
HAL Id: hal-00480935
https://hal.science/hal-00480935

Preprint submitted on 5 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing human gaze path during an interactive
optimization task

Denis Pallez, Marcel Cremene, Thierry Baccino, Ovidiu Sabou

To cite this version:
Denis Pallez, Marcel Cremene, Thierry Baccino, Ovidiu Sabou. Analyzing human gaze path during
an interactive optimization task. 2010. �hal-00480935�

https://hal.science/hal-00480935
https://hal.archives-ouvertes.fr

 1

Analyzing human gaze path during an interactive
optimization task

Denis Pallez
University of Nice, Sophia-Antipolis

Laboratoire I3S - UMR6070 - UNSA CNRS
dpallez@unice.fr,

Marcel Cremene
Technical University of Cluj-Napoca

Str. Baritiu, no. 26, Cluj-Napoca, Romania
cremene@com.utcluj.ro

Thiery Baccino

LUTIN (UMS-CNRS 2809)
Cité des sciences et de l'industrie de la Villette

baccino@lutin-userlab.fr

Ovidiu Sabou

Babes-Bolyai University
Cluj-Napoca, Romania

ovidiu@sabou.org

ABSTRACT
Interactive Evolutionary Computation (IEC) community
aims at reducing user’s fatigue during an optimization task
involving subjective criteria: a set of graphic potential
solutions are simultaneously shown to a user which task is
to identify most interesting solutions to the problem he had
to solve. Evolutionary operators are applied to user choices
expecting to produce better solutions. As traditional IEC
ask the user to give a mark to each solution or to explicitly
choose bests solutions with a mouse, we propose a new
framework that uses in real time gaze information to predict
which parts of a screen is more significant for a user. We
can therefore avoid the user to explicitly choose which
solutions are interesting for him. In this paper, we mainly
focus on automatically ordering solutions shown on a
screen given a gaze path obtained by an eye-tracker. We
applied several supervised learning methods (SVM, neural
networks…) on two different experiments. We obtain a
formula that predict with 85% user choices. We
demonstrate that decisive criterion is time spent on one
solution and we show the independency between this
formula and the experiment.

Author Keywords
Interactive Evolutionary Computation, Eye-tracker,
supervised learning, implicit choice, human gaze behaviour.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Interactive Evolutionary Computation community aims at
reducing user’s fatigue during an optimization task
involving subjective criteria: a set of graphic potential
solutions are simultaneously shown to a user which task is
to identify most pleasant or interesting solutions to the
problem he had to solve. User choices are commonly done
by identifying one or several solutions using a mouse or in
bad cases, given marks to each potential solution. In both
cases, this is an explicit task that could be a long cognitive
consuming task. Afterwards, evolutionary operators are
applied to user choices expecting to produce better
solutions the user has to evaluate. This algorithm, based on
Darwin theory, is applied until user is tired or he has found
a good solution to his problem.

By using eye-trackers, a computer is able to know what the
user is looking at and even how concentrated he is by
analyzing pupils diameter. Common uses of eye-trackers
are: a pointing mechanism [1], a tool for adapting
information presentation and so on [2]. In this paper, we
present a framework that uses in real time gaze information
(fixations and saccades) to predict which parts of a screen
(solution) is more significant for a user. By this way, we
can therefore avoid the user to explicitly choose which
solutions are interesting for him.

Firstly, we present interactive evolutionary computation and
related works. Next, we present our application which
combines IEC and an eye-tracker in order to minimize
user’s fatigue during interactive evaluation of candidate
solutions. To be fully operational, our application needs to
convert gaze information to rank values for each solution
presented to the user. In order to correlate those data, we
present two experiments we have conducted. We analyse
results coming from this two experiments by using
supervised learning methods that give us a formula. This
formula gives us a rank value for each solution given gaze
information (fixations and saccades).

Presented at International IUI 2010 Workshop on Eye Gaze in Intelligent
Human Machine Interaction.

WHAT IS IEC?
Interactive Evolutionary Computation is an optimization
technique based on evolutionary computation such as
genetic algorithm, genetic programming, evolution strategy,
or evolutionary programming. Evolutionary computation
considers several candidate solutions to a problem called
the population. Thanks to an iterative progress, this
population is computationally evolved by using
mechanisms inspired by biological evolution such as
reproduction, mutation, recombination, natural selection or
survival of the fittest [3] according to the Darwin’s theory.
In classical evolutionary computation, a selection operator
is often a program or a mathematical expression called the
fitness function that expresses the quality of a candidate
solution. Interactive Evolutionary Computation is used
when it is hard or impossible to formalize efficiently this
function where it is therefore replaced by a human user. A
large survey of more than 250 papers can be obtained in [4],
but the generally accepted first work on IEC is Dawkins [5],
who studied the evolution of creatures called “biomorphs”
by selecting them manually. A very good example to better
understand the interest of IEC could be photofit building
[6]. In that case, there is no mathematical function which
could specify how much a photofit is interesting; only the
witness can subjectively tells whether proposed photofits
are similar or not to the person he had seen before.

Characteristics of IEC are inconsistencies of individuals
fitness values given by the user, slowness of the
evolutionary computation due to the interactivity, and
fatigue of the user due to the obligation to evaluate
manually all the individuals of each generation [4, 7]. For
instance, the user is often asked to give a mark to each
individual or to select the most promising individuals: it
still requires active time consuming participation during the
interaction. The number of individuals of a classical IEC is
about 20 (the maximum that can be simultaneously shown
on the screen), and about the same for the number of
generations.

However, some tricks are used to overcome those limits,
e.g., trying to accelerate the convergence of IEC by
showing the fitness landscape mapped in 2D or 3D, and by
asking the user to determine where the IEC should search
for a better optimum [8]. Other work tries to predict fitness
values of new individuals based on previous subjective
evaluation. This can be done either by constructing and
approaching the subjective fitness function of the user by
using genetic programming [9] or neural networks, or also
with Support Vector Machine [10, 11]. In the latter case,
inconsistent responses can also be detected thanks to graph
based modelling.

In next paragraph, we propose a new framework which
aims at reducing user fatigue by using an eye tracker.
Rather than explicitly choosing bests solutions or giving a
mark to each candidate solution, human subject just has to
watch candidate solutions.

THE EYE-TRACKING EVOLUTIONARY ALGORITHM

What is an eye-tracking system?
An eye-tracking system consists of following the eye’s
motions while a user watches a screen on which something
is presented. It pinpoints in real time the position where the
eye is looking, with the help of one video camera focusing
on a reflected infrared ray sent to the user’s cornea. This
device coupled with a computer regularly samples the space
position of the eye and the pupil diameter (Figure 1).

We need to extract some semantic information from gaze
information coming from the eye-tracker: what is
interesting for the subject? To answer this question, we
need to compute fixations; that is to say: what did the
subject fixate during movement of his eyes? A fixation
seems to last between 100 and 300 milliseconds. So
fixations are computed from filtered raw data where “jerks”
have been removed. For each fixation computed, we know
the coordinates (x,y) of subject’s gaze and its duration in
microsecond.

Moreover, information given by an eye-tracker also
provides user’s pupil diameter. This latter parameter lets us
know the cognitive intensity of the user: size of pupil
diameter is directly correlated to the concentration of the
subject where is looking at something [12, 13]. As one
fixation is composed of several values of pupil diameter, we
have computed and stored several data related to this pupil
diameter for each fixation:

• The mean of the diameter;

• The size at the beginning and at the end of the fixation;

• The maximum variation of the size;

• The sum of variation of the size.

Nowadays, eye-tracking systems are very useful because
they can analyze in real time what a user is focused on
without any effort and in a completely non-restrictive
manner. With such equipment, one can finally capture
when, how much time, and with which cognitive intensity a
screen area is looked at.

video camera tracking

reflected infrared ray
on user’s cornea

infrared ray sent to user’
right eye

Figure 1. How works an eye-tracker like Tobii 1750 ?

 3

How to use an eye-tracker in IEC for minimizing use r’s
fatigue?
A new evolutionary algorithm called Eye-Tracking
Evolutionary Algorithm (E-TEA) has been proposed in
[14]. It combines an eye-tracker and a classical evolutionary
algorithm as follow:

1. generate initial population randomly;

2. present the population to the user;

3. let the user watch the candidate solutions;

4. compute how much time, how many times and with
which cognitive intensity the presented solutions are
watched thanks to an eye-tracker;

5. combine previously obtained parameters and compute a
fitness value or a relative fitness value for each solution
(called “rank” in the rest of the paper);

6. select the most promising solutions thanks to the
computed fitness value or rank;

7. make crossover and mutation;

8. return to step 2 until no further good solutions are found.

Thus, the user just has to watch the screen and says when he
has finished watching/evaluating. There is no need for the
user to mark each solution or to explicitly choose the best or
most interesting ones. This will save considerable time and
the user will be capable to evaluate more solutions;
consequently there will be more evaluated generations. We
estimate we can double the number of evaluated screens.
The main difficulty is to determine how to combine
different parameters captured by the eye-tracker (step 5 of
the algorithm, i.e. fixations and saccades) in order to define
a computable fitness and/or a rank for each solution as
automatically as possible.

Motivations
As said previously and in order to minimize user’s fatigue,
we need to transform fixations on each solution into rank or
fitness for each solution. To do so, we have conducted two
experiments, detailed in next paragraphs, for which we can
easily compute a rank and/or a fitness for each solution. The
goal is to learn user’s behaviour during an optimization task
during which we know the rank and/or the fitness for each
solution. We hope then this learned behaviour should be
used in other optimization tasks for which we are not able
to compute fitness and/or rank for each solution: for
instance, in photofit design.

EXPERIMENTS

Initial conditions of experiments
As we capture eye motion, the screen presents only 8 zones
(one candidate solution per zone) and no solution in the
centre of the screen. We avoid presenting solutions in the
centre because eyes are naturally attracted to the centre.
Also, if the user wants to compare two solutions that are
diametrically opposite, eyes are obliged to cross the centre.
Consequently, the number of transitions for the centre will

increase considerably and will disrupt the estimated fitness
of the solution which could be in the centre. Moreover,
when the application is launched, we present a screen
composed of a cross in the centre in order to captivate the
user’s gaze in the centre where no candidate solutions will
be presented (Figure 2a). When the gaze is concentrated on
the cross (Figure 2b), the next screen composed of
candidate solutions to a problem is presented (Figure 3).
But, just before this screen of candidate solutions is
presented to the user, a reference’s value of the pupil
diameter is computed and stored.

When a new subject (experimenter) wants to participate, we
ask him to read the following instructions: “The experiment
is made up of a set of tries. Each try will proceed in two
phases (Phase 1 and Phase 2). The experiment begins by the
calibration of the device (the eye-tracker). All over the
experiment, we recommend not to move the head. During
the calibration, a blue circle is presented; fixate it. Phase 1
named ‘cross fixation’: A cross is presented in the centre of
the screen. Focus on this cross to go next screen (when
correctly fixed a blue rectangle will surround the cross).
Phase 2 named ‘evaluation’: Several solutions will be
presented simultaneously. Detect the one you prefer. Once
you think you have finished, press the space bar without
looking at it to go next screen (next try).” When the user
presses the keyboard’s space bar, we detect whether the
user was watching a solution. If it is the case, the solution is
marked as “selected”.

Stored data
As there are potentially several fixations for one candidate
solution, we have to compute new data from fixations for

(a) (b)

Figure 2. Screen for fixation (a), and screen after the user had
fixed the cross (b)

Figure 3. Several candidate solutions simultaneously presented
to a human subject and its gaze graphically represented

each candidate solution. So, data that we had really stored
are the following:

R,G,B or
a number

information identifying each candidate
solution (RGB model for experiment on
colours or the number for the experiment
on numbers)

Trans

The number of transitions towards one
screen area in which the candidate
solution is shown. When gaze path
entered in a zone, Trans is increased

TransRank
The rank of the previous value compared
with the other values of the screen

TransPop
The sum of transition’s number for all the
candidate solutions of the screen

TransNorm
The relative transition’s number (=
Trans/TransPop)

Time
The time the user has focused on a
candidate solution

TimeRank
The rank of the Time value compared
with the other values of the screen

TimePop
The sum of focused time for all the
candidate solutions

TimeNorm
The relative time focused on screen (=
Time/TimePop)

MeanDP /
MeanDPRank

The mean of the pupil diameter and its
relative rank

RefDP The reference value of the pupil diameter

CognitiveDP
The cognitive pupil diameter
(=MeanDP‒RefDP)

MaxDPVar /
MaxDPVarRank

The maximum variation of the pupil
diameter and its relative rank

SumDPVar /
SumDPVarRank

The sum of variation of the pupil diameter
and its relative rank

Selected
A Boolean value representing whether the
candidate solution has been fixed just
before going to next screen

Luminance
Value of the objective fitness used by
supervised learning methods

(x1,y1,x2,y2)

Positions of candidate solutions on the
screen (between 0 and 1): (x1,y1) of upper
left corner and (x2,y2) of bottom right
corner

First experiment based on colours

Optimization problem
This experiment is borrowed from [15] where the One-Max
problem is considered as an interactive optimization

problem in order to compare Interactive Genetic Algorithm
(IGA) and Human-Based Genetic Algorithm (HBGA).
Recall that the One-Max optimization problem consists in
maximizing the number of 1s in a string of bits (0 or 1) only
in using evolving operators (selection, mutation,
crossover…). It is the simplest optimization problem. The
Interactive One-Max problem consists in choosing the
clearest colour amongst presented colours on a screen.
Solutions are represented in the evolutionary computation
algorithm by a string of 24 bits, 8 bits each for red, green
and blue.

Objective Fitness
The objective way to find the clearest colour is obtained by
computing the luminance defined by

BGRBGRL 0.1140.587299.0),,(++= where R, G and B

respectively represent the amount of Red, Green and Blue
in the colour.

Number of subjects
During one week and a half, 81 subjects have evaluated
7350 screens composed each by 8 coloured squares.

First Results
When analyzing number of transitions on each solution

 (a)

 (b)

Figure 4. Sample of one screen for each experiment (circles
and lines respectively represent fixations and saccades, larger

the circle is, longer is the fixation)

 5

during this experiment, we discovered that subjects didn’t
watch all solutions presented on a screen (Figure 4a). It
seems that subjects were using their peripheral visions to
look at a colour. Thus, we proposed a new experiment
based on numbers which forces the subject to read
something (Figure 4b).

Second experiment based on numbers
The optimization goal is simply to find the greatest number
among several graphically presented ones. To avoid
introducing some bias, only numbers with same number of
digits were simultaneously presented on the same screen,
but it was not said to subjects.

Solutions are represented in the evolutionary computation
algorithm by a string of 32 bits, 4 bits for one digit number.

Number of subjects
During two days, 32 subjects have evaluated 1585 screens
composed each by 8 coloured squares.

CANDIDATE SOLUTIONS AUTOMATED ORDERING
Candidate solutions automated ordering is the operation that
orders solutions (for one generation of the evolutionary
computation algorithm) by assigning a rank to each of
them. For generations composed by N solutions the ranks
values are: 1, 2, 3...N where 1 is the rank for the most
interesting/relevant solution (in our experiments N = 8).

In order to solve this issue we need to create a system
S_rank that takes as inputs the ocular data (stored data, see
section 4.2) and gives as output the solutions ranks 1…N.

The objective fitness computed in the experiments
described in the section 4.3 and 4.4 enable us to use
supervised training for the S_rank system.

Two different approaches were considered for
identifying/training the S_rank system:

• Supervised classification. According to this approach
each rank is associated with a different class. The system
will determine the rank by classifying the input data. We
train (supervised training, using the objective fitness) the
system to classify in the same class all the solutions that
have a same rank.

• Regression or function approximation. According to this
approach, we are looking for a function f (implemented
by the system S_rank) that takes as argument a vector
corresponding to the ocular data (for one solution) and
return a value corresponding to the rank. The function is
searched by supervised training.

Results obtained with the classification approach

Classification methods used
Several classification methods were used in order to
analyze the data obtained from the eye-tracking system.
These methods are described below.

Linear (Fisher's) classifier. This method is related to the
Fisher's linear discriminant [16]. The idea is to find the
linear combination of features, which separate two or more
classes of objects. This method projects high-dimensional
data onto a one dimensional space and performs
classification in this one-dimensional space. The projection
maximizes the distance between the means of the two
classes while minimizing the variance within each class.

Neural networks (NN) classifier, using variable number of
hidden neurons (HidN). This method relates to the well
known classical pattern recognition using neural
networks[17].

Naive Bayesian (NB) classifier. A naive Bayes classifier
[18] is a simple probabilistic classifier based on applying
Bayes' theorem with strong independence assumptions (the
presence of a particular feature of a class is unrelated to the
presence of any other feature). Usually, parameter
estimation for naive Bayes models uses the method of
maximum likelihood.

Gaussian (ML) classifier. Gaussian classification [19] is a
type of statistical classification. Statistical classification is a
procedure in which solution items are placed into groups
based on quantitative information on one or more
characteristics inherent in the items.

Direct Tree (DT) classifier. A decision tree [20] is a
predictive model; that is, a mapping from observations
about an item to conclusions about its target value. In these
tree structures, leaves represent classifications and branches
represent conjunctions of features that lead to those
classifications.

T-distribution, full covariance classifier. The (Student) t-
distribution is a probability distribution [21] that arises in
the problem of estimating the mean of a normally
distributed population when the sample size is small and
this algorithm is a special case of the generalized hyperbolic
distribution.

 Classification results analysis
A set of about 54000 data vectors (one per solution) was
recorded from the eye tracking system. Each vector
corresponds to one candidate solution. We make the
hypothesis that there is a correlation between the ocular
activity and the solution rank.

Classifier performance depends very much on the
characteristics of the analyzed data. In general, there is no a
best classifier that works on all possible problems.
Knowing that, we have done some comparative tests using
the toolbox "Matlab Classification Toolbox" from Meraka
Institute. The results are depicted in Figure 5 and indicate
the Fisher’s method as the best one for this first experiment,
with a global error rate of 23%.

A multi-class implementation of SVM [22] was also used to
classify the dataset. The initial data was split in two parts, a
training set of 5000 examples and the test set, contains the
rest of the examples. The global accuracy was about 32%.

After observing that the output of the classifier is not just a
usual pattern, but a rank that forms an order relation with
the rest of the classes, the accuracy analysis was further
developed by taking into consideration the distance between
the expected output and the one obtained from the SVM.
An output result was considered accurate if it had an error
less or equal than one. For example, if the expected output
was 4 and the actual output was 3, 4 or 5, the output was
considered correct. For ranks 1, 2, 7 and 8 the new accuracy
was 81%. The middle ranks: 3, 4, 5, 6 were classified with
55% accuracy. A possible explanation is that solutions of
strong interest or no interest stand out from the set.

Some other tests were done with SVM using this time a
binary classification. The most relevant individual (first
rank) was recognized with 85% accuracy, the second rank
accuracy was 33% and the others solutions had about 20%
accuracy each one.

The best classification rates were obtained by considering
only three classes: a first class containing only the solution
which has a rank equals to (1), a second class containing
only the solution which has a rank equals to (2) and a third
class grouping solutions which have ranks equal to (3, 4, 5,
6, 7, 8). The global accuracy was about 81%. The first class
was correctly classified in 83% of cases; the second class in
33% of cases and for the third class, the accuracy was 88%.

These results have shown that the first class may be
classified with a good accuracy but it is very difficult to
correctly classify all 8 solutions. These results lead us to the
conclusion that the classification approach is not the most
appropriate for solutions automated ordering.

Results obtained with the regression/function
approximation approach
A problem is that the classification approach does not take
into account the fact that the classes represent ranks. In
order to overcome this limitation, we have tested also a
function approximation approach. According to this
approach, we search a function/relation that allows us to
compute the solution ranks starting from the input data. As
input data, we have only selected: TransRank, TimeRank,
MeanDPRank and MaxDPVarRank (see section 4.2.).
These values are taking into account the relative differences
between the solutions from the same generation.

Several approaches (SVM, MLP backpropagation, RBF,
linear neurons) were used for approximating the function
rank = f (TransRank, TimeRank, MeanDPRank,
MaxDPVarRank). We have tested the function by taking the
solutions by generations (8 by 8), compute their ranks and
then sorting these values in order.

We observed that the function trained using the number-
based data (data coming from experiment 2, §4.4) works
also for the colour-based data set (data coming from
experiment 1, §4.3). When we trained the function using the
colour-based set the results were less good for the number-
based data set.

With SVM (function approximation mode) the results were
the following:

• For the most important solution, the accuracy was 88%
for the colour-based experiment and 85% for number-
based experiment. If we tolerate an error of 1 (accept to
confound sometimes the first with the second) the new
accuracy is 97% respectively 95%.

• For the second solution, the accuracy was 31% for
numbers and 24% for colours. If we tolerate an error of 1
(accept to confound sometimes the second with the first
or with the third) the new accuracy is 55% for numbers
and 45% for colours.

• For each of the solutions 3, 4, 5, 6, 7 the mean accuracy
was about 17% and, if we tolerate an error of 1, the new
accuracy was about 45%.

We observed that there is no significant difference between
the different methods used: SVM, MLP non-linear network
and a linear neural network. This may be explained by the
fact that data is entangled, excepting for the most important
solutions. This observation helped us also to find a simple
linear formula for the function f.

This formula was obtained by training a linear neuron:

rank = 0.0353TransRank + 0.3967TimeRank +
0.0208MeanDPRank + 0.0416MaxDPVarRank + 2.6957

This formula also shows that the most relevant input is the
time as [23] had stated but it was done on very few
experimenter (about only 4 human subjects).

Figure 5. Data classification errors obtained with different
classification algorithms ("Matlab Classification Toolbox"

from Meraka Institute)

 7

To verify this formula, 8 colours or 8 numbers are taken
from same generation (same screen) and are ordered
according to the value (rank) given by the formula. With the
rank computed by this linear formula the results were:

• For the first (most important) solution, the accuracy was
87% for the colours and 82% for numbers. If we tolerate
an error of 1, the new accuracy is 97% respectively 94%.

• For the second solution, the accuracy was 33% for
numbers and 24% for colours. If we tolerate an error of 1
the new accuracy is 58% respectively 44%.

• For each of the solutions 3,4,5,6,7 and 8 the mean
accuracy was about 16% and, if we tolerate an error of 1,
the accuracy is about 45%.

These results show that the regression/function
approximation approach is better than the classification
approach for this kind of problems and may be used for
ordering the solutions. The most frequent errors appear
between neighbour ranks. If we consider acceptable an error
of 1 the results are much better.

CONCLUSION
Research presented in this paper is to analyse gaze data
coming from two experiments with the aim of
understanding human gaze behaviour during an
optimization task. Several candidate solutions are shown to
a human subject which task is to find a good solution
according to its optimization problem. This optimization
problem can not be solved with deterministic algorithms
because we consider only problems for which it is
impossible to formalize how good a solution is: fitness
function of interactive evolutionary computation can not be
formalized.

Gaze data are obtained thanks to an eye tracker. We
analyzed obtained data with several classification and
function approximation experiments. The function
approximation approach offered better results than the
classification: 85% accuracy for the first candidate solution
and 96% if we admit an error of 1. A linear formula was
found by training a linear neuron. This formula shows that
the most important parameter is the time.

These results clearly show that the selection of the most
significant solution is possible with a good accuracy and the
proposed approach can be used with success for Interactive
Evolutionary Computation applications with aim of
reducing user fatigue.

As future work, we intend to extend our framework by
adding some new input parameters collected from bio-
feedback sensors.

ACKNOWLEDGMENTS
This research was partially supported by the project PN II
Ideas, no. 1062, financed by the Romanian Research
Council CNCSIS-UEFISCSU.

REFERENCES
1. Kumar, M., et al. Reducing Shoulder-surfing by Using

Gaze-based Password Entry. in Symposium On Usable
Privacy and Security (SOUPS 07). 2007.

2. Istance, H. Gaze-based Creativity and Interacting with
Games and On-line Communities. in Communication by
Gaze Interaction (COGAIN). 2007. Leicester, UK.

3. Engelbrecht, A.P., Computational Intelligence: An
Introduction. Second Edition ed. 2007: John Wiley and
Sons. 597 pages.

4. Takagi, H., Interactive Evolutionary Computation:
Fusion of the Capacities of EC Optimization and
Human Evaluation, in Proceedings of the IEEE. 2001. p.
1275-1296.

5. Dawkins, R., The Blind Watchmaker. 1986, New York:
Norton & Company, Inc.

6. Takagi, H. and K. Kishi. On-line Knowledge
Embedding for an Interactive EC-based Montage
System. in Third International Conference on
Knowledge-Based Intelligent Information Engineeing
Systems. 1999. Adelaide, Australia.

7. Semet, Y., Interactive Evolutionary Computation : a
survey of existing theory. 2002, University of Illinois.

8. Hayashida, N. and H. Takagi, Acceleration of EC
convergence with landscape visualization and human
intervention. Applied Soft Computing, 2002. 1(4): p.
245.

9. Costelloe, D. and C. Ryan, Genetic Programming for
Subjective Fitness Function Identification, in Genetic
Programming, LNCS, Editor. 2004. p. 259-268.

10. Llorà, X. and K. Sastry. Combating User Fatigue in
iGAs : Partial Ordering , Support Vector Machines and
Synthetic Fitness. in GECCO. 2005. Washington, D.C.,
USA.

11. Llorà, X., K. Sastry, and F. Alias. Analyzing Active
Interactive Genetic Algorithms using Visual Analytics.
in Genetic and Evolutionary Computation (GECCO).
2006. Seattle, Washington, USA.

12. Hess, E. and J. Polt, Pupil size in relation to mental
activity during simple problem solving. Science, 1964.
143(3611): p. 1190-1192.

13. Just, M.A. and P.A. Carpenter, The intensity dimension
of thought: Pupillometric indices of sentence
processing. Canadian Journal of Experimental
Psychology, Special Issue: Reading and language
processing, 1993. 47(2): p. 310-339.

14. Pallez, D., et al. Eye-Tracking Evolutionary Algorithm
to minimize user fatigue in IEC applied to Interactive
One-Max problem. in GECCO (Genetic and
Evolutionary Computation COnference). 2007.
University College, London.

15. Cheng, C.D. and A. Kosorukoff. Interactive One-Max
Problem Allows to Compare the Performance of

Interactive and Human-Based Genetic Algorithms. in
Genetic and Evolutionary Computation (GECCO).
2004. Seattle, Washington, USA.

16. McLachlan, G.J., ed. Discriminant Analysis and
Statistical Pattern Recognition. Wiley-Interscience; New
Ed edition ed. 2004.

17. Bishop, C.M., Neural Networks for Pattern Recognition.
1995: Oxford University Press.

18. Zhang, H., Naive Bayesian Classifiers for Ranking in
Lecture Notes in Computer Science (Machine Learning:
ECML 2004), S.B. Heidelberg, Editor. 2004. p. 501-
512.

19. Girard, R., High dimensional gaussian classification.
2008.

20. Quinlan, J.R., Induction of Decision Trees. 1986.

21. Wang, H.X., Zhang, Q.B., Luo, B., Wei, S., Robust
mixture modelling using multivariate t-distribution with
missing information. PRL, 2004. 25(6): p. 701-710.

22. Chang, C.-C. and C.-J. Lin. LIBSVM : a library for
support vector machines. 2001; Available from:
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

23. Holmes, T. and J. Zanker. Eye on the Prize: Using Overt
Visual Attention to Drive Fitness for Interactive
Evolutionary Computation. in GECCO (Genetic and
Evolutionary Computation COnference). 2008. Atlanta,
Georgia, USA.

