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Abstract—Consider a group of peers, an ideal random peer
sampling service should return a peer, which is an unbiased
independent random sample of the group. This paper focuses on
peer sampling service based on view shuffling (aka gossip-based
peer sampling), where each peer is equipped with a local view
of size c. This view should correspond to a uniform random
sample of size c of the whole system in order to implement
correctly a uniform peer sampling service. To this aim, pairs of
peers regularly and continuously swap a part of their local views
(shuffling operation). The paper provides a proof that (i) starting
from any non-uniform distribution of peers in the peers’ local
views, after a sequence of pairwise shuffle operations, each local
view eventually represents a uniform sample of size c and (ii)
once previous property holds, any successive sequence of shuffle
operations does not modify this uniformity property. This paper
also presents some numerical results concerning the speed of
convergence to uniform samples of the local views.

Keywords-Peer sampling; Gossip-based protocol; Theoretical
analysis; Stochastic process; Numerical evaluation.

I. INTRODUCTION

Uniform peer sampling service has been shown recently to

be a basic building block for several applications in large-

scale distributed systems [1] as information dissemination [2],

counting [3], clock synchronization [4], etc. Working on the

top of a biased peer sampling can affect either performance,

correctness or both of a given application. A sequence of

invocations to a peer sampling service returns a sequence of

samples of the peers belonging to the system. If samples are

unbiased random samples of the system, the peer sampling

service is called uniform. There are two main approaches

to implement uniform random sampling, random walk and

gossip-based protocols.

A random walk on a given graph is a sequential process

that consists in visiting the nodes of the graph according to

a random order induced by the way the walker is allowed

to move. More precisely, the walker moves from one node

to one of its neighbors that is selected uniformly at random.

The key property of a random walk is that, after a suitable

number of steps, called the mixing-time, the visited node is the

same as drawn from a uniform distribution [5]. Thus, random

walk-based peer sampling mechanisms aim at implementing

a biased random walk [3]. Unfortunately, the mixing-time

depends on the topological property of the graph, which is

generally unknown. Thus, for the reached node to be uniformly

sampled, the length of the walk has to be properly tuned.

Moreover, this technique may incur in a long delay to return

a sample.

This paper focuses on uniform peer sampling based on

gossip protocols. We consider a system formed by n peers

(i.e., nodes), each provided with a local view of size c ≤ n.

Each node runs a simple shuffling protocol where pair of nodes

regularly and continuously swaps part of their local views

(shuffle operation). This protocol is similar to the ones used in

[1], [6], [7], [8]. The shuffling protocol aims that local views

eventually represent a uniform random sample of the system.

The main results presented in this paper show formally that:

1) starting from any non-uniform distribution of nodes in

the local views, after a sufficiently long sequence of

pairwise shuffle operations executed by the shuffling

protocol, each local view represents a uniform random

sample of size c among the whole system (Theorem

5.1);

2) once previous property has been established, any se-

quence of successive shuffle operations does not modify

the previous property (Corollary 5.1).

To the best of our knowledge, these results have never been

formally proved before, despite the fact that there is empir-

ical evidence shown in many papers [1], [8], that protocols

based on view shuffling can provide continuously a uniform

sampling.

Let us remark that this result complements the one presented

in [9]. Indeed, the authors of [9] propose a protocol based on

view shuffling and formally prove that this protocol converges

to a uniform peer sampling also in the presence of byzantine

peers. Each run of their protocol leads, after a sufficiently long

sequence of shuffle operations, to verify the property: “each lo-

cal view is a uniform random sample of the system”. However,

each time a user requires to get a new uniform sample, another

instance of this protocol has to be started and it has to converge

to a new uniform random sample. Conversely, the shuffling

protocol presented in this paper shows that once the local

view converges to represent a uniform sample of the system,

then successive shuffle operations do not modify the property

(Corollary 5.1). Therefore, there is a continuous availability

of a uniform random sample without the need to start other

instances of the base protocol. The paper finally presents some



numerical results related to the shuffling protocol concerning

the speed of convergence to uniform samples of the local

views.

This paper is organized as follows: Section II presents

the system model. The shuffling protocol is presented in

Section III while Section IV provides an analytical model of

the shuffling protocol. Section V proves that the local views

shaped by the shuffling protocol converge to uniform random

samples of the system. Section VI provide some stochastic

evaluations in order to illustrate the best settings according to

the system parameters. Finally, related works and conclusion

are given respectively in Section VII and in Section VIII.

II. SYSTEM MODEL

We consider a finite set of n nodes (with n ≥ 2), which are

uniquely identified through a system-wide identifier (ID). Each

node i manages a local partial view of the system, denoted Vi

of size c ≤ n about all the other nodes in the system, including

itself.

The view of node i is modelled as a fixed-size set of binary

random variables indicating whenever the identifier k appears

in Vi or not

Xi = (X1i, X2i, . . . , Xni) where Xki =

{

1 if k ∈ Vi;

0 otherwise

The vector Xi is referred as the characteristic vector of the

view. A vector Xi is associated with a probability vector

Pi = (p1i, p2i, . . . , pni)

where pki is the probability that k belongs to Vi, i.e., pki =
P[Xki = 1].

The whole system is then modelled as the collection

S = (X1, X2, . . . , Xn)

of the characteristic vectors corresponding to the nodes’ view.

The corresponding set of probability vectors is called a con-

figuration of the system,

C = (P1, P2, . . . , Pn).

Definition 2.1: A view is uniform if at a random instant of

time all IDs appear in this view with the same probability.

Definition 2.2: A system is called uniform if all views are

uniform.

In this paper we use the notion of potential function to deal

with arbitrary configurations.

Definition 2.3: The local potential function of given prob-

ability vector P is

h(P ) = max
pk∈P

{

pk −
c

n

}

.

Definition 2.4: The potential function of configuration C is

h(C) = max
Pi∈C

{h(Pi)} = max
Pi∈C

max
pki∈Pi

{

pki −
c

n

}

.

The potential function is a sort distance measure between a

generic configuration and the uniform configuration, namely

the configuration with all probabilities equal to c
n

. For such

Algorithm 1: Shuffling operation

node i

ℓi ← UniRand(l, Vi)
V ′

i ← (Vi − ℓi) ∪ ℓj

Vi ← V ′
i ∪ UniRand(c −

|V ′
i |, ℓi − ℓj)

node j

ℓj ← UniRand(l, Vj)
V ′

j ← (Vj − ℓj) ∪ ℓi

Vj ← V ′
j ∪ UniRand(c −

|V ′
j |, ℓj − ℓi)

configuration, let us introduce the following lemma. First of

all, let consider the following property:

Property 2.1: The expected size of a view Vi is

E

[

∑

k

Xki

]

=

n
∑

k=1

E[Xki] = c

Lemma 2.1: Let C be a configuration (i.e. distribution of all

local views). h(C) is zero ⇔ C is uniform.

Proof:

(⇐) Let consider the distribution C as uniform. As all the

views are uniform, all the probability for a node to appear in

any view is the same, so called p. Thus, from Property 2.1,

we have:

c =

n
∑

k=1

E[Xk] = n · p =⇒ p =
c

n
.

and then, for all nodes, the local potential is zero. So, h(C) =
0.

(⇒) On the other hand, if the potential function is zero

(h(C) = 0), then, by definition, the maximum for any proba-

bility vector is c
n

. Thus, from Property 2.1, this also implies

that all the probabilities are equals to p, which is the definition

of uniformity (cf. Definition 2.2).

III. THE SHUFFLING PROTOCOL

We now consider a distributed protocol in which nodes

manage their views by performing elementary pairwise shuffle

or shuffling operation, denoted as ⋄. The notation i ⋄ j is used

to denote that i performs a shuffling operation with j. The

effect of an operation is to update the nodes’ view, as detailed

later in this section. We then show that the protocol makes the

system to converge towards a uniform configuration, namely

a configuration with zero potential function.

We assume that two shuffles involving a common node may

not take place concurrently. Once a node initiates a shuffle, it

will be locked until the operation is terminated.

The shuffling operation: The shuffling operation is the core

aspect of the whole protocol. The shuffling protocol consists

of applying the shuffling operation repeatedly to pairs of nodes

i, j (the selection of i and j is explained below).

This shuffling operation has one parameter, the shuffle

length l, and involves two views, say Vi and Vj . For the sake

of simplicity, we will also use the shuffle ratio, γ = l
c
. The

operation ⋄ acts as follows.

The view Vi (resp. Vj) is split into two random parts. The

first part, denoted as ℓi (resp. ℓj), is the sent view, which is

a subset of Vi (resp. Vj) of size l. The elements in ℓj are



added to Vi − ℓi, and inversely. If the size of this new set,

V ′
i = (Vi − ℓi) ∪ ℓj is lower than c (this could happen if

ℓj and Vi − ℓi have common elements), then l′ = c − |V ′
i |

elements are taken from ℓi − ℓj at random and added to V ′
i .

More formally, the shuffling operation consists of the steps

presented in Algorithm 1. In the latter, UniRand(h, V ) returns

a subset of h elements taken uniformly at random from V .

The shuffle operation is symmetric in the sense that node j

acts exactly as node i. Moreover, the two nodes make their

decisions about which elements to keep from the sent view, if

any, independently from each other. Thus, the probability of a

node k to appear in a view is only determined by the elements

in the interacting nodes before the shuffle1.

Consider the following example. Assume that c = 7 and

l = 3. Consider then a shuffle between the views Vi =
{0, 12, 1, 5, 3, 7, 8} and Vj = {3, 11, 4, 5, 8, 2, 1} with sent

subset ℓi = {3, 7, 8}, ℓj = {8, 2, 1}. We then have that the

first manipulation:

V ′
i = (Vi − ℓi) ∪ ℓj

produces

V ′
i = {0, 12, 1, 5} ∪ {8, 2, 1} = {0, 12, 1, 5, 8, 2}

As |V ′
i | = 6 while c = 7, we need to add some random

elements of the set

ℓi − ℓj = {3, 7, 8} − {8, 2, 1} = {3, 7}

A remark on system partitioning: For the sake of simplicity

and without loss of generality to carry out our analysis, we

assume that any shuffle operation does not partition the system.

The shuffling protocol presented above could indeed lead

temporary to system partitioning with a small probability.

Some practical solution to this problem has been proposed

in [8]. These solutions lead to asymmetric shuffling operations

that do not affect the results of Section V, as proved in [10].

IV. PROTOCOL ANALYSIS

In this section, we derive an analytical model of the

shuffling protocol, which captures the variation of the system

configuration over time. The main symbols used in this paper

are reported in Table I.

A. View evolution

Let consider how the presence of element k in the view of

i varies after a shuffling operation among nodes i and j. A

shuffling operation between i and j, denoted i ⋄ j, generates

two new characteristic vectors, X ′
i and X ′

j , starting from the

original vectors Xi and Xj . In other words, after the operation,

the view of node i (resp. j) is described by X ′
i (resp. X ′

j).

The evolution of the view over time is then described by

a relationship among X and X ′. Before describing this rela-

tionship, it is important to understand that X ′
ki is independent

from the others random variables X ′
kj . In fact, the elements

1A correlation would arise if, for example, node i decides to add the
identifier k received from j only if j promises something else back.

n Total number of nodes in the system

c Size of local view

l Size of the sent vector

γ Shuffle ratio (γ = l
c

)

Vi Local view of node i

ℓi Sent view of node i

Xki Indication function

Xi Characteristic vector of view Vi

Pi Probability vector of view Vi

p Expected uniform probability (p = c
n

)

Mij Expected number of shared elements between i and j

i ⋄ j Suffling operation (i shuffles with j)

TABLE I
LIST OF MAIN SYMBOLS

1

P10

0 1

P01

1-P101-P01

Xij

time0

Fig. 1. Markov chain representing the evolution of Xij , the presence of
element i into the view of node j. When the view is uniform, the fraction of
time that the element appears in the view, (i.e., Xij = 1) is the same for any
element. This condition corresponds to the steady state of the chain.

that are inserted or removed due to shuffling into the view

of node i, are not influenced by elements inserted/removed

into the view of node j. In other words, as explained above,

i and j do not coordinate somehow about their decisions on

the way to change the views. Node i and j act locally and

then, independently from each other. Let P10 be the probability

that, after the shuffle, node k is removed from Vi and P01 the

probability that k is inserted (for the sake of simplicity indexes

are omitted), namely

P10 = P[X ′
ki = 0|Xki = 1] and P01 = P[X ′

ki = 1|Xki = 0]

The probability that k appears in Vi, given that i ⋄ j, is then

P[X ′
ki = 1|i⋄j] = (1−P[Xki = 1])P01+P[Xki = 1](1−P10)

(1)

This expression has the following meaning. The probability

that node k appears in i’s view, after a shuffle between i and

j, is given by the probability that k was not in the view and

it has been added or the probability that k was already in the

view and it has not been deleted. The evolution of a view is

best described as a two states Markov chain, see Figure 1,

where state 1 (resp. state 0) means that k is (resp. not) in the

node i’s view.

Node i receives l elements from j. As an element is sent

with probability γ, the expected number of elements that ℓj

and Vi have in common is:
∑

k

P[Xki = 1] · γ · P[Xkj = 1]



= γ ·
∑

k

P[Xki = 1]P[Xkj = 1] = γ ·Mij

Now, the view size must remain constant. The expected

number of elements removed from i must then be equal to the

number of new elements added into Vi, which is equal to l−
γMij . As all elements have to equally likely be removed, the

probability to remove the element k is
l−γMij

c
. From which:

P10 = γ ·

(

1−

∑

k P[Xkj = 1]P[Xki = 1]

c

)

On the other hand, as element k can be added only if it belongs

to ℓj , we have:

P01 = γ · P[Xkj = 1].

B. Evolution of the system

Let now consider how the system evolves. As explained

above, we assume that concurrent operations cannot occur.

Thus, we can serialize parallel shuffles in an arbitrary order

and assume that only one shuffling operation may take place

at a time. Let Pex(i, j) be the probability that i and j make

the shuffle, i.e., Pex(i, j) is the probability that the operation

i ⋄ j takes place.

We can describe the global evolution of the system with the

following expression:

P[X ′
ki = 1] =

∑

j

Pex(i, j) · P[X ′
ki = 1|i ⋄ j] (2a)

+
∑

j

Pex(j, i) · P[X ′
ki = 1|j ⋄ i] (2b)

+



1−
∑

j

(Pex(i, j) + Pex(j, i))



 · P[Xki = 1]

(2c)

This last equation means that the probability vector of a

node follows the view evolution presented in Equation 1 if it

is involved in a view shuffle (Equation 2a and 2b) and remains

the same if it is not involved in the last shuffle (Equation 2c).

V. CONVERGENCE PROPERTY OF THE PROTOCOL

Let now show that the shuffling protocol makes the system

to converge towards a uniform configuration. In particular, we

show that if the shuffling protocol is executed by a system

with arbitrary view distribution, then eventually the system

converges towards a uniform configuration, i.e., a system in

which all the local views represent uniform random samples of

the system. In order to show this result, we exploit the notion

of potential function, introduced in Section II. We will show

that if the potential function of a configuration is greater than

zero, then after a shuffling operation the potential function of

the configuration is reduced. Roughly speaking, this means

that a shuffling operation moves the system towards a “more”

uniform system, or makes the system closer to the uniform

configuration. Formally, we have:

Lemma 5.1 (Operator ⋄ reduces the potential): Let P and

Q be two probability vectors of nodes i and j and let

P ′, Q′ these vectors after a shuffling operation i ⋄ j. Then

max{h(P ′), h(Q′)} < max{h(P ), h(Q)}.
Proof: For the sake of simplicity, we denote the maximum

probability before the shuffle as p∗ = max{h(P ), h(Q)}. We

prove below that ∀k ∈ [1..n], (1) ∆pk = p′k − p∗ < 0, and

that (2) ∆qk = q′k − p∗ < 0 where pk, qk, p′k and q′k denoted

respectively P [k], Q[k], P ′[k] and Q′[k]. This means that the

highest probability decreases and no other probabilities can

become greater than the previous maximum.

(1) We want to prove that ∆pk < 0. From equation 1, we

have:

p′k = (1− pk) · γ · qk + pk ·

(

1− γ + γ
M

c

)

=⇒ ∆pk = p′k−p∗ = pk+γ

(

qk − qk · pk − pk + pk ·
M

c

)

−p∗

As M =
∑

k pk · qk <
∑

k p∗ · qk = p∗ · c and γ ≤ 1, we

have:

∆pk ≤ qk − qk · pk + pk ·
M

c
− p∗

< qk − qk · pk + pk · p
∗ − p∗

= qk(1− pk)− p∗(1− pk) = (qk − p∗) · (1− pk)

≤ 0 as ∀i, pk ≤ p∗ ≤ 1 and qk ≤ p∗.

(2) It remains to prove the same upper bound for Q′, i.e.

∀i,∆qk = q′k − p∗ < 0. According to the Equation 1, by

symmetry, we have:

P[X ′
ki = 1|j ⋄ i] = qk + γ

(

pk − pk · qk − qk + qk ·
M

c

)

.

Thus, following the same reasoning, we obtain that

∀i,∆qk < 0.

Therefore, we can conclude that max{h(P ′), h(Q′)} <

max{h(P ), h(Q)} and the claim follows.

We are now in the position to state the following theorem:

Theorem 5.1 (Convergence to uniformity):

Let i be the number of shuffling operations executed on a

system of n nodes, C0 be any initial unpartitioned distribution

of local views and Ci be the configuration of the system after

those i shuffling operations. Local views built by the shuffling

protocol presented in Section III will converge to uniform

random samples of the system, i.e.,

∀C0, lim
i→∞

h(Ci) = 0;

Proof: The claim follows from result comes from

Lemma 5.1, as a shuffling operation strictly reduce the local

potential of the pair involved in the shuffle. Thus, the distance

of the current distribution of sample with the uniformity could

only monotonically reduce, due to Equation 2. Then, the

distribution of the samples converges to the uniform one due

to Lemma 2.1.

Let us now show a corollary stating that once local views

represent uniform samples of the system, the shuffling protocol

keeps this property true forever.
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Corollary 5.1 (Operator ⋄ preserves uniformity): Let C be

a uniform unpartitioned distribution of local views. A shuffling

operation executed by the shuffling protocol presented in

Section III between any pair of two local views Xi and Xj

belonging to C produces a distribution C′ that is uniform.

Proof: Lemma 5.1 gives us that the potential of two views

involved in a shuffling operation can only decrease. Given the

fact that C corresponds to the uniform distribution, Xi and

Xj are uniform and Pi = Pj are vectors with all elements

equal to p = c
n

. Thus, due to Lemma 2.1 and Definition 2.4,

the potential of Xi and Xj are h(Pi) = h(Pj) = 0. From

Lemma 5.1, after the shuffle, h(Pi) and h(Pj) cannot increase

and thus, remain to 0. Then, C′ is the uniform distribution.

VI. NUMERICAL RESULTS

In this section, we apply the analytical model (cf. Equa-

tion 2) in order to numerically derive some representative

evolutions of a system, in which shuffles are organized into

cycles. One cycle corresponds to all nodes initiate exactly one

shuffle with a random partner chosen from its own view2.

Consider a system with view size c = 20. Initially, the

views of nodes are set to [1..20]. This corresponds to one of

the worst cases of starting state. Indeed, among a population

of 100 nodes, the identifiers [21..100] do not appeared in any

view at starting point. They will be introduced progressively

by the initiator of the shuffle. For example, when node 21
initiates an exchange with node 1, node 1 becomes aware of

21 if 21 sends its ID (to avoid partitioning, we simulated the

mechanism described in [8], i.e., instead of sending its own

ID with probability l
c

the initiator of the shuffle sends its ID

with probability 1).

Figure 2 shows the view evolution of one node. The z-axis

shows the probability that an ID appears in the view of this

node.

At the beginning of an execution, the overlay is then fixed: c

nodes have a probability equals to 1 to appear in a view and the

other nodes a probability equals to 0. When the protocol runs,

all nodes are proceeding to theirs shuffles during each cycle.

Figures 2 shows the evolution of each probability P[Xji =
1] according to the node identifier j and the iteration of the

algorithm, where one iteration corresponds to one gossip cycle.

2This cycle-based behavior is well-known in gossip-based protocols [1],
[6], [7], [8].
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Figures 3 represents the same data but in a planar view (all

the probabilities of each time are mapped vertically). Thus,

the latter figure shows the evolution of the maximum (and a

fortiori the minimum) probability value at a given time. It is

possible to observe that all the probabilities converge to the

average value ( c
n

= 0.2) in less than 40 gossip cycles.

In order to evaluate the impact of the system parameters,

Figure 4 presents the average convergence time required to

reach the uniform sampling, according to the ratio γ = l
c
, for

different settings of the system (from 100 to 1,000 nodes with

a view size varying from 10 to 20), starting from the same

aforementioned worst case. This figure speaks about how to

obtain the best convergence time according to γ. Independently

of the size of the network, the size of the view c and the initial

state, the fastest convergence is obtained with a ratio γ = 0.5
(represented by a vertical line on Figure 4). Thus, in the design

of a gossip-based protocol, l has to be set to the half of c in

order to obtain the highest efficiency in term of convergence

speed.
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l
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Vk

ℓi

ℓk

Vi

c

Vk

ℓ'i

ℓ'k

Vk

Vi

ℓ'k

ℓ'i

(1)

(2)

≅

c-l

Fig. 5. Intuitive equivalence between a small ℓ value and the opposite c− ℓ
ones.



This conjecture can be proved as sketched below. A shuffle

operation with a sent vector ℓ between two nodes is equivalent

to a shuffle with the complementary of ℓ (i.e. V −ℓ), followed

by swapping the ID of these two nodes (cf. Figure 5). Indeed,

in this figure, the content of Vi after the shuffle on the left side

is equivalent to the content of Vi on the right side after (1) a

shuffle with the sent vector ℓ′i = Vi− ℓi and (2) swapping the

node’s ID (i becomes k and vice versa).

Now, consider l ≤ c
2

. It is obvious that the higher the size

of the sent vector, the greater the effectiveness3 of a shuffle.

Moreover, according to the above equivalence, a shuffle with l

is equivalent to a shuffle with c− l. Thus, for l ≥ c
2

, the lesser

the size of the sent vector, the greater the effectiveness of a

shuffle. So, the greatest effectiveness is reached for l =
⌊

c
2

⌋

,

as confirmed numerically in Figure 4.

VII. RELATED WORKS

Apart of the paper presented in [9] that we discussed in

Section I and that remains the one that presents the result

closest to ours, several contributions have been proposed in

the context of gossip-based peer sampling service [1], [8]. In

these works, authors propose and study the same framework

than the ones we modelled in this paper (as known as gossip-

based protocol). Although, the evaluation of their samples’ dis-

tribution is conducted only using empirical experimentations.

To the best of our knowledge, no fully theoretical analysis of

the shuffling protocol with respect to sampling uniformity has

been proposed so far.

Several contributions provided some fully theoretical analy-

sis of gossip-based protocols as [1], [11], [12], [13]. However,

those analysis aims to provide some theoretical outcomes on

a specific characteristic of these protocols as convergence

speed of dissemination protocols, by defining precise lower

and upper bound of the mixing time, degree balancing, etc.

Nevertheless, in these works, authors do not consider the local

view as the information to analyse. In their works, the network

is modelled as a probabilistic matrix, which represents the

meeting probability of any pair of peers, and this matrix is

used as a building block of their analyses. Our study can then

be used to provide this specific matrix and/or to confirm that

the matrix used in these related works are consistent with the

real behavior of gossip-based protocols.

As remarked in Section I, random walks have been also used

to provide uniform peer sampling [3], [14]. These contribu-

tions proposed how to bias the simple random walks model in

the way to extract uniform sampling. Both of them provide a

theoretical analysis of their protocols. Finally, a solution of the

peer sampling service, based on a structured P2P system, has

been proposed in [15]. Authors propose an algorithm based

on Chord [16] and proved that it provides nodes with uniform

random samples of the system.

3Roughly speaking, effectiveness represents how different the shuffled views
are from the ones before the shuffle. The higher the difference, the greater
the effectiveness.

VIII. CONCLUDING REMARKS

The paper has provided a theoretical ground to the fact

that a shuffling protocol provides eventually nodes with uni-

form random samples of a system. Before this was only an

empirical evidence. Differently from [9], our analysis shows

that the same instance of the shuffling protocol can provide

permanently a node with uniform sample of the system.

Corollary 1 formally grasps this difference. The paper also

presented a numerical evaluation of the shuffling algorithm on

its convergence speed of the local views to uniform random

samples and also what is the best fraction of the local views to

swap in a shuffling operation to get best convergence speed.
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