtain (c).
Let us prove (d). Set F = K ◦ |IK

−1 (notation (1.5)). Then SS(F )

satisfies on M ×M × I:

SS(F ) ⊂ T ∗
∆M×I(M ×M × I) ∪ T ∗

M×M×I(M ×M × I)(3.5)

⊂ T ∗(M ×M)× T ∗
I I.

Let i : M ×M −→ M ×M × I be the inclusion associated to {t = 0} ⊂ I.
Then we have

i!RHom (K,kM×M×I) ≃ RHom (i−1K, i!kM×M×I)

≃ RHom (K0,kM×M)⊗ i!kM×M×I .

On the other hand, the condition on SS(K) implies

i!RHom (K,kM×M×I) ≃ i−1RHom (K,kM×M×I)⊗ i!kM×M×I .

Therefore i−1RHom (K,kM×M×I) ≃ RHom (K0,kM×M) which gives the
isomorphism i−1K−1 ≃ K−1

0 . Thus we obtain i−1F ≃ K0 ◦K
−1
0 ≃ k∆

and the isomorphism F ≃ k∆×I follows since F is constant on the fibers
of M ×M × I −→M ×M .

(B) Unicity. Assume that we have two kernels K and K ′ satisfying the
conditions (a)–(d) and set L = K ◦ |IK

′−1. Then

SS(L) ⊂ T ∗
∆×I(M ×M × I) ∪ T ∗

M×M×I(M ×M × I)

⊂ T ∗(M ×M)× T ∗
I I,

L|t=0 ≃ k∆.

The first estimates imply that L is constant along the fibers ofM×M×I −→
M ×M and hence the last one implies that L ≃ k∆×I .
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(C) Local existence. We shall prove that there exists a quantization of
{ϕt}t∈]−ε,ε[ for 0 < ε ≪ 1. We may assume that M is connected. We use the
results and notations of Proposition 2.1 and Theorem 2.3. Take a relatively
compact open subset U of M such that U contains A. We may assume that
U is connected. Take ε as in Proposition 2.1. Then L := kZε

∈ D
b(kM×U)

satisfies SS(L) = ΓZε
∪ Zε, and L

−1 ◦ |IL ≃ k∆U
.

Set Λ′ = Λ ∩ Ṫ ∗(U × U × I) and Λ′
t = Λt ∩ Ṫ

∗(U × U). Set

Λ̃ := ΓZε
◦ |IΛ

′ ⊂ Ṫ ∗M × Ṫ ∗U × T ∗I,

Λ̃t := ΓZε
◦Λ′

t ⊂ Ṫ ∗M × Ṫ ∗U.

Since Λ′
0 = Ṫ ∗

∆(U × U) and ΓZε
is (a half of) the conormal bundle to a

hypersurface, the Lagrangian manifold Λ̃0 is (a half of) the conormal to the

hypersurface ∂Zε of M × U . Hence Λ̃ is also (a half of) the conormal to a
hypersurface Y of M ×U × I ′ for a small interval I ′ containing 0. We apply
Lemma 3.2 with X = M × U , U the interior of Zε and C = A× A. We get
an interval I ′′ containing 0 and an open subset V ⊂ M × U × I ′′ such that
setting L̃ = kV , the object L̃ ∈ D

b(kM×U×I′′) satisfies:

(a) SS(L̃) ⊂ (Λ̃×I I
′′) ∪ T ∗

M×U×I′′(M × U × I ′′),

(b) L̃0 ≃ L,

(c) the projection M × U × I ′′ −→ U × I ′′ is proper on supp L̃.

Now, set K = L−1 ◦ |IL̃ ∈ D
b(kU×U×I′′). Then K will satisfy the properties

(a)–(b) of Theorem 3.3 when replacing X and I with U , I ′′. Since

K|((U×U)\(A×A))×I′′ ≃ k∆M
|((U×U)\(A×A))×I′′ ,

K extends to K̃ ∈ D
b(kX×X×I′′) with

K̃|((X×X)\(A×A))×I′′ ≃ k∆M
|((X×X)\(A×A))×I′′ .

Then K̃ is a quantization of {ϕt}t∈I′′.

(D) Gluing (a). Assume Kt0,t1 is a quantization of the isotopy {ϕt}t∈]t0,t1[
for an open interval ]t0, t1[ of I containing the origin. We shall denote by
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Kt0,t1
t the restriction of Kt0,t1 at t ∈]t0, t1[. Assuming t1 ∈ I, we shall show

that there exists a quantization of the isotopy {ϕt}t∈]t0,t4[ for an open interval
]t0, t4[⊂ I for some t4 > t1.

By applying the result of (C) to the isotopy {ϕt ◦ ϕ
−1
t1 }t∈I , there exists

t0 < t3 < t1 < t4 with t4 ∈ I and a quantization Lt3,t4 of the isotopy
{ϕt ◦ ϕ

−1
t1 }t∈]t3,t4[. Choose t2 with t3 < t2 < t1 and set

F = (Kt0,t1 |]t3,t1[) ◦(K
t0,t1
t2 )−1,

F ′ = (Lt3,t4|]t3,t1[) ◦(L
t3,t4
t2 )−1.

Then both F and F ′ are a quantization of the isotopy {ϕt◦ϕ
−1
t2 }t∈]t3,t1[. Using

(C), F and F ′ are isomorphic and hence we have an isomorphism

Kt3,t4 |]t3,t1[ ≃ Kt0,t1 |]t3,t1[ in D
b(kM×M×]t3,t1[).

where Kt3,t4 = Lt3,t4 ◦(Lt3,t4t2 )−1 ◦Kt0,t1
t2 ∈ D

b(kM×M×]t3,t4[). Therefore, there

exists Kt0,t4 ∈ D
b(kM×M×]t0,t4[) such that Kt0,t4|M×M×]t0,t1[ ≃ Kt0,t1 and

Kt0,t4 |M×M×]t3,t4[ ≃ Kt3,t4 . Then Kt0,t4 is a quantization of the isotopy
{ϕt}t∈]t0,t4[.

(E) Gluing (b). Consider an increasing sequence of open intervals In ⊂
I and assume we have constructed quantizations Kn of {ϕt}t∈In . Hence,
Kn+1|M×M×In ≃ Kn. Set J =

⋃
n In and denote by in the embedding M ×

M × In →֒ M ×M × J . We have morphisms

ιn : Rin!Kn −→ Rin+1!Kn+1,

hence an inductive system {(Rin!Kn, ιn)}n in D
b(kM×M×J). Denote by KJ

a homotopy colimit of this inductive system. Then KJ is a quantization of
{ϕt}t∈J .

(F) Gluing (c). Consider the set of pairs (J,KJ) where J is an open interval
contained in I and containing 0 and KJ is a quantization of {ϕt}t∈J . This
set, ordered by inclusion, is inductively ordered by (E). Let (J,KJ) be a
maximal element. It follows from (D) that J = I. Q.E.D.

Example 3.4. Let M = Rn and denote by (x; ξ) the homogeneous sym-
plectic coordinates on T ∗Rn. Consider the isotopy ϕt(x; ξ) = (x − t ξ

|ξ|
; ξ),

t ∈ I = R. Then

Λt = {(x, y, ξ, η); |x− y| = |t|, ξ = −η = s(x− y), st < 0} for t 6= 0,

Λ0 = Ṫ ∗
∆(M ×M).
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The isomorphisms

RHom (k∆×{t=0},kM×M×R) ≃ k∆×{t=0}[−n− 1]

RHom (k{|x−y|≤−t},kM×M×R) ≃ k{|x−y|<−t}

together with the morphism k{|x−y|≤−t} −→ k∆×{t=0} induce the morphism
k∆×{t=0}[−n− 1] −→ k{|x−y|<−t}. Hence we obtain

k{|x−y|≤t} −→ k∆×{t=0} −→ k{|x−y|<−t}[n+ 1].

Therefore there exists a distinguished triangle in D
b(kM×M×I):

k{|x−y|<−t}[n] −→ K −→ k{|x−y|≤t}
+1
−→ .

We can verify that K satisfies the properties (a)–(d) of Theorem 3.3. From
this distinguished triangle, we deduce the isomorphisms in D

b(kM×M): Kt ≃
k{|x−y|≤t} for t ≥ 0 and Kt ≃ k{|x−y|<−t}[n] for t < 0.

Lemma 3.5. Assume that Φ satisfies hypothesis (3.1) and let U be a rela-
tively compact open subset of M , I ′ ⊂ I a relatively compact open interval
containing 0. Then there exists Φ′ : Ṫ ∗M × I −→ Ṫ ∗M satisfying hypothe-
sis (3.1) and (3.3) such that

Φ′|Ṫ ∗U×I′ = Φ|Ṫ ∗U×I′.(3.6)

Proof. Since Φ is homogeneous, the set B = π̇M (Φ(Ṫ ∗U×I ′)) has a compact
closure in M . We choose a compact neighborhood A of B and a function
g : M −→ R which vanishes oustide A and takes value 1 on a neighborhood of
B. We define f ′ : Ṫ ∗M × I −→ R by f ′(x, ξ, t) = g(x)f(x, ξ, t).

Then f ′ is homogeneous of degree 1 with support contained in π̇−1(A)×I.
Hence its Hamiltonian flow Φ′ satisfies (3.1) and (3.3). Moreover we have by
construction

Hf ′ |π̇−1

M
(B)×I = Hf |π̇−1

M
(B)×I

and this implies (3.6). Q.E.D.

4 Applications

We denote by Φ = {ϕt}t∈I : Ṫ
∗M × I −→ Ṫ ∗M a homogeneous symplectic

isotopy as in Theorem 3.3. Hence, Φ satisfies hypotheses (3.1) and (3.3).
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Let F0 ∈ D
b(kM). We assume

F0 has a compact support.(4.1)

Let K ∈ D
b(kM×M×I) be the quantization of Φ on I constructed in Theo-

rem 3.3. We set:

F = K ◦F0 ∈ D
b(kM×I),

Ft0 = F |{t=t0} ∈ D
b(kM) for t0 ∈ I.

Then
{
Ft has a compact support in M ,

SS(Ft) ∩ Ṫ
∗M = ϕt(SS(F0) ∩ Ṫ

∗M).
(4.2)

Lemma 4.1. We have an isomorphism RΓ(M ;Ft) ≃ RΓ(M ;F0) for any
t ∈ I.

Proof. Denote by q : M × I −→ I the projection. Then q is proper on
supp(F ) and SS(Rq∗F ) ⊂ T ∗

I I, so that Rq∗F is a constant sheaf on I. Then
RΓ(M ;Fs) ≃ (Rq∗F )s ≃ RΓ(M ;F0). Q.E.D.

Application to non displaceability

We consider a C1-map ψ : M −→ R and we assume that

the differential dψ(x) never vanishes.(4.3)

Hence the map ψd : M ×R T
∗R −→ T ∗M is an embedding and we set

T ∗
±R = {(t, τ) ∈ T ∗R ;±τ > 0} ,

Λψ = {(x; dψ(x))}.
(4.4)

Theorem 4.2. Assume that Φ = {ϕt}t∈I satisfies (3.1) and (3.3) and ψ : M −→
R satisfies (4.3). Let F0 ∈ D

b(kM) satisfying (4.1) and also assume that
RΓ(M ;F0) 6= 0. Then for any t ∈ I, ϕt(SS(F0) ∩ Ṫ

∗M) ∩ Λψ 6= ∅.

Proof. It follows from Lemma 4.1 that RΓ(R; Rψ∗Ft) ≃ RΓ(M ;Ft) 6= 0 for
any t ∈ I. By the assumption, Rψ∗Ft has compact support. Hence, if
Λψ ∩ SS(Ft) = ∅, then Proposition 1.6 implies that RΓ(M ;Ft) ≃ 0, which is
a contradiction. Q.E.D.

Corollary 4.3. Let Φ = {ϕt}t∈I and ψ : M −→ R be as in Theorem 4.2.
Let N be a non empty compact submanifold of M . Then for any t ∈ I,
ϕt(Ṫ

∗
NM) ∩ Λψ 6= ∅.
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Application to Morse inequalities

The classical Morse inequalities are extended to sheaves in [10, Prop. 5.4.20].
Let us first briefly recall this result.

For a bounded complex E with finite-dimensional cohomologies, we set

bj(E) = dimHj(E), b∗l (E) = (−1)l
∑

j≤l

(−1)jbj(E).

We consider a map ψ : M −→ R of class C1 and define Λψ as above. Note
that we do not ask ψ to be smooth. Assume that

the set Λψ ∩ SS(F0) is finite, say {p1, . . . , pN}(4.5)

and, setting

xi = π(pi), Vi := RΓ{ψ(x)≥ψ(xi)}(M ;F0))xi,(4.6)

also assume that

the cohomologies of Vi are finite-dimensional k-vector spaces.(4.7)

Set

bj(F0) = dimHj(RΓ(M ;F0)),

Assume (4.1) (4.5) and (4.7). Then the Morse inequalities for sheaves are
stated as:

b∗l (F0) ≤
N∑

i=1

b∗l (Vi).(4.8)

In fact, assumption (4.1) may be weakened, see loc. cit.
Notice that (4.8) immediately implies

bj(F0) ≤
N∑

i=1

bj(Vi) for any j.(4.9)

In the sequel, we set

S0 = SS(F0) ∩ Ṫ
∗M.
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Now we assume that




(i) ψ is of class C2 and the differential dψ(x) never vanishes,

(ii) S0,reg is an open dense subset of S0 such that S0,reg is a
Lagrangian submanifold of class C1 and F0 is a simple
sheaf along S0,reg.

(4.10)

Lemma 4.4. Let Λ be a smooth Lagrangian manifold defined in a neighbor-
hood of p ∈ Ṫ ∗M , let G ∈ D

b(kM ) and assume G is simple along Λ at p.
Assume that Λ and Λψ intersect transversally at p. Set x0 = π(p). Then

∑

j

dimHj(RΓ{ψ(x)≥ψ(x0)}(G))x0 = 1.

Proof. By the definition ([10, Definition 7.5.4]), RΓ{ψ(x)≥ψ(x0)}(G)x0 is con-
centrated in a single degree and its cohomology in this degree has rank one.

Q.E.D.

In the sequel, for a finite set A, we denote by #A its cardinal.

Theorem 4.5. Let Φ = {ϕt}t∈I , Ft and ψ : M −→ R be as above and as-
sume (4.1) and (4.10). Let t0 ∈ I. Assume that Λψ ∩ϕt0(S0) is contained in
Λψ ∩ ϕt0(S0,reg) and the intersection is finite and transversal. Then

#
(
ϕt0(S0) ∩ Λψ

)
≥

∑

j

bj(F0).

Proof. It follows from Lemma 4.1 that bj(Ft) = bj(F0) for all j ∈ Z and all
t ∈ I.

Let {q1, . . . , qL} = Λψ ∩ ϕt0(Λ0), yi = π(qi) and set

Wi := RΓ{ψ(x)≥ψ(yi)}(Ft0)yi.

By Lemma 4.4, Wi is a bounded complex with finite-dimensional cohomolo-
gies and it follows from the Morse inequalities that

∑

j

bj(Ft0) ≤
∑

j

∑

i

bj(Wi).
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Moreover
∑

j

dimHj(RΓ{ψ(x)≥ψ(yi)}(Ft0)yi) = 1 for any i,

and it implies
∑

j

∑

i

bj(Wi) = #
(
SS(Ft0) ∩ Λψ

)
= #

(
ϕt0(SS(F0) ∩ Ṫ

∗M) ∩ Λψ
)
.

Q.E.D.

Corollary 4.6. Let Φ = {ϕt}t∈I , Ft and ψ : M −→ R be as above and let N
be a compact submanifold of M . Let t0 ∈ I. Assume that ϕt0(Ṫ

∗N) and Λψ
intersect transversally. Then

#(ϕt0(Ṫ
∗N) ∩ Λψ) ≥

∑

j

dimHj(N ;C).

Remark 4.7. Corollaries 4.3 and 4.6 extend to the case where N is replaced
with a compact submanifold with boundary or even with corners. In this
case, one has to replace the conormal bundle T ∗

NM with the microsupport
of the constant sheaf kN on M . Note that this microsupport is easily calcu-
lated. For Morse inequalities on manifolds with boundaries, see the recent
paper [12].

Positive Hamiltonian isotopies

Consider as above a manifold M and Φ: Ṫ ∗M × I −→ Ṫ ∗M a homogeneous
Hamiltonian isotopy associated to a function f : Ṫ ∗M ×I −→ R homogeneous
of degree 1 satisfying (3.1). We also define Λ ⊂ Ṫ ∗M×Ṫ ∗M×T ∗I as in (3.2).
The following definition has been communicated to us by Emmanuel Ferrand
and is used in [4] where the authors prove (a variant of) Corollary 4.10 below
and other related results.

Definition 4.8. The isotopy Φ is said to be positive if 〈αM , Hf〉 ≥ 0.

Let euM be the Euler vector field on T ∗M . Then 〈αM , Hf〉 = euM(f) and
since f is of degree 1 we have euM(f) = f . Hence Φ is positive if and only if
f is a non-negative valued function. We let (t, τ) be the coordinates on T ∗I.
Then by (3.2) this condition is also equivalent to

Λ ⊂ {τ ≤ 0}.
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Proposition 4.9. Let N be a manifold, I =]a, b[ an open interval of R. Let
F ∈ D

b(kN×I) and, for t ∈ I, set Ft = F |N×{t} ∈ D
b(kN). Assume that

(i) SS(F ) ⊂ {τ ≤ 0},

(ii) SS(F ) ∩ (T ∗
NN × T ∗I) ⊂ T ∗

N×I(N × I),

(iii) Supp(F ) −→ I is proper.

Then we have:

(a) for all s ≤ t ∈ I there are natural morphisms rt,s : Fs −→ Ft,

(b) rt,s induces a commutative diagram with isomorphisms

RΓ(N × I;F )

≀
��

∼

((QQ
QQ

QQ
Q

QQ
QQ

Q

RΓ(N ;Fs)
∼
rt,s

// RΓ(N ;Ft).

Proof. (i) By a similar argument to Lemma 4.1, (ii) and (iii) implies that
RΓ(N × I;F ) −→ RΓ(N ;Ft) is an isomorphism for any t ∈ I.

(ii) Take b′ such that a < b′ < b, and set F ′ = F ⊗ kN×]a,b′]. Then F ′ also
satisfies (i). Hence [10, Prop. 5.2.3] implies that F ′ ≃ F ′ ◦kD, where

D = {(s, t) ∈ I × I ; t ≤ s ≤ b′} .

We deduce the isomorphisms, for any t0 ∈ I ′:=]a, b′[ :

Ft0 ≃ F ′ ◦k{t0} ≃ F ′ ◦kD ◦k{t0} ≃ F ′ ◦k[t0,b′] ≃ F ◦k[t0,b′].(4.11)

The morphism rt,s (a < s ≤ t < b′) is then induced by the morphism
k[s,b′] −→ k[t,b′]. Hence we obtain a commutative diagram

RΓ(N × I;F )
∼

uukkkkkkkkkkkkkk

∼

))SSSSSSSSSSSSSS

RΓ(N × [s, b′];F )

≀
��

// RΓ(N × [t, b′];F )

≀
��

RΓ(N ;F ◦ k[s,b′]) //

≀

��

RΓ(N ;F ◦ k[t,b′])

≀

��

RΓ(N ;Fs)
rt,s

// RΓ(N ;Ft).
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Q.E.D.

Corollary 4.10. Let M be a connected and non compact manifold, and let
x, y be two distinct points on M . Then there does not exist any positive
homogeneous Hamiltonian isotopy Φ: Ṫ ∗M×I −→ Ṫ ∗M such that ϕt(Ṫ

∗
xM) =

Ṫ ∗
yM for some t ∈ I.

Proof. (i) Assume we have such Φ and t. We set F0 = k{x} ∈ D
b(kM). Let

K ∈ D
b(kM×M×I) be the quantization of Φ on I constructed in Theorem 3.3.

Then SS(K) ⊂ Λ∪T ∗
M×M×I(M ×M × I), so that SS(K) ⊂ {τ ≤ 0}. We set:

F = K ◦F0, Ft0 = F ◦k{t=t0} (t0 ∈ I).

Then we also have SS(F ) ⊂ {τ ≤ 0}. Moreover supp(F ) −→ I is proper
and SS(F ) ∩ (T ∗

MM × T ∗I) ⊂ T ∗
M×I(M × I). To check the last condition we

note that outside the zero-section SS(F ) ⊂ Λ ◦ T ∗M = p13(Λ). But Λ ⊂
Ṫ ∗M×T ∗M×T ∗I and it follows that SS(F ) ⊂ (Ṫ ∗M×T ∗I)∪T ∗

M×I(M×I).

(ii) Hence the hypotheses of Proposition 4.9 are satisfied and we deduce that
there exists a morphism Ft −→ F0 if t < 0 or F0 −→ Ft if t > 0 which induces
an isomorphism on global sections, and so is non-zero since RΓ(M ;F0) ≃ k.

(iii) On the other hand we have

SS(Ft) ∩ Ṫ
∗M = ϕt(SS(F0) ∩ Ṫ

∗M) = ϕt(Ṫ
∗
xM) = Ṫ ∗

yM.

In particular, the cohomologies of Ft are locally constant sheaves onM \{y}.
SinceM is connected and non compact and Supp(Ft) is compact, this implies
that Ft|M\{y} ≃ 0. In particular, any morphism Ft −→ F0 or F0 −→ Ft vanishes
and this contradicts (ii). Q.E.D.

Non homogeneous case

In this subsection we recall the link between non homogeneous symplectic
geometry and homogeneous symplectic geometry with an extra variable.

For a manifold M we define the map

ρ = ρM : T ∗M × Ṫ ∗
R −→ T ∗M, (x, ξ, s, σ) 7→ (x, ξ/σ).

We consider a Hamiltonian isotopy Φ: T ∗M × I −→ T ∗M as in Section 3 but
we do not assume anymore it is homogeneous. Recall what this means:
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(i) ϕ0 = idT ∗M , where ϕt := Φ(·, t) : T ∗M −→ T ∗M ,

(ii) there exists a function f : T ∗M × I −→ R such that ∂Φ
∂t

= Hf , where Hf

is the Hamiltonian vector field of f .

We also assume that there exists a compact set C ⊂ T ∗M such that f
vanishes on (T ∗M \ C)× I. This implies that ϕt|T ∗M\C = id for all t ∈ I.

We may define f̃ : Ṫ ∗(M × R)× I −→ R by

f̃(x, ξ, s, σ, t) =

{
σf(x, ξ/σ, t) if (x, ξ, s, σ) ∈ T ∗M × Ṫ ∗R,

0 if (x, ξ, s, σ) ∈ Ṫ ∗M × T ∗
R
R.

Indeed for a given (x, ξ) ∈ Ṫ ∗M , ξ/σ goes to infinity when σ goes to 0.

Hence, f̃(x, ξ, s, σ, t) = 0 for |σ| small enough.

Lemma 4.11. The Hamiltonian flow of f̃ is defined on Ṫ ∗(M ×R)× I. We

denote it by Φ̃ : Ṫ ∗(M × R) × I −→ Ṫ ∗(M × R). We have the commutative
diagram

T ∗M × Ṫ ∗R× I
Φ̃ //

ρ×idI
��

T ∗M × Ṫ ∗R

ρ

��

T ∗M × I
Φ // T ∗M.

More precisely there exists a function u : Ṫ ∗(M × R)× I −→ R homogeneous
of degree 0 such that

Φ̃(x, ξ, s, σ, t) = (σ · ϕt(x, ξ/σ), u(x, ξ, s, σ, t), σ),(4.12)

where σ · denotes the multiplicative action of R on T ∗M .

Proof. We have to describe the Hamiltonian vector field Hf̃ of f̃ . We denote
by p : T ∗M × T ∗R −→ T ∗R the projection (x, ξ, s, σ) 7→ (s, σ). For a point
q = (x, ξ, s, σ) ∈ T ∗M × Ṫ ∗R we use the derivatives of ρ and p to decompose
Tq(T

∗M × T ∗
R):

dρq × dpq : Tq(T
∗M × T ∗

R) ∼−→ T(x,ξ/σ)(T
∗M)⊕ T(s,σ)(T

∗
R).(4.13)

Setting σM = dαM where αM is the Liouville form on T ∗M we have

αM×R|T ∗M×Ṫ ∗R
= σρ∗(αM) + p∗(αR),

σM×R|T ∗M×Ṫ ∗R
= σρ∗(σM ) + p∗(σR) + p∗(dσ) ∧ ρ∗(αM).
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In the sequel we fix t and write f̃ for f̃(·, t) for short. Then Hf̃ is determined

by ιH
f̃
(σM×R) = −df̃ . We decompose (Hf̃)q = θM + θR according to (4.13)

and we also use the decomposition of T ∗
q (T

∗M×T ∗R) induced by (4.13). We
find

ιH
f̃
(σM×R) =

(
σιθM (σM ) + 〈θR, dσ〉αM

)
+
(
ιθR(σR)− 〈θM , αM〉dσ

)
.

Since df̃ = σρ∗df + fp∗dσ we obtain

−df = ιθM (σM) + σ−1〈θR, dσ〉αM , −fdσ = ιθR(σR)− 〈θM , αM〉dσ.

The second equality gives θR = a ∂/∂s for some function a. Then the first
one gives θM = Hf and hence a = (f − 〈Hf , αM〉) ◦ ρ = (f − euM(f)) ◦ ρ.
Finally

(Hf̃)(x,ξ,s,σ,t) = (Hf)(x,ξ/σ,t) + (f − euM(f))(x, ξ/σ, t)
∂

∂s
.

This shows that Hf̃ projects to Hf through ρ and that the flow Φ̃ of f̃ keeps

the σ coordinate fixed. Hence (4.12) holds as soon as Φ̃ is defined. Since Φ̃

is homogeneous the function u is homogeneous of degree 0. Since Φ̃ is the
identity map on Ṫ ∗M × T ∗

R
R we may also extend u to Ṫ ∗(M × R) × I by

u = s on Ṫ ∗M × T ∗
R
R× I.

To see that Φ̃ is defined on Ṫ ∗(M × R) × I we just need to check that
the s coordinate remains bounded when t ∈ J for any given compact interval
J ⊂ I. But f and euM(f) are bounded on T ∗M × J hence the coefficient
a of ∂/∂s introduced above also is bounded on T ∗M × Ṫ ∗R × J . It follows
that the s coordinate remains bounded as required. Q.E.D.

Theorem 4.12. Let N be a compact manifold and assume that N is not
empty. Let Φ: T ∗N × I −→ T ∗N be a Hamiltonian isotopy as above. We
let c =

∑
j dimHj(N ;C), the sum of the Betti numbers of N . Then for

any t ∈ I the intersection ϕt(T
∗
NN) ∩ T ∗

NN is never empty. Moreover its
cardinality is at least c whenever the intersection is transversal.

Proof. (i) We setM = N×R and identify N with N×{0}. We let Φ̃ : Ṫ ∗M×

I −→ Ṫ ∗M be the isotopy given by Lemma 4.11 and we set ϕ̃t = Φ̃(·, t).
For a given t Lemma 3.5 gives the existence of a Hamiltonian isotopy

Φ̂ : Ṫ ∗M × I −→ Ṫ ∗M which satisfies (3.1) and (3.3) and such that

ϕ̃t(Ṫ
∗
NM) = ϕ̂t(Ṫ

∗
NM).
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We apply Theorem 4.2 and 4.5 to M = N × R, Φ̂, F0 = kN and ψ = t, the
projection from M to R. We obtain that the intersection ϕ̃t(Ṫ

∗
NM) ∩ Λψ is

a non empty set whose cardinality is at least c whenever the intersection is
transversal.

(ii) Now we compare ϕ̃t(Ṫ
∗
NM) ∩ Λψ with the intersection considered in the

theorem. To study the transversality of the intersections we use the following
remark.

Let p : E −→ X be a smooth morphism, let A,B be submanifolds of X
and A′ a submanifold of E. We assume that p induces a diffeomorphism
p|A′ : A′ ∼−→ A. We set B′ = p−1(B). Then

p induces a bijection A′ ∩B′ ∼−→ A ∩B,(4.14)

A′ and B′ intersect transversally if and only if A and B in-
tersect transversally.

(4.15)

We will apply this remark to the cases (a) and (b) described below (t ∈ I
is fixed).
(a)X = T ∗N , E = T ∗N×R×, p(x, ξ, σ) = (x, ξ/σ), A = T ∗

NN , B = ϕt(T
∗
NN)

and A′ = T ∗
NN × {1} ⊂ E. We set Σt :=B′ = p−1(B) and we find

Σt = {(σ · ϕt(x, 0), σ) ∈ T ∗N × R
×; x ∈ N, σ ∈ R

×}.

(b) X = T ∗N × R×, E = T ∗N × Ṫ ∗R, p(x, ξ, s, σ) = (x, ξ, σ), A = Σt,
B = T ∗

NN × {1} and A′ = ϕ̃t(Ṫ
∗
NM). In view of (4.12) we have

ϕ̃t(Ṫ
∗
NM) = {(σ · ϕt(x, 0), u(x, 0, 0, σ, t), σ); x ∈ N, σ ∈ R

×}.

Hence the restriction of p to ϕ̃t(Ṫ
∗
NM) induces an isomorphism ϕ̃t(Ṫ

∗
NM) ∼−→

Σt as required. We find that B′ = p−1(B) is nothing but Λψ.

Then the theorem follows from (4.14) and (4.15) applied to (a) and (b)
and the results on ϕ̃t(Ṫ

∗
NM) ∩ Λψ obtained in part (i) of the proof. Q.E.D.
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H. Poincaré Anal. Non Linéaire 2 , no. 6, p. 407–462 (1985).

[8] M. Kashiwara, D-modules and Microlocal Calculus, Translations of
Mathematical Monographs, 217 American Math. Soc. (2003).

[9] M. Kashiwara and P. Schapira, Microlocal study of sheaves, Astérisque
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