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Computation of the Perimeter of Measurable Sets

via their Covariogram.

Applications to Random Sets

Bruno Galerne∗

June 16, 2010

Abstract

The covariogram of a measurable set A is the function gA which to
each y ∈ Rd associates the Lebesgue measure of A ∩ y + A. This paper
proves two formulas. The first equates the directional derivatives at the
origin of gA to the directional variations of A. The second equates the
average directional derivative at the origin of gA to the perimeter of A.
These formulas, previously known with restrictions, are proved for any
measurable set. As a by-product, it is proved that the covariogram of
a set A is Lipschitz if and only if A has finite perimeter, the Lipschitz
constant being half the maximal directional variation. The two formulas
have counterparts for mean covariogram of random sets. They also permit
to compute the expected perimeter per unit volume of any stationary
random closed set. As an illustration, the expected perimeter per unit
volume of homogeneous Boolean models having any grain distribution is
computed.

Keywords: Boolean model, covariogram, directional variation, random closed
sets, set covariance, set of finite perimeter, specific variation.

1 Introduction

The object of study of this paper is the covariogram gA of a measurable set
A ⊂ Rd defined for all y ∈ Rd by gA(y) = Ld (A ∩ (y +A)), where Ld denotes
the Lebesgue measure. Note that some authors prefer the terms set covariance
or covariance function [7, 6, 21].

Given the covariogram gA of an unknown set A, a general inverse problem is
to determine the geometric information on A that gA contains. As an important
example, Averkov and Bianchi have recently established Matheron’s conjecture:
up to a translation and a reflexion, convex bodies of R2 are fully determined
by their covariogram (see [4] and the references within). Contrary to the above
mentioned results, this paper focuses on geometric information which is shown
to be contained in the covariogram of any measurable set: the perimeter.

∗Postal Address: CMLA, ENS Cachan, CNRS, UniverSud, 61 Avenue du Président Wilson,
F-94230 Cachan. E-mail: galerne@cmla.ens-cachan.fr
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As our main results will demonstrate, the perimeter which can be computed
from the covariogram is the one from the theory of functions of bounded varia-
tion [3]. In this framework, the perimeter of a set A is defined by [3]

Per(A) = sup

{∫
Rd

1A(x) divϕ(x)dx : ϕ ∈ C1
c

(
Rd,Rd

)
, ‖ϕ‖∞ ≤ 1

}
,

and the directional variation in the direction u ∈ Sd−1 of A is [3, Section 3.11]

Vu(A) = sup

{∫
Rd

1A(x)〈∇ϕ(x), u〉dx : ϕ ∈ C1
c

(
Rd,R

)
, ‖ϕ‖∞ ≤ 1

}
.

The non-specialist reader may ask how the perimeter Per(A) is related to the
length of the topological boundary ∂A, which one might consider to be the intu-
itive notion of perimeter. Let us recall that if A is a compact set with Lipschitz
boundary (e.g. A is a convex body), then Per(A) = Hd−1 (∂A), whereas in the
general case we only have Per(A) ≤ Hd−1 (∂A) [3, Proposition 3.62].

Results We prove that for every measurable set A of finite Lebesgue measure,

lim
r→0

gA(0)− gA(ru)

|r|
=

1

2
Vu (A) , u ∈ Sd−1. (1)

In addition, noting (guA)
′
(0) := lim

r→0+

gA(ru)− gA(0)

r
the directional derivatives

at the origin of the covariogram, it is shown that

Per(A) = − 1

ωd−1

∫
Sd−1

(guA)
′
(0)Hd−1(du). (2)

Hence, for any measurable set A, the perimeter Per(A) can be computed from
the directional derivatives at the origin of the covariogram gA. As a by-product,
it is also shown that a measurable set A has finite perimeter if and only if its
covariogram gA is Lipschitz, and in this case the Lipschitz constant is given by

Lip (gA) =
1

2
sup

u∈Sd−1

Vu(A).

Previous works Formula (1) has already been proved for certain classes of
sets. It was well-known by the mathematical morphology school [15, 10, 18, 19]
that the directional derivative at the origin of the covariogram gA of a convex
body equals minus the length of the orthogonal projection of the set A. The
convexity assumption was withdrawn in [21] where Rataj extends the result to
compact sets in UPR satisfying a condition of full-dimensionality, UPR being the
family of locally finite unions of sets with positive reach such that all their finite
intersections also have positive reach1. In this more general framework, the
length of the orthogonal projection is replaced by the total projection TPu(A).
One can easily verify that Vu(A) = 2TPu(A) by using a recent result due to
Ambrosio, Colesanti and Villa [2]: a full-dimensional compact set with positive

1We refer to [9] and [22] for definitions and results regarding sets with positive reach and
UPR-sets respectively
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reach A satisfies Per(A) = 2Φd−1(A) [2, Theorem 9], where Φd−1(A) denotes
the (d−1)-total curvature of A [9]. Since Formula (1) is valid for any measurable
set A such that Ld(A) < +∞, one can argue that the directional variation is
the relevant general concept when it comes to the derivative at the origin of the
covariogram.

Formula (2) has been widely stated in the mathematical morphology litera-
ture [10, 18, 25, 14]. We rigorously show that it is valid for any measurable set
A having finite Lebesgue measure, provided the perimeter Per(A) is understood
as the variation of A.

The Lipschitzness of the covariogram seems to have received less attention
in the literature. It is stated in [19] that the covariogram of a compact convex
set is Lipschitz. The given upper bound of the Lipschitz constant is the double
of the actual Lipschitz constant.

Applications The covariogram is of particular importance in stochastic ge-
ometry when dealing with random closed sets (RACS) [18, 26, 20, 24]. In
this context, one defines the mean covariogram of a RACS X as the function
γX(y) = E

(
Ld (X ∩ y +X)

)
. The mean covariogram of a RACS X is related

to the probability that two given points belong to X according to the following
relation

γX(y) =

∫
Rd

P (x ∈ X and x+ y ∈ X) dx.

As a consequence the mean covariogram is systematically involved in second
order statistics of classic germ-grain models, such as the Boolean model [18, 26,
24], the shot noise model [23, 11], or the dead leaves model [17, 13, 14, 5].

All the established properties of covariograms of deterministic sets extend to
the case of mean covariograms of random closed sets. In particular, the stochas-
tic equivalent of (1) and (2) show that the expectations of the variations of a
RACS X are proportional to the directional derivatives of its mean covariogram
γX .

For a stationary RACS, the mean covariogram is not defined. Neverthe-
less (1) and (2) also permit to study the mean variation of stationary RACS.
Define the specific directional variation θVu

(X) of X as the mean amount of
directional variation of X per unit volume. For any stationary RACS X, it is
shown using (1) that

θVu(X) = 2 lim
r→0

1

|r|
P (ru ∈ X, 0 /∈ X) .

Again, integrating over all directions u, one obtains an expression of the vari-
ation intensity θV (X) of X (i.e. the mean amount of variation of X per unit
volume)

θV (X) =
1

ωd−1

∫
Sd−1

lim
r→0

1

|r|
P (ru ∈ X, 0 /∈ X)Hd−1(du).

As for (2), the above formula has been stated in the early works of Matheron [16,
p. 30] [14, p. 26]. It should be emphasized that the specific variation is well-
defined for any stationary RACS, and that it can be easily computed as soon as
one knows the probabilities P (ru ∈ X, 0 /∈ X). As an illustration, the specific
directional variations and the specific variation of homogeneous Boolean models
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are computed in this paper. The obtained expressions generalize known statis-
tics of Boolean models with convex grains [24]. Because it is well-defined for any
stationary RACS and easily computable, we claim that the specific variation is
an interesting alternative to the usual specific surface area [24] when one deals
with non negligible RACS.

Plan In Section 2 the covariogram gA of a Lebesgue measurable set A is
defined and several properties of gA are recalled and established. In particular
it is shown that as soon as A is non negligible its covariogram gA is a strictly
positive-definite function. Section 3 gathers several known results from the
theory of functions of bounded directional variation. In Section 4, the main
results relating both the derivative at the origin and the Lipschitzness of the
covariogram of a set to its directional variations and its perimeter are stated.
Finally, applications of these results to the theory of random closed sets are
discussed and illustrated in Section 5.

2 Covariogram of a measurable set

Definition 1. (covariogram of a measurable set)
Let A ⊂ Rd be a Ld-measurable set of finite Lebesgue measure. The covariogram
of A is the function gA : Rd → [0,+∞[ defined for all y ∈ Rd by

gA(y) = Ld (A ∩ (y +A)) =

∫
Rd

1A(x)1A(x+ y)dx.

As initially noted by Matheron [15], the covariogram of A can be expressed
as the convolution between the indicator functions of A and its symmetric Ǎ =
{−x | x ∈ A}:

gA = 1A ∗ 1Ǎ.

As illustrated in the following proposition, this point of view is useful to establish
some analytic properties of gA.

Proposition 2. Let A ⊂ Rd be a Ld-measurable set of finite Lebesgue measure
and gA be its covariogram. Then

1. For all y ∈ Rd, 0 ≤ gA(y) ≤ gA(0) = Ld(A).

2. gA is even: for all y ∈ Rd, gA(−y) = gA(y).

3.

∫
Rd

gA(y)dy = Ld(A)2.

4. gA is uniformly continuous over Rd and lim
|y|→+∞

gA(y) = 0.

Proof. The three first points are elementary proved. The fourth property is
obtained in applying the Lp-Lp

′
-convolution theorem to gA = 1A ∗ 1Ǎ (see [1,

Chapter 2] for example).

It is well-known that the covariogram is a positive-definite function [15, p.
22], [14, p. 23]. The next proposition improves slightly this result. In particular,
it shows that for all x 6= 0, gA(x) < gA(0).
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Proposition 3 (strict positive-definiteness of the covariogram). Let A be a Ld-
measurable set such that 0 < Ld(A) < +∞. Then its covariogram gA is a strictly
positive-definite function, that is, for all p ∈ N∗, for all p-tuple (y1, . . . , yp) of
distinct vectors of Rd, and for all (w1, . . . , wp) ∈ Rp \ {0} we have

p∑
j,k=1

wjwkgA(yk − yj) > 0.

Proof. By Lemma 4 below, the function x 7→
p∑
j=1

wj1A(x+ yj) is not a.e. equal

to zero. Hence

p∑
j,k=1

wjwkgA(yk − yj) =

p∑
j,k=1

wjwk

∫
Rd

1A(x)1A(x+ yk − yj)dx

=

p∑
j,k=1

wjwk

∫
Rd

1A(x+ yj)1A(x+ yk)dx

=

∫
Rd

 p∑
j=1

wj1A(x+ yj)

2

dx > 0.

Lemma 4 (the translations of an integrable function are linearly independent).
Let f be a non null function of L1

(
Rd
)

and let y1, . . . , yp be p distinct vectors
of Rd. Then the functions x 7→ f(x+ yj), j = 1, . . . , p, are linearly independent
in L1

(
Rd
)
.

Proof. Let (w1, . . . , wp) ∈ Rp be such that

p∑
j=1

wjf(x+ yj) = 0 for a.e. x ∈ Rd.

Applying the Fourier transform we have p∑
j=1

wje
i〈ξ,yj〉

 f̂(ξ) = 0 for all ξ ∈ Rd.

Since f is non null and integrable, f̂ is non null and continuous. Hence there
exists ξ0 ∈ Rd and r > 0 such that for all ξ ∈ B (ξ0, r), f̂(ξ) 6= 0, and thus

∀ξ ∈ B (ξ0, r), S(ξ) :=

p∑
j=1

wje
i〈ξ,yj〉 = 0. One easily shows that the sum S(ξ)

is null for all ξ ∈ Rd in considering the one-dimensional restriction of S on the
line containing ξ and ξ0: by the identity theorem, this one-dimensional function
is null since it is analytic and null over an open interval. Applying the inverse

generalized Fourier transform to S = 0 shows that

p∑
j=1

wjδyj = 0. This implies

that w1 = · · · = wp = 0, since by hypothesis the vectors yj are distinct.
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Proposition 5. Let A ⊂ Rd be a Ld-measurable set of finite Lebesgue measure
and let gA be its covariogram. Then for all y, z ∈ Rd

|gA(y)− gA(z)| ≤ gA(0)− gA(y − z).

Proof. First let us show that for all measurable sets A1, A2, and A3

Ld(A1 ∩A2)− Ld(A1 ∩A3) ≤ Ld(A2 \A3) = Ld(A2)− Ld(A3 ∩A2). (3)

We have

Ld(A1 ∩A2)− Ld(A1 ∩A3) ≤ Ld(A1 ∩A2)− Ld(A1 ∩A2 ∩A3)

≤ Ld((A1 ∩A2) \ (A1 ∩A2 ∩A3)).

Now using that (A1 ∩A2) \ (A1 ∩A2 ∩A3) is included in the set A2 \A3, (3) is
proved. Applying (3) to the sets A1 = A, A2 = y +A and A3 = z +A we get

gA(y)− gA(z) = Ld (A ∩ (y +A))− Ld (A ∩ (z +A))

≤ Ld(y +A)− Ld ((y +A) ∩ (z +A))

≤ Ld(A)− Ld (A ∩ ((z − y) +A))

≤ gA(0)− gA(z − y).

Some remarks:

• The weaker inequality

|gA(y)− gA(z)| ≤ 2(gA(0)− gA(y − z))

was established by Matheron [19, p. 1].

• The inequality of Proposition 5 shows that the Lipschitzness of the covar-
iogram only depends on the behavior of the function in 0.

3 Facts from the theory of functions of bounded
directional variation

This section gathers necessary results from the theory of functions of bounded
variation. For a general treatment of the subject we refer to the textbook of
Ambrosio, Fusco and Pallara [3]

Definition 6 (variation and directional variation). Let G be an open subset of
Rd and let f : G −→ R, f ∈ L1 (G). The (total) variation of f in G is

V (f,G) = sup

{∫
G

f(x) divϕ(x)dx : ϕ ∈ C1
c

(
G,Rd

)
, ‖ϕ‖∞ ≤ 1

}
.

The directional variation of f in G in the direction u ∈ Sd−1 is

Vu(f,G) = sup

{∫
G

f(x)〈∇ϕ(x), u〉dx : ϕ ∈ C1
c (G,R) , ‖ϕ‖∞ ≤ 1

}
.

If A ⊂ Rd is a Ld-measurable set, the perimeter of A in G is Per(A,G) :=
V (1A, G) and one writes Vu(A,G) := Vu(1A, G) for the directional variation of
A in G.
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In the case G = Rd, one simply writes V (f) = V
(
f,Rd

)
and Vu(f) =

Vu
(
f,Rd

)
, and similarly for the variations of a set. One denotes by BV (G)

and BVu (G) the set of functions of bounded variation in G and the set of
functions of bounded variation in G in the direction u respectively.

Proposition 7 (variation and directional variation). Let G be an open subset
of Rd and let f ∈ L1 (G). Then the variation V (f,G) is finite if and only if for
every direction u ∈ Sd−1 the directional variation Vu(f,G) is finite and

V (f,G) =
1

2ωd−1

∫
Sd−1

Vu(f,G)Hd−1(du), (4)

where ωd−1 denotes the Lebesgue measure of the unit ball in Rd−1.

References for the proof. From the definitions one easily shows that

1

d
V (f,G) ≤ sup

u∈Sd−1

Vu(f,G) ≤ V (f,G).

The integral geometric formula (4) is elementary proved in [8, Lemma 3.8]. This
is a direct consequence of the Radon-Nikodym theorem and the identity∫

Sd−1

|〈ν, u〉|Hd−1(du) = 2ωd−1, ν ∈ Sd−1.

The next proposition recalls fundamental properties related to the approxi-
mation of functions of bounded directional variation. For simplicity we restrict
ourselves to the case G = Rd. See [3, Section 3.11] for the proofs.

Proposition 8 (directional variation and approximation).

• Variation of smooth functions: If f ∈ C1
(
Rd
)
∩ L1

(
Rd
)

then

Vu(f) =

∫
Rd

∣∣∣∣∂f∂u (x)

∣∣∣∣ dx,
where ∂f

∂u (x) := 〈∇f(x), u〉.

• Lower semi-continuity with respect to the L1-convergence: If fn converges
towards f in L1

(
Rd
)

then Vu(f) ≤ lim inf
n→+∞

Vu(fn).

• Approximation by smooth functions: for every function f ∈ BVu
(
Rd
)
,

there exists a sequence of smooth functions fn ∈ C∞
(
Rd
)
∩BVu

(
Rd
)

such

that fn converges towards f in L1
(
Rd
)

and lim
n→+∞

Vu(fn) = Vu(f).

One practical advantage of directional variations Vu(f) over the non-directional
variation V (f) is that it can be computed from the integrals of difference quo-
tients, as the next proposition recalls. Although this is a standard result of
BV functions theory2, the author is not aware of any standard textbook which
enunciates it. Consequently a proof is given for the convenience of the reader.

2L. Ambrosio, personal communication
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Proposition 9 (directional variation and difference quotient). Let u ∈ Sd−1

and let f ∈ L1
(
Rd
)

be any integrable function. Then for all r 6= 0,∫
Rd

|f(x+ ru)− f(x)|
|r|

dx ≤ Vu (f)

and

lim
r→0

∫
Rd

|f(x+ ru)− f(x)|
|r|

dx = Vu (f) .

Proof. To prove the inequality we can suppose that f ∈ BVu
(
Rd
)
. First suppose

that f ∈ C1
(
Rd
)
∩BVu

(
Rd
)
. Then

|f(x+ ru)− f(x)| =
∣∣∣∣∫ 1

0

r
∂f

∂u
(x+ tru)dt

∣∣∣∣ ≤ ∫ 1

0

|r|
∣∣∣∣∂f∂u (x+ tru)

∣∣∣∣ dt.
Hence, using Fubini’s theorem and the first point of Proposition 8,∫

Rd

|f(x+ ru)− f(x)|
|r|

dx ≤
∫ 1

0

(∫
Rd

∣∣∣∣∂f∂u (x+ tru)

∣∣∣∣ dx) dt = Vu(f).

This inequality is shown to be valid for any f ∈ BVu
(
Rd
)

by using approxima-
tion by smooth functions (see Proposition 8).
Let us now turn to the second part of the statement. Let f ∈ L1

(
Rd
)
. Using

the above inequality it is enough to show that

Vu(f) ≤ lim inf
r→0

∫
Rd

|f(x+ ru)− f(x)|
|r|

dx.

Let us consider a family of mollifiers (ρε)ε>0 and define fε = f ∗ ρε. Then

fε ∈ C∞
(
Rd
)
∩ BVu

(
Rd
)

and fε converges towards f in L1
(
Rd
)

as ε tends to
0. By Fatou’s lemma we have

Vu(fε) =

∫
Rd

∣∣∣∣∂fε∂u (x)

∣∣∣∣ dx ≤ lim inf
r→0

∫
Rd

|fε(x+ ru)− fε(x)|
|r|

dx.

Since ‖fε(.+ ru)− fε‖1 = ‖(f(.+ ru)− f) ∗ ρε‖1 ≤ ‖f(.+ ru)− f‖1 we de-
duce that for all ε > 0

Vu(fε) ≤ lim inf
r→0

∫
Rd

|f(x+ ru)− f(x)|
|r|

dx.

Using the lower semi-continuity of the directional variation with respect to the
L1-convergence we get the result.

4 Directional variation, perimeter and covari-
ogram of measurable sets

In this section, the main results of the paper are established (see Theorem 11
and Theorem 12).
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Lemma 10 ([19]). Let A be a Ld-measurable set having finite Lebesgue measure
and let gA be its covariogram. Then for all y ∈ Rd

gA(0)− gA(y) =
1

2

∫
Rd

|1A(x+ y)− 1A(x)| dx.

Proof.∫
Rd

|1A(x+ y)− 1A(x)| dx =

∫
Rd

(1A(x+ y)− 1A(x))
2
dx = 2 (gA(0)− gA(y)) .

The identity of Lemma 10, which is due to Matheron [19], is the key point
to apply the results from the theory of functions of bounded directional varia-
tions enunciated in Section 3. First, one establishes Formula (1) and obtains a
characterization of sets of finite directional variation.

Theorem 11 (directional variation and covariogram of measurable sets). Let A
be a Ld-measurable set having finite Lebesgue measure, let gA be its covariogram,
and let u ∈ Sd−1. The following assertions are equivalent:

(i) A has finite directional variation Vu(A).

(ii) lim
r→0

gA(0)− gA(ru)

|r|
exists and is finite.

(iii) The one-dimensional restriction of the covariogram guA : r 7→ gA(ru) is
Lipschitz.

In addition,

Lip (guA) = lim
r→0

gA(0)− gA(ru)

|r|
=

1

2
Vu (A) ,

the second equality being valid both in the finite and infinite case.

Proof. Since from Lemma 10,

gA(0)− gA(ru)

|r|
=

1

2

∫
Rd

|1A(x+ ru)− 1A(x)|
|r|

dx,

by applying Proposition 9 with f = 1A one obtains the equivalence of (i) and

(ii) as well as the formula lim
r→0

gA(0)− gA(ru)

|r|
=

1

2
Vu (A).

Let us show that (i) implies (iii). By Proposition 5, for all r and s ∈ R

|gA(ru)− gA(su)| ≤ gA(0)−gA((r−s)u) =
1

2

∫
Rd

|1A(x+ (r − s)u)− 1A(x)| dx.

Applying the inequality of Proposition 9 with f = 1A,

|gA(ru)− gA(su)| ≤ 1

2
|r−s|

∫
Rd

|1A(x+ (r − s)u)− 1A(x)|
|r − s|

dx ≤ 1

2
Vu(A)|r−s|.

Hence guA is Lipschitz and Lip (guA) ≤ 1
2Vu(A).
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Let us now show that (iii) implies (i). For all r 6= 0 we have

Lip (guA) ≥ gA(0)− gA(ru)

|r|
=

1

2

∫
Rd

|1A(x+ ru)− 1A(x)|
|r|

dx.

By Proposition 9 the right-hand side tends towards 1
2Vu(A) as r tends to 0.

Hence A has finite directional variation in the direction u and Lip (guA) ≥
1
2Vu(A). All in all we have shown that (i) and (iii) are equivalent and that
Lip (guA) = 1

2Vu(A).

Considering all the possible directions u ∈ Sd−1, the results of the previ-
ous theorem yield to Formula (2) (reproduced below as Formula (5)) and a
characterization of sets of finite perimeter.

Theorem 12 (perimeter and covariogram of measurable sets). Let A be a Ld-
measurable set having finite Lebesgue measure, and let gA be its covariogram.
The following assertions are equivalent:

(i) A has finite perimeter Per(A).

(ii) For all u ∈ Sd−1, (guA)
′
(0) := lim

r→0+

gA(ru)− gA(0)

r
exists and is finite.

(iii) The covariogram gA is Lipschitz.

In addition the following relations hold:

Lip (gA) =
1

2
sup

u∈Sd−1

Vu(A) ≤ 1

2
Per(A)

and

Per(A) = − 1

ωd−1

∫
Sd−1

(guA)
′
(0)Hd−1(du), (5)

this last formula being valid both in the finite and infinite case.

Proof. The equivalence of (i) and (ii) as well as the integral geometric for-
mula (5) derive from Proposition 7 and the identity

(guA)
′
(0) = lim

r→0+

gA(ru)− gA(0)

r
= −1

2
Vu (A) .

Let us now show that (i) implies (iii). Let y, z ∈ Rd. Denote by u the direction
of Sd−1 such that y − z = |y − z|u. By Proposition 5 and Theorem 11

|gA(y)− gA(z)| ≤ gA(0)−gA(y−z) ≤ 1

2
Vu(A)|y−z| ≤

(
1

2
sup

u∈Sd−1

Vu(A)

)
|y−z|.

Hence gA is Lipschitz and Lip (gA) ≤ 1
2 supu Vu(A). As for the converse impli-

cation and inequality, for all u ∈ Sd−1,

Lip (gA) ≥ lim
r→0

gA(0)− gA(ru)

|r|
=

1

2
Vu(A).

Hence for all u ∈ Sd−1, Vu(A) < +∞ and Lip (gA) ≥ 1
2 supu Vu(A). This

concludes the proof.
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One natural question is whether Formula (5) extends to the case of functions.
The answer to this question is negative. Indeed, if one considers a smooth
function f ∈ C1

c

(
Rd
)
, then its covariogram gf (y) =

∫
Rd f(x+ y)f(x)dx is well-

defined and is differentiable in 0. But since gf is even, its derivative at the
origin equals zero, and thus the variation of f is not equal to the integral of the
directional derivatives of the covariogram gf .

5 Applications to random closed sets

5.1 Mean covariogram of a random closed set

A random closed set (RACS) X is a measurable map from a probability space
(Ω,A,P) to the space F

(
Rd
)

of closed subsets of Rd endowed with the σ-algebra

generated by the sets
{{
F ∈ F

(
Rd
)
, F ∩K = ∅

}
, K compact

}
[18, 20, 26].

Definition 13 (mean covariogram of a random closed set). Let X be a random
closed set (RACS) of Rd having finite mean Lebesgue measure, i.e. E

(
Ld (X)

)
<

+∞. The mean covariogram γX of X is the expectation of the covariogram of X
with respect to its distribution, that is γX : Rd → [0,∞[ is the function defined
by

γX(y) = E (gX(y)) = E
(
Ld (X ∩ y +X)

)
=

∫
F(Rd)

Ld (A ∩ y +A)PX(dA).

All the results established in the deterministic case can be adapted for mean
covariograms of RACS.

Proposition 14 (properties of mean covariograms). Let X be a RACS of Rd
satisfying E

(
Ld(X)

)
< +∞ and let γX be its mean covariogram. Then

1. For all y ∈ Rd, 0 ≤ γX(y) ≤ γX(0) = E
(
Ld(X)

)
.

2. γX is even.

3. γX(y) =

∫
Rd

P (x ∈ X and x+ y ∈ X) dx.

4.
∫
Rd γX(y)dy = E

(
Ld(X)2

)
∈ [0,+∞].

5. If E
(
Ld(X)

)
> 0, then γX is a strictly positive-definite function.

6. For all y, z ∈ Rd, |γX(y)− γX(z)| ≤ γX(0)− γX(y − z).

7. γX is uniformly continuous over Rd and lim
|y|→+∞

γX(y) = 0.

8. We have

lim
r→0

γX(0)− γX(ru)

|r|
=

1

2
E (Vu(X)) .

and, noting (γuX)
′
(0) = lim

r→0+

γX(ru)− γX(0)

r
,

− 1

ωd−1

∫
Sd−1

(γuX)
′
(0)Hd−1(du) = E (Per(X)) .
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The proofs are omitted since they mostly consist in integrating the results
of the previous sections with respect to the distribution of the RACS X. The
convergence results follow easily from the bounded convergence theorem.

5.2 Specific variation of a stationary RACS

A RACS X is said to be stationary if for all y ∈ Rd, the translated RACS y+X
has the same distribution as X. If a RACS X is stationary, one defines its
variogram νX as the function νX(y) = P (y ∈ X, 0 /∈ X) (see e.g. [14] for more
details on variograms).

Given a stationary RACS X, the map G 7→ E (Per(X,G)), G ⊂ Rd open, de-
fines a measure which is translation invariant. Hence there exists a real number
θV (X) ∈ [0,∞] such that

E (Per(X,G)) = θV (X)Ld(G).

We choose to call this constant θV (X) the specific variation of X or the variation
intensity of X (see the discussion below). Similarly, for all u ∈ Sd−1 there exists
a real θVu

(X) ∈ [0,∞] such that E (Vu(X,G)) = θVu
(X)Ld(G). θVu

(X) is called
the specific directional variation of X in the direction u (or also the directional
variation intensity). In this context the integral-geometric formula (4) gives

θV (X) =
1

2ωd−1

∫
Sd−1

θVu
(X)Hd−1(du).

Theorem 15 (specific variations and variogram). Let X be a stationary RACS,

let νX be its variogram, and for all u ∈ Sd−1 denote (νuX)
′
(0) := lim

r→0

1

|r|
νX(ru).

Then for all u ∈ Sd−1 the specific directional variation θVu
(X) is given by

θVu
(X) = 2 (νuX)

′
(0) = 2 lim

r→0

1

|r|
P (ru ∈ X, 0 /∈ X) .

In other words, the specific directional variation is twice the directional deriva-
tive of the variogram at the origin. Integrating over all directions, one obtains
the specific variation of X:

θV (X) =
1

ωd−1

∫
Sd−1

(νuX)
′
(0)Hd−1(du). (6)

Before proving this theorem let us discuss the terminology specific variation
of X for the constant θV (X). Eq. (6) is exactly the formula given in [14, p.
26] and which originates from Matheron [16, p. 30]. In these references, the
constant corresponding to the variation intensity θV (X) is called the specific
(d− 1)-volume of X (specific perimeter if d = 2, specific surface area if d = 3).
However, in the later works of Matheron [18] as well as on recent reference
textbooks [26, 24], the specific surface measure refers to the surface measure that
derives from Steiner’s formula. This measure has different names, depending on
its normalization and the degree of generalization: intrinsic volume of index
d− 1 and Minkowski’s content of index 1 for convex sets [24], total curvature of
index d − 1 for sets with positive reach and UPR-sets [9, 22], or also in a more
general setting outer Minkowski content [2, 27]; see also [12]. Even though
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the (variational) perimeter of a set and this notion of surface measure agree
for convex sets [2], the distinction is important. Indeed their extensions to
non convex sets have different behaviors. For example, the outer Minkowski
content counts twice the isolated fine parts of a set having a bounded and (d−
1)-rectifiable topological boundary, whereas these fine parts have no influence
on the perimeter [27, Proposition 4.1] (here “isolated fine parts” denotes the
part of the boundary which has Lebesgue density 0). In order to make a clear
distinction between the (variational) perimeter and the surface measure from
Steiner’s formula, the constant θV (X) is named the specific variation of X and
not its “specific perimeter”.

As mentioned in the introduction, one should notice that, contrary to the
specific surface area [24], the specific variation θV (X) is well-defined for any
stationary RACS. Besides, Theorem 15 shows that the specific directional vari-
ations θVu

(X) and the specific variation θV (X) are easily computed as soon as
one knows the variogram of X. This will be illustrated in the next section where
the specific variations of homogeneous Boolean models are computed.

Let us now turn to the proof of Theorem 15 which uses the following intuitive
lemma.

Lemma 16. Let A be a Ld-measurable set and B be an open ball. Then for all
u ∈ Sd−1,

Vu(A,B) ≤ Vu
(
A ∩B,Rd

)
≤ Vu(A,B) + Vu(B,Rd).

References for the proof. The first inequality is immediate from the definition
of the directional variation on an open set [3]. The second inequality is eas-
ily proved using the interpretation of the directional variation as an oriented
Hausdorff measure of the essential boundary [8].

Proof of Theorem 15. First remark that

P (ru ∈ X, 0 /∈ X) = P (0 ∈ X,−ru /∈ X)

= P (0 ∈ X)− P (0 ∈ X and − ru ∈ X)

= P (0 ∈ X)− P (0 ∈ X ∩ (ru+X)) .

Let B be any open ball. Since X is a stationary RACS

P (0 ∈ X) =
E
(
Ld(X ∩B)

)
Ld(B)

.

As X ∩ (ru+X) is also a stationary RACS, we have

P (0 ∈ X ∩ (ru+X)) =
E
(
Ld(X ∩ (ru+X) ∩B)

)
Ld(B)

.

In order to introduce the mean covariogram of the set X ∩ B, let us denote
Er = (X ∩B) ∩ (ru+ (X ∩B)). Clearly we have the following inclusions

Er ⊂ X ∩ (ru+X) ∩B and [X ∩ (ru+X) ∩B] \ Er ⊂ B \ (B ∩ (ru+B)) .

Noting that Ld (B \ (B ∩ (ru+B))) = gB(0)− gB(ru), we obtain

γX∩B(ru)

Ld(B)
≤

E
(
Ld(X ∩ (ru+X) ∩B)

)
Ld(B)

≤ γX∩B(ru)

Ld(B)
+
gB(0)− gB(ru)

Ld(B)
.
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This yields both an upper and a lower bound of P (ru ∈ X, 0 /∈ X). We have

P (ru ∈ X, 0 /∈ X) ≤ γX∩B(0)− γX∩B(ru)

Ld(B)
.

By property 8 of Proposition 14 and Lemma 16 we obtain

lim sup
r→0

1

|r|
P (ru ∈ X, 0 /∈ X) ≤ 1

2

E (Vu(X ∩B)

Ld(B)
≤ 1

2
θVu

(X) +
1

2

Vu(B)

Ld(B)
.

As for the lower bound,

P (ru ∈ X, 0 /∈ X) ≥ γX∩B(0)− γX∩B(ru)

Ld(B)
− gB(0)− gB(ru)

Ld(B)
.

Again by Proposition 14 and Lemma 16 we have

lim inf
r→0

1

|r|
P (ru ∈ X, 0 /∈ X) ≥ 1

2

E (Vu(X ∩B)

Ld(B)
−1

2

Vu(B)

Ld(B)
≥ 1

2
θVu

(X)−1

2

Vu(B)

Ld(B)
.

The two established inequalities are true for any open ball B. The enunciated
formula is obtained by letting the radius of B tends to +∞.

5.3 Computation of the specific variations of Boolean mod-
els

In this section we apply Theorem 15 to compute the specific directional vari-
ations and the specific variation of any homogeneous Boolean model. The
Boolean model [26], [24] with intensity λ and grain distribution PX is the sta-
tionary RACS Z defined by

Z =
⋃
i∈N

xi +Xi,

where {xi, i ∈ N} ⊂ Rd is a homogeneous Poisson point process with intensity
λ > 0 and (Xi)i∈N is a sequence of i.i.d. RACS with common distribution PX .
The avoiding functional of the Boolean model Z is well-known: for any compact
K ⊂ Rd we have

P (Z ∩K = ∅) = exp
(
−λE

(
Ld
(
X ⊕ Ǩ

)))
, (7)

whereX denotes a RACS with distribution PX andX⊕Ǩ = {x− y, x ∈ X, y ∈ K}
(see e.g. [26, p. 65] or [14, p. 164]). Starting from the general expression (7)
(which determines the distribution of Z), let us compute the variogram νZ of
Z. For K = {y}, (7) becomes

q := P (y /∈ Z) = exp
(
−λE

(
Ld (X)

))
.

For K = {0,−ru}, with r 6= 0 and u ∈ Sd−1, remark that we have

Ld
(
X ⊕ Ǩ

)
= Ld (X ∪ ru+X) = 2Ld(X)− Ld (X ∩ ru+X) .
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Hence in this case E
(
Ld
(
X ⊕ Ǩ

))
= 2E

(
Ld (X)

)
− γX(ru). As a result the

variogram νZ is equal to [26, p. 68], [14, p. 165]

νZ(ru) = P (−ru ∈ Z and 0 /∈ Z) = P (0 /∈ Z)− P (Z ∩ {0,−ru} = ∅)
= q − exp

(
−λ
(
2E
(
Ld (X)

)
− γX(ru)

))
= q − q exp (−λ (γX(0)− γX(ru))) .

By Theorem 15 and property 8 of Proposition 14 we deduce

θVu(Z) = 2 (νuX)
′
(0) = 2qλ

1

2
E (Vu(A)) = λE (Vu(A)) exp

(
−λE

(
Ld (X)

))
.

Integrating this formula over all directions u we obtain θV (Z). Our computation
is summarized in the following statement.

Proposition 17 (specific variations of a homogeneous Boolean model). Let Z
be the Boolean model with Poisson intensity λ and grain distribution PX , and
let X be a RACS with distribution PX . Then for all u ∈ Sd−1,

θVu
(Z) = λE (Vu(A)) exp

(
−λE

(
Ld (X)

))
and

θV (Z) = λE (Per(X)) exp
(
−λE

(
Ld (X)

))
. (8)

Eq. (8) is valid for any grain distribution PX and generalizes known results
for Boolean models with convex grains [24, p. 386]. Similar generalizations
involving intensity of surface measures deriving from Steiner’s formula have
recently been established [12, 28]. As already stressed out, our result is similar
but not identical since the outer Minkowski content of a set differs from its
(variational) perimeter [27].

A promising direction for further works is to extend the notion of specific
variation for inhomogeneous RACS. In particular, following [28], one could try
to derive local variation densities of certain inhomogeneous Boolean models.
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