
HAL Id: hal-00480988
https://hal.science/hal-00480988

Submitted on 5 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Computation of Population Protocols
Marin Bertier, Yann Busnel, Anne-Marie Kermarrec

To cite this version:
Marin Bertier, Yann Busnel, Anne-Marie Kermarrec. Dynamic Computation of Population Protocols.
the 17th IEEE International Conference on Telecommunications - Ad-hoc and Sensor Communications
track (ICT 2010), Apr 2010, Doha, Qatar. pp.100-107. �hal-00480988�

https://hal.science/hal-00480988
https://hal.archives-ouvertes.fr


Dynamic Computation of Population Protocols

Marin Bertier

IRISA / INSA Rennes

Campus universitaire de Beaulieu

35042 Rennes Cedex – FRANCE

Email: Marin.Bertier@irisa.fr

Tel: +33 2 99 84 22 06

Yann Busnel

LINA / University of Nantes

2, rue de la Houssinière – BP 92208

44322 Nantes Cedex 03 – FRANCE

Email: Yann.Busnel@univ-nantes.fr

Tel: +33 2 51 12 58 95

Anne-Marie Kermarrec

INRIA Rennes - Bretagne Atlantique

Campus universitaire de Beaulieu

35042 Rennes Cedex – FRANCE

Email: Anne-Marie.Kermarrec@inria.fr

Tel: +33 2 99 84 25 98

Abstract—Population protocols provide theoretical foundations
for mobile tiny device networks in which global behavior emerges
from a set of simple interactions between anonymous agents. The
works in this area mostly focus on studying the computational
power of the model. Results hold as long as a fair scheduler,
which governs the interactions between nodes, ensures that all
reachable system states may eventually happen.

This paper studies for the first time the impact of the agents’
mobility model on the convergence speed of population protocols,
emphasizing the dynamic of the computation. We propose an
augmented population protocol model where each edge of the
interaction graph is weighted, representing the probability of two
agents to interact. This model enables to define the behavior of the
scheduler under various mobility models. We have empirically
shown that mobility models have a significant impact on the
convergence speed of the protocols [10]. In fact, we observed that
the uniform distribution always provides the best convergence
time. Such a model is representative of the well-known Random
Way Point model used to evaluate most of mobile ad-hoc network
protocols.

In this paper, we formally prove that a uniform distribution
of weights provides the lowest bound of average convergence
speed for a large class of population protocols. Therefore, this
analysis reveals that the Random Way Point model, following
this distribution, provides the best case scenario questioning its
relevance as a reference model.

I. INTRODUCTION

Sensor networks are composed of tiny computation units

able to communicate and collect data from their environment.

This leads to a whole class of applications, where sensors

are embedded on human or animals, aiming at observing

their behavior or computing global properties. Such settings

impose intermittent and arbitrary communications between

sensors, which are specifically studied in the context of Delay

Tolerant Network (DTN) [9] and Population Protocols [1].

Delay Tolerant Network may be seen as an evolution of

Mobile Ad-hoc NETwork (MANET) [21]. In the DTN area,

the challenge consists in designing distributed applications

able to cope with the uncertainty on the connectivity and

the dynamicity induced by the mobility. Population Protocols

propose a formalism to study the convergence of distributed

algorithms based on a succession of interactions between

nodes. These two approaches are complementary. In this paper,

we leverage these complementarities and propose an enriched

population protocol model to deal with mobility patterns.

MANET and DTN: Consider a network composed of

mobile nodes equipped with wireless networking capabilities

and able to communicate with each other only when they are

within transmission range. A common DTN scenario considers

a network suffering from frequent connectivity disruptions,

making the topology only intermittently and partially con-

nected. Most DTN algorithms propose probabilistic solutions,

where the probabilities are strongly dependent on the mobility

model. Many works in this area focus on establishing the cor-

rect mobility model to represent human’s movement behaviors

in order to determine how to optimize distributed algorithms.

Population protocols: Population protocols, introduced

in [1], model the interactions between mobile agents with

very limited power. Population protocols provide common

theoretical foundations for distributed systems in which a

global behavior emerges from a set of simple interaction

between nodes. Population protocols consist of finite sets

of states, inputs, outputs and a transition function. The set

of possible node interactions is represented by a graph of

interactions. An interaction represents the fact that two agents

are sufficiently close, for a sufficiently long time, to interact

by exchanging their local information.

The power of population protocols lies in the simplicity

of the model. No specific assumption is made on the agents’

synchrony, the system infrastructure or the order of the inter-

actions. A scheduler which is only assumed to be fair guides

the way the interactions actually take place. A fair scheduler

simply ensures that every possible evolution of the system

eventually happens.

On the impact of mobility: Most of the works in pop-

ulation protocols focus on the computational power of such

protocols [3], [2], [4], [5], [15]. No specific assumption is

usually made on the model of interactions between agents.

When a specific interaction model is considered, it is usually

uniform [3]. Yet, in reality, it is unlikely that the mobility

pattern of a set of mobile entities is uniform. Although this

has no impact on the actual power of the model and the

asymptotic convergence, it is very likely that the convergence

speed of such a system is impacted by the mobility patterns of

agents. In mobile networks, it has been shown that mobility

models strongly impact the outcome of a protocol [16]. As

a consequence, characterizing realistic mobility models [12],

[14] is an active area of research.



Contributions: In this paper, we study the impact of the

agents’ mobility model on the convergence speed of popu-

lation protocols. To this end, we introduce MAPP (Mobility

Applied to Population Protocol), a population protocol model

augmented to take into account the probability distribution of

agents’ interactions. To this end, to each edge of the interaction

graph is assigned a weight reflecting the interaction frequency

between the two agents linked by that edge.

In the former empirical study [10], we consider a uniform

interaction distribution as well as a set of non-uniform mobility

patterns identified by the mobile network community [12],

[14]. We observed a significant impact of the mobility patterns

on the speed of convergence. More specifically, a uniform

distribution turns out to consistently achieve the best average

convergence time.

Then, in this paper, we formally prove that this uniform

distribution of weights provides the lowest bound of the

average number of steps to reach convergence in a large class

of population protocols.

Finally, we also demonstrate that the Random Way Point

mobility model, which is extensively used to evaluate mobile

networks, implies a uniform distribution in MAPP. Interest-

ingly enough, the Random Way Point model is recognized as

non-realistic but it is usually used as a neutral setting. In this

paper, we show that it actually provides the best-case scenario.

This may raise questions about the relevance of using such a

model as a representative mobility model.

Roadmap: The rest of the paper is organized as follows.

Section II provides the computation models of population

protocols as well as MAPP, our extension of this model. Sec-

tion III introduces the mathematical background. Section IV

presents the proof that the uniform distribution leads to the

lowest bound in term of average number of steps required to

converge in population protocols. Finally, in Section V, we

prove that the Random Way Point model can be modeled by

a uniform distribution. We conclude and list some open issues

in Section VI.

II. COMPUTATION MODELS

A. Population protocols

The original population protocol model [1], [6] considers a

collection of agents with an associated input value. Pairwise

interaction of agents is governed by a fair scheduler (cf.

Section II-B). An agent in this model is represented as a

finite state machine, for which state is updated upon interaction

only. Updates are defined by a transition function δ. Agents

compute an output value related to their current state. This

value eventually converges to the expected correct output

value.

More formally, a population protocol is composed of:

• an interaction graph Λ(Υ,Θ) where Υ represents a set

of n ≥ 2 anonymous agents and Θ the set of all possible

pairwise interactions between these agents. In the basic

model, Θ = {(υ, υ′) ∈ Υ2|υ 6= υ′} (Λ is complete);

• a finite input alphabet Σ;

• a finite output alphabet Y ;

• a finite set of possible agent’s states Q;

• an input function ι : Σ → Q mapping inputs to states;

• an output function ω : Q→ Y mapping states to outputs;

• a transition relation δ : Q×Q→ Q×Q on pair of states.

In the following, we call (p, q) 7→ (p′, q′) a transition if

[(p, q) 7→ (p′, q′)] ∈ δ. A transition can occur between two

agents’ states only if these two agents have an interaction.

The protocol is deterministic if δ is a function (i.e. at most

one possible transition for each pair in Q2).

A configuration of the system corresponds to a mapping

vector of all agents’ states. As agents are anonymous, two

agents with the same state are indistinguishable. Then, each

configuration can be viewed as an unordered multiset of states.

We denote C → C ′ the fact that a configuration C ′ can be

obtained from C in one step (i.e. with only one transition for

one existing interaction θ ∈ Θ). An execution of the protocol

is a finite or infinite sequence of population configurations

C0, C1, C2, . . . such that ∀i, Ci → Ci+1.

In brief, a population protocol stably computes a function

f : Σ+ → Y if ∀n ∈ N,∀σ ∈ Σn, every fair execution, with n
agents initialized with the elements of σ, eventually stabilizes

to output f(σ) (i.e. output value of every agent eventually

stabilizes to f(σ)).
The MAPP extension affects only the interaction sched-

uler without jeopardizing its fairness, nor the computable

predicates (which corresponds to the Presburger arithmetic1).

In fact, putting a probability distribution on schedules may

allow for computation of more powerful predicates with high

probability (e.g. [3]). This problem is avoided here as we are

still requiring convergence in all executions, even those that

occur with low probability.

B. Mobility Applied to Population Protocols

In order to formally study the impact of the mobility

model on the convergence speed of protocols, we propose an

extension of this model.

Modeling the scheduler: In the population protocol

model, a fair scheduler determines the order of interactions.

This fairness assumption ensures that an attainable state can

be effectively reached. More formally, considering a given

configuration C, for every configuration C ′ obtained from

C with a single interaction of two agents (i.e. C → C ′),

if C appears infinitely often during the execution, then the

configuration C ′ must also appears infinitely often.

The main objective of our extension is to model the

scheduler, to define its heuristics in term of pair selection

during a schedule, while ensuring this fairness condition,

and then capture mobility patterns. In Mobility Applied to

Population Protocol (MAPP), a weight is assigned to each

edge of the interaction graph, reflecting the probability for

an interaction to happen at the next step of the execution

between the agents connected by this edge. As we consider

the interaction as atomic, two concurrent interactions can be

viewed as sequential. Moreover, the order of these interactions

1For more details, see [2].



does not matter as all the agents involved in the latter are

distinct.

In the following, we extend the interaction graph definition

as Λ(Υ,Θ) such that

∀θ ∈ Θ,∃υ, υ′ ∈ Υ, υ 6= υ′ ∧ θ = υ
pυ,υ′

−−−→ υ′.

We denote this probability pυ,υ′ or pθ. Without loss of

generality, we can assume that
∑

θ∈Θ pθ = 1.

From a practical point of view, MAPP allows to model

the choices of the scheduler during the execution of a given

protocol. In fact, given a population in a configuration C, the

scheduler chooses the protagonists of the following interaction

according to the probability of those agents to meet.

In the following, we denote as out-weight distribution of υ
(OWD) the set of all the out-degree weights of a given agent

υ. More formally, given an agent υ ∈ Υ, its OWD is defined

by the following multiset: Pυ = {pυ,ψ|ψ ∈ Υ − {υ}}, that

contains all the interaction probabilities in which υ is involved.

For a population of n agents, it is obvious that |Pυ| = n− 1.

On the relevance of this extension: We must first check

that our model preserves the fairness condition imposed on

the scheduler.

Lemma 1: For all schedulers following the probability dis-

tribution of a given MAPP, this scheduler also respects the

fairness assumption.

Proof: ∀θ ∈ Θ, we consider that pθ > 0. Then, the

probability that this interaction occurs instead of any other

is not null. Then, given two specific configurations C and

C ′ such that C → C ′ with the interaction θ, the probability

that this transition will be chosen by the scheduler is not null

either. So, if C appears infinitely in the execution then C ′ will

also appear infinitely in the execution. In fact, any execution

permitted by the MAPP model and not fair, happens with

probability 0.

C. Related works and integration

Recently, an important number of studies has been con-

ducted on the former model, or its various extensions [6]. For

instance, adding some constrains on the possible interaction

scheduler (while obviously ensuring the fairness assump-

tion) [3] permit to analyze the real-time evolution of the system

states. We argues that MAPP is more generic than [3] as the

latter paper only studies the uniform OWD.

Considering side works according to our approach, self-

stabilization of population protocols has also be studied,

without initial state knowledge, based strictly on the input

set [5]. Also, Delporte-Gallet et al. introduced how agent

failure could affect the computation power of population

protocols [15]. Notably, they shown that, starting from any

protocol computing a function in the former model, it exist

a generic transformation which provide a O(1)-fault tolerant

protocol. However, this method requires some weaker charac-

teristic of the problem. In [4], Angluin et al. claimed that the

unidirectional communication model (which is equivalent to

a directed interaction graph) implies a restricted computation

power, in comparison with the classical bidirectional one.

One of the main advantages of our extension consists in its

simple integration among all variant extension starting from

the population protocols model. For instance, we show that the

computational power of MAPP is unchanged from the former

model. Thus, any result according to the self-organization

of these protocols [5] and to take into account failures [15]

remain valid in MAPP.

Moreover, using MAPP, we can model most of the ex-

tensions. Consequently, considering a restricted interaction

graph [1] can be viewed as a MAPP with part of edges of

interaction graph labeled by 0. As well, all result proposed in

the context of random interactions [1], [3] are valid for all

MAPP that are set using a uniform OWD. Finally, different

models introduced in [4] concerning the modeling of one-

way communications remain valid in MAPP, using an directed

graph.

III. THEORETICAL ANALYSIS OF CONVERGENCE

Many papers [1], [3], [2], [4], [5], [7], [15], [17] have

investigated the power of population protocols and some

extensions. Yet, very few address the convergence speed (in the

context of population protocols, it corresponds to the average

number of steps or the time needed to reach the stabilized

configuration). MAPP provides a simple model to analyze

theoretically the system evolution the over time.

In this paper, we present some results issued from these

analyses. We introduce below the necessary mathematic tools.

Therefore, due to space constraints, we only focus on funda-

mental theoretical results but we do not develop on estimating

the behavior of population according to a specific protocol.

However, some of these empirical analyses are available

in [10].

Definitions

Using MAPP, it is possible to model the behavior of the

scheduler, and then, formally study the state evolution of a

population. At each step, the scheduler chooses a specific pair

of agents according to the probability given in the interaction

graph Λ. Obviously, the interaction chosen at a specific step

is independent of the past choices. Therefore, a given MAPP

can be seen as a Markov chain with a finite state space, as

the number of agents and the size of Q (the set of possible

state of an agent) are finite. Then, the transition probability

distribution of the Markov chain can be represented by a

stochastic matrix, in which the evolution of the system can be

extracted a priori. Effectively, the Markov chain describing the

system evolution is composed of the set of all configurations of

the given MAPP, and the set of transitions is directly extracted

from the probability distribution available in the interaction

graph.

In the following, we consider T an ordering index set,

such as the natural numbers N, the non-negative real numbers

[0,+∞), or a subset of these. Elements t ∈ T can be

thought of as “times”. From this time notion, given a stochastic

process, it is possible to infer the time corresponding to the

“occurrence” of the system in a specific state. Consequently,



given that the Markov chain is ergodic, we can define the

expectation of this time, corresponding to a mean hitting time:

Definition 1 (First hit time): Given a probability space

(Ω,Σ, P r) and a measurable state space S, let X : Ω×T → S
be a stochastic process, and let A be a measurable subset of

the state space S. The first hit time τA : Ω → [0,+∞] is the

random variable defined by

τA(ω) = inf{t ∈ T |Xt(w) ∈ A}

Definition 2 (Mean & variance of hitting time): Given a

state I and a set of first time hit times {τ iA}i∈{n∈N:n<N}, the

mean hitting time corresponds to the expected value of τA
starting on state I:

EI(τA) = lim
N→+∞

1

N
·

N
∑

i=1

τ iA

and the variance hitting time is defined by:

σ2
I(τA) = lim

N→+∞

1

N − 1
·

N
∑

i=1

(τ iA − E(τA))2

In the following, convergence refers to the point at which

the stationary state in the Markov chain associated to a MAPP

is reached (i.e. the stable configuration of a given population).

Thus, the term convergence speed represents the mean hitting

time of the stationary distribution.

IV. A LOWER BOUND: UNIFORMITY IS ALWAYS BEST

We observe from the simulations in [10] that the mobility

patterns of agents might have a significant impact on the

convergence speed of population protocols. More specifically,

we observe that the uniform distribution consistently leads

to higher convergence speed than the other distributions.

Although this seems natural for some operations (as for the

sum operation in which all agents have to interact with each

other several times to converge – cf. [1]), it is actually counter-

intuitive for some others e.g. flooding. Indeed, for the or

operation, one might think that a global OWD, in which

the source agent is involved in almost all the interactions2,

converges faster than the uniform OWD.

In this section, we propose a theorem that rebuts this intu-

ition. Consider a class of population protocols, which contains

resolution for all possible semi-linear predicates. One way to

compute predicates definable in Presburger arithmetic is to

reduce them to a particular class of base protocols that involve

leader agents wandering around picking up values (as shown

in [1]). This class, so called reducePP, has the same size

than the class of computable population protocol. Below, we

prove, for the latter class, that a uniform distribution of weights

always achieves the best convergence speed, regardless of the

considered operation in population protocols. That means that

the uniform OWD corresponds to the lower bound of the mean

2For instance, consider the following distribution: one agent has a huge
probability to interact with any other agent, and all other possible interactions
have a tiny probability to happen.

hitting time for reducePP (i.e. the average number of steps

needed to reach the stabilized state of a population).

Theorem 2: For any function computable by a population

protocol in reducePP, the lower bound of the convergence

speed is reached using a uniform OWD in MAPP.

Proof: Roughly speaking, in this proof, we first (i) char-

acterize any predicate computable by a population protocol.

Then, (ii) by characterizing how to compute them using a

combination of population protocols, we will show that (iii)

any population protocol in reducePP has a polynomial mean

hitting time. Finally, we prove that (iv) any polynomial mean

hitting time have a lower bound for a uniform OWD.

Characterization of computable functions: In [1], Theo-

rem 5 states that every predicate belonging to the Presburger

arithmetic is stationary computable by a population protocol.

This arithmetic fully characterizes the wholeness of population

protocols’ computable function [2]. Thus, these two domains

of function share the same equivalence class.

First, consider a factorization of all Presburger arithmetic’s

predicate. Let Σ = {σ1, . . . , σk} be an arbitrary input alpha-

bet, and Ai, c,m ≥ 2 integer constants. Then, it has been

shown that the entire Presburger arithmetic can be stationary

computable using a combination of the following predicates

on non-negative integers x1, . . . , xk:

•
∑

i aixi < c;
•
∑

i aixi ≡m c (i.e.
∑

i aixi ≡ c modulo m);

• Any 2-place Boolean function ξ.

We present below the population protocols that compute each

element of these last generator set of predicates. We prove

below that for any combination of this predicates, a uniform

OWD in MAPP corresponds to the optimal convergence speed

of this combination. Thus, any predicate of the Presburger

arithmetic, computed by a population protocol from reducePP,

has an optimal convergence speed with the uniform OWD.

Generator population protocols’ definition: We now

present in details the population protocols, introduced in [1],

which compute the two first aforementioned predicates.

Let s = max(|c| + 1,m,maxi |ai|). In both protocols, the

set of space Q is the set {0, 1}×{0, 1}×{u ∈ Z|−s ≤ u ≤ s},

and the associated function ι corresponds to σi 7→ (1, 0, ai).
The first bit of the state is denoted the leader bit and is used to

elect an unique leader, which aggregates the value of the linear

combination. The second bit is denoted the output bit which

stores, for each agent, the output value computed by the last

encounter leader. The third entry of a state is a counter used

for collecting the linear combination of xi (left-hand side of

the previous predicates). The output function ω simply maps

(·, b, ·) to b.

We now describe the transition rules for each of the two

protocols (the correction of these protocol is proved in [1]).

• Consider, for all integers u, u′ such that −s ≤ u, u′ ≤ s,
the two following functions:

{

q(u, u′) = max(−s,min(s, u+ u′))
r(u, u′) = u+ u′ − q(u, u′)



It is obvious that q(u, u′), r(u, u′) ∈ [−s, s] and that

q(u, u′) + r(u, u′) = u + u′. We define b(u, u′) = 1
if q(u, u′) < c and 0 otherwise. The δ function is define

as follow if at least ℓ or ℓ′ are equal to 1:

(ℓ, ·, u), (ℓ′, ·, u′)

→ (1, b(u, u′), q(u, u′)), (0, b(u, u′), r(u, u′)).

In the case where both ℓ and ℓ′ are null, the interaction

has no effect.

• Consider now that b(u, u′) = 1 if u + u′ ≡m c and 0
otherwise. The second protocol works using the following

class of transition:

(ℓ, ·, u), (ℓ′, ·, u′)

→ (1, b(u, u′), (u+ u′) mod m), (0, b(u, u′), 0).

if at least ℓ or ℓ′ are equal to 1. Otherwise, when both ℓ
and ℓ′ are null, the interaction has still no effect.

Let consider the last item of aforementioned predicates.

Let ξ a 2-place Boolean function. In the proof of Lemma 3

in [1], computation of a ξ’s combination of two stationary

computable predicates F and G is done as follow. Let A
(respectively B) a protocol that stationary computes F (respec-

tively G); we assume that A and B share the same input set Σ.

Consider the protocol C which stationary computes ξ(F,G) by

parallel composition of A and B (the population runs protocols

A and B in parallel and outputs the value of ξ applies to the

outputs of the two computed predicates F et G).

In more details, let QA and QB the state set respec-

tively of A and B. The set of states of C is defined as

QC = QA × QB. The associated input map ιC corresponds

to σ ∈ Σ 7→ (ιA(σ), ιB(σ)) and the transition function

is defined as δC((p1, p2), (q1, q2)) = ((p′1, p
′
2), (q

′
1, q

′
2)) with

δA(p1, q1) = (p′1, q
′
1) and δB(p2, q2) = (p′2, q

′
2). Finally, the

output map applies ξ to the both protocols’ outputs:

ωC((q1, q2)) = ξ(ωA(q1), ωB(q2)).

The convergence speed of C directly depends on the speed of

A and B. In more details, the convergence speed of C is exactly

the same than the lowest one between A and B. Without loss

of generality, we assume that A has a mean hitting time lower

than B. Then, the mean hitting time of C is the same than B.

Thus, the optimal OWD distribution for B will be also optimal

for C.

Intermediate summary: Let us get a general vision of the

remaining part of this proof. We show below that the optimal

distribution for each of the two aforementioned protocols is

a uniform OWD. Thereby, using a parallel combination, in

reducePP, any predicate coming from Presburger arithmetic

is stationary computable in an optimal mean hitting time with

a uniform OWD. This extension result is given by the fact that

any mean hitting time function is characterized by polynomial

function of pθ.

Mean hitting time is polynomial: Let P be a protocol

and MP its associated Markov chain. Let S be the state

corresponding to the stationary distribution. Considering an

initial state I, we have to solve the following simultaneous

equations, containing m = n(n−1)
2 variables:







EI(τS) = f(pθ1 , . . . pθm
)

∑

θ∈Θ

pθ = 1 = g(pθ1 , . . . pθm
) (1)

We define a path in MP by a sequence of states of MP :

〈k1, k2, . . . , ks〉 with s ∈ N\{0}. Let us define Cs(I,S) the

set of all paths from I to S with a length equals to s and in

which S not appears but the last:

Cs(I,S) =

{k1, k2, . . . , ks|k1 = I, ks = S,∀i ∈ {1, . . . , s− 1}, ki 6= S}

So, it is possible to infer a formal expression of the mean

hitting time:

EI(τS) =
∑

s∈N\{0}

∑

c∈Cs(I,S)

EI [τS |c] · P[c]

As the path in MP is determined for a specific c ∈ Cs(I,S),
we have EI [τS |c] = s. Hence:

EI(τS) =
∑

s∈N\{0}

s · P[Cs(I,S)]

Let qA,B the probability to go from A to B in the Markov

chain MP . Thus, we have:

EI(τS) =
∑

s∈N\{0}

s ·
∑

c∈Cs(I,S)

qI,k2 · qk2,k3 · . . . · qks−1,S

In the Markov chain MP , every transition probability label

only depends on the potential interaction which makes the

system evolve from a state k to another state k′, and, conse-

quently, only depends on the sum of the pθ corresponding to

these interactions. Moreover, to analyze the advancement of

the system state, the chain MP associated with each of the

two aforementioned protocols can be simplified to one that

only takes into account the first bit of the triplet state (the

leader bit). Formally, let E be the states’ set of MP where

E = {0, 1}n for n agents in the population. As agents are

anonymous, all states with the same distribution of the leader

bits are clustered into a common meta-state in the resulting

Markov chain. For each possible transition of δ, the number

of leader bits, which are set to 1, cannot be increased. It can

only be strictly decreased in case of both agent which act in

the interaction own a 1 leader bit, or remain constant in case

of one interacting agent owns a 1 leader bit, and the other

owns a 0 leader bit.



Thus, there are two kinds of transitions in MP :

∀e, e′ ∈ E, qe,e′ =














































P[i1 → i2] = pi1,i2 if







∀j /∈ {i1, i2}, ej = e′j
e′i1 = ei2 = 1
ei1 = e′i2 = 0

∑

j 6=i0∧ej=1

P[j → i0] (= pj,i0) if







∀j 6= i0, ej = e′j
ei0 = 1
e′i0 = 0

0 otherwise

Then, for any transition q in MP , q is a linear application of

pθ. This infers that EI(τS) and, by definition in Equation (1),

the function f is a polynomial on pθ.

On the lower-bound characterization: To find the optimal

distribution for pθ ∈]0, 1[, we are looking for a minimization of

f(pθ1 , . . . , pθm
), according to variables (pθ1 , . . . , pθm

), under

the constraints of Equation (1):
∑

θ∈Θ pθ = 1 (Moreover, by

this constraint, it is possible to deduct pθm
from the other

variables (pθ1 , . . . , pθm−1
)
)

.

Consider an OWD in the interaction graph such that

∀θ, pθ > 0 (complete interaction graph). Let D, an open subset

of R
n, defined as follow :

D =

{

(pθ)θ∈Θ ∈]0, 1[m

∣

∣

∣

∣

∣

∑

θ∈Θ

pθ = 1

}

.

In topology, using the Taylor formula, we can argue that

if a function in C1 admits a minima in an open set, the

derivative is null at this point. Then, as f is a polynomial,

f and its derivative of first order are continuous. So, f ∈ C1.

Consequently, the minimal value of f on the closure of D
is reached either on one of its limit point, or on a vector

p∗ inside D such that ∇f(p∗) = 0 (∇ is the gradient of f

and is defined as ∇f(p) =
(

∂f
∂pθ1

(p), . . . , ∂f
∂pθm

(p)
)

. In the

population protocol model, the interaction graph is complete

and thus, ∀θ ∈ Θ, pθ 6= 0. So, the minimal value of f is

reached on p∗ ∈ D if ∇(f)(p∗) = 0.

As the minimal value is reached on such a p∗ vector, using

the weak Lagrangian principle, we can infer that ∇(g)(p∗) =
0 (where g correspond to the function defined in Equation 1).

Beyond, by definition, g is a constant function. Thus, all partial

derivatives of g are identical: ∀θ, θ′ ∈ Θ, ∂g
∂pθ

(p∗) = ∂g
∂pθ′

(p∗).

Then, p∗ is the equidistributed point on D (i.e. ∀θ, θ′ ∈
Θ, pθ = pθ′ ).

Finally, for any given population protocol, the minimum of

EI(τS) is reached for a uniform distribution of pθ, θ ∈ Θ,

namely, the uniform OWD.

We can conclude that, for any population protocol in re-

ducePP, it is impossible to have a mean convergence speed

better than the one obtained using a totally uniform interaction

graph.

V. ON THE RELEVANCE OF THE RANDOM WAY POINT

MODEL

The Random Way Point mobility model is extensively used

to evaluate mobile ad-hoc networks, though often criticized

for its lack of realism [19]. In this section, we show that

the uniform distribution of MAPP is in fact equivalent to the

random waypoint model. Beyond the theoretical interest of

this proof, our objective is to emphasize the fact that, while

the use of the random way point model is often justified in an

attempt to provide a neutral setting, this actually provides the

best setting with respect to convergence time.

Theorem 3: The Random Way Point mobility model is

equivalent to a uniform OWD in MAPP.

Proof: The Random Way Point model can be formally

defined as follows. Consider n mobile agents, with initial

position p
(0)
1 , . . . , p

(0)
n . At the beginning of the experiment,

each agent picks a random destination point and a space

velocity, according to law Ppos and Pvit respectively, common

to all agents in the network. As a guideline, usually, the

destination point distribution is uniform according to the given

moving area and the space velocity is picked uniformly among

a given interval. We show our result in a more general way

and only assume that each sample is an independent ergodic

system.

For every agent x, we define γx(t) as the trajectory of this

agent inside the moving area. This trajectory only depends of

the sequence of pair 〈(p
(i)
x , v

(i)
x )〉i∈N∗ . As the spatial distribu-

tion of nodes is not uniform [8] in case of using a reflecting

random waypoint (bounded moving area – not a tore – and

bouncing on side), we prove below that the contact probability

for two agents is uniform (agents’ moves are i.i.d.3).

Let x, y be two agents. Consider the following equation

during a fixed period T that gives a formal expression of the

temporal mean contact period:

1

T

∫ T

0

1|γx(t)−γy(t)|≤ε(t) · dt. (2)

In this equation, 1|γx(t)−γy(t)|≤ε(t) represents the indicator

function which is defined as 1 if x and y are separated by a

distance lower or equal to ε, and 0 otherwise. If Equation 2

tends toward a constant value completely independent of the

(x, y) pair choice, then this constant is the same for any pair

of agents in the system.

Consider γx(t) the generic trajectory probability law for a

given agent x:

Px =

(

∞
⊗

i=1

p(i)
x

)

⊗

(

∞
⊗

i=1

v(i)
x

)

.

Consider now the pair of trajectories (γx, γy). This last pair

is a random variable according to the law Px ⊗ Py . We can

define the following system:
(

(p(i)
x , v(i)

x , p(i)
y , v(i)

y )i∈N∗ , Px ⊗ Py, λ⊗

)

where λ⊗ is the invariant product Lebesgue measure. By

definition, this system is a product of independent ergodic

systems, and consequently, it is itself an ergodic system.

Then, it is possible to apply the Ergodic Theorem on it (also

3i.i.d. means independent and identically-distributed.



named large numbers law which argues that the temporal mean

converges toward the spatial mean). Let us introduced the

spatial mean as follow:

E[1|γx−γy|≤ε] =

∫∫

1|γx−γy|≤ε · dPx(γx) · dPy(γy) (3)

For a.e.4 trajectories γx and γy , when T tends toward

∞, Equation 2 tends toward Equation 3. This last equation

corresponds to an integral among all possible trajectories of x
and y agents. So, this expression does not depend on x and y,

but only on ε and on the trajectory probability laws P . These

last laws are identical for every agents in the system.

In short, for any pair of agents, the average number of

contacts is the same. Then, every pair of agents has the same

probability to come in contact at time t. This means that we

can simulate the random waypoint model by using a uniform

OWD in MAPP.

VI. CONCLUSION AND OPEN ISSUES

a) Contributions: In this paper, we studied the impact of

the agents’ mobility model on the convergence speed of pop-

ulation protocols. We introduced MAPP (Mobility Applied to

Population Protocol), a population protocol model augmented

to take into account the probability distribution of agent

interactions. In this model, each edge of the interaction graph

is weighted by a probability value reflecting the interaction

frequency between the two agents linked by that edge.

We observe from previous empirical studies [10] a signif-

icant impact of various mobility models on the convergence

speed population protocols.

From this empirical study, we also observed that the uni-

form interaction distribution turns out to consistently achieve

the best average convergence time. Thus, in this paper, we

formally proved that the uniform OWD provides the lowest

bound of the average number of steps to reach convergence

for population protocols in a larger class than reducePP.

Finally, we also demonstrated that the Random Way Point

mobility model, which is the most extensively used to evaluate

mobile networks, infers a uniform distribution in MAPP.

Interestingly enough, not only the Random Way Point model

is recognized as non-realistic, but we show that it actually pro-

vides the best-case scenario. This may question the relevance

of using such a model as a representative mobility model.

b) Open Issues: This work is only a base step about

stochastic analyses of population protocols. Several questions

remain open. For instance, we plan to analyze MAPP on

more realistic mobility models by taking into account the

correlation between proximity of agents and the probability

of interaction. To achieve these analyses, we will compare our

former results with other realistic mobility model as proposed

in [11], [18], [20]. It may be also interesting to compare and

merge outcomes issues from another probabilistic study of

population protocols [13].

4a.e. means almost every: one says that a property holds almost everywhere
if the set of elements for which the property does not hold is a null set, i.e.
is a set with measure zero.

Finally, the range of population protocols that accept their

mean hitting time as polynomial, is obviously larger than

reducePP. Any of these specific population protocol falls

into the scope of Theorem 2. Searching for the exact set of

polynomial PP is a challenging open question.
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René Peralta. Computation in networks of passively mobile finite-state
sensors. Distributed Computing (Special Issue: PODC’04), 18(4):235–
253, March 2006.

[2] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable
predicates are semilinear. In Proceedings of the twenty-fifth annual ACM

symposium on Principles of distributed computing (PODC ’06), pages
292–299, New York, NY, USA, 2006. ACM Press.

[3] Dana Angluin, James Aspnes, and David Eisenstat. Fast computation
by population protocols with a leader. Distributed Computing (Special

Issue: DISC’07), 21:183–199, September 2008.

[4] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The
computational power of population protocols. Distributed Computing

(Special Issue: PODC’06), 20:279–304, November 2007.

[5] Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang.
Self-stabilizing population protocols. In 9th International Conference

Principles of Distributed Systems (OPODIS’05), volume 3974 of Lecture

Notes in Computer Science, pages 103–117, Pisa, Italy, December 2005.

[6] James Aspnes and Eric Ruppert. An introduction to population proto-
cols. Bulletin of the European Association for Theoretical Computer

Science, Distributed Computing Column, 93:98–117, October 2007.

[7] Marin Bertier, Yann Busnel, and Anne-Marie Kermarrec. On gossip
and populations. In the 16th International Colloquium on Structural

Information and Communication Complexity (SIROCCO 2009), Piran,
Slovenia, May 2009. Springer-Verlag.

[8] Christian Bettstetter, Giovanni Resta, and Paolo Santi. The node
distribution of the random waypoint mobility model for wireless ad
hoc networks. IEEE Transactions on Mobile Computing, 2(3):257–269,
2003.

[9] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott,
and H. Weiss. Delay-tolerant networking: an approach to interplanetary
internet. IEEE Communications Magazine, 41(6):128–136, June 2003.

[10] Yann Busnel, Marin Bertier, and Anne-Marie Kermarrec. On the impact
of the mobility on convergence speed of population protocols. Rapport
de Recherche RR-6580, Institut National de Recherche en Informatique
et Application (INRIA), Rennes, France, juillet 2008.

[11] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility
models for ad hoc network research. Wireless Communications and

Mobile Computing, 2(5):483–502, 2002.

[12] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard
Gass, and James Scott. Impact of human mobility on opportunistic
forwarding algorithms. IEEE Transactions on Mobile Computing,
6(6):606–620, 2007.

[13] Ioannis Chatzigiannakis and Paul G. Spirakis. BA: The dynamics of
probabilistic population protocols. In 22nd international symposium on

Distributed Computing (DISC ’08), pages 498–499, Arcachon, France,
2008. Springer-Verlag.

[14] Vania Conan, Jérémie Leguay, and Timur Friedman. Characterizing pair-
wise inter-contact patterns in delay tolerant networks. In Conference on

Autonomic Computing and Communication Systems (ACM Autonomics

2007), Rome, Italy, October 2007.

[15] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Eric
Ruppert. When birds die: Making population protocols fault-tolerant.
In Second IEEE International Conference on Distributed Computing in

Sensor Systems (DCOSS’06), pages 51–66, San Francisco, CA, USA,
June 2006.
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