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is not supercuspidal

Mladen Dimitrov * Louise Nyssen T

May 4, 2010

Abstract

Given three irreducible, admissible, infinite dimensional complex representations of
GLy(F), with F a local field, the space of trilinear functionals invariant by the group
has dimension at most one. When it is one we provide an explicit vector on which the
functional does not vanish assuming that not all three representations are supercuspidal.

1 Introduction

1.1 What is a test vector?

Let F' be a local non-Archimedean field with ring of integers O, uniformizing parameter 7 and
finite residue field. Let Vi, Vo and V3 be three irreducible, admissible, infinite dimensional
complex representations of G = GLg(F') with central characters wy, wy and w3 and conductors
n1, ny and ng. Using the theory of Gelfand pairs, Dipendra Prasad proves in [P] that the
space of G-invariant linear forms on V; ® Vo ® V3, with G acting diagonally, has dimension at
most one and gives a precise criterion for this dimension to be one, that we will now explain.

Let D* be the group of invertible elements of the unique quaternion division algebra D
over F', and denote by R its unique maximal order. When V; is a discrete series representation
of G, denote by ViD the irreducible representation of D* associated to V; by the Jacquet-
Langlands correspondence. Again, by the theory of Gelfand pairs, the space of D*-invariant
linear forms on V;” ® VP ® Vi has dimension at most one.

A necessary condition for the existence of a non-zero G-invariant linear form on Vi ® Vo® V3
or a non-zero D*-invariant linear form on V{” ® V; ® V})D , that we will always assume, is
that

Wiy = 1. (1)

Theorem 1. ([P, Theorem 1.4],[P2, Theorem 2]) Let ¢(Vi ® Vo ® V3) = 1 denote the
root number of the corresponding 8-dimensional symplectic representation of the Weil-Deligne
group of F'. When all the V;’s are supercuspidal, assume either that F' has characteristic zero
or that its residue characteristic is odd.
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Then e(V1 @ Vo @ V3) = 1 if, and only if, there exists a non-zero G-invariant linear form
Con Vi@ Vo® Vs, and (V4 @ Vo @ V3) = —1 if, and only if, all the V;’s are discrete series
representations of G and there exists a non-zero D* -invariant linear form ¢’ on VP@VL VL.

Given a non-zero G-invariant linear form ¢ on V; ® Vo ® V3, our goal is to find a pure
tensor in Vi ® Vo ® V3 which is not in the kernel of . We call such a pure tensor a test vector.

Let v; denote a new vector in V; (see section 2.1). The following results are due to Dipendra
Prasad and Benedict Gross. They show that tensor products of new vectors can sometimes
be test vectors.

Theorem 2. (i) ([P, Theorem 1.3]) If all the V;’s are unramified principal series, then
V1 ® v9 ® vz 1S a test vector.

(i) ([GP, Proposition 6.3]) Suppose that for 1 < i < 3, V; is a twist of the Steinberg
representation by an unramified character n;. Then

o cither, mmans(m) = —1 and v1 ® vy ® v3 s a test vector.

e or, mnans(m) = 1 and the line in ViI° @ V¥ @ VP fized by R* x R* x R is not
in the kernel of ¢'.

However, as mentioned in [GP, Remark 7.5, new vectors do not always yield test vectors.
Suppose, for example, that Vi and V5 are unramified, whereas V3 is ramified, and denote by
K = GL2(0O) the standard maximal compact subgroup of G. Since v; and vy are K-invariant
and ¢ is G-equivariant, v — £(v; ® vy ® v) defines a K-invariant linear form on V3. In the
meantime, V3 and its contragredient are ramified, and therefore the above linear form has to
be zero. In particular ¢(v; ® vy ® v3) = 0. To go around this obstruction for new vectors to
be test vectors, Gross and Prasad make a suggestion, which is the object of our first result:

Theorem 3. If V| and Vo are unramified and V3 has conductor n > 1, then v™-v1 ® va ® v

and v1 @ Y™ -vy ® vs are both test vectors, where v = <7TO 1>.

In general we want to exhibit a test vector as an explicit privileged G-orbit inside the
G x G x G-orbit of v1 ® v9 ®v3, where G sits diagonally in G X G x GG. Before stating our main
result, let us explain a more general and systematic approach in the search for test vectors.

1.2 The tree for G

The vertices of the tree are in bijection with maximal open compact subgroups of G (or equiv-
alently with lattices in F2, up to homothetie) and its edges correspond to Iwahori subgroups
of G, each Iwahori being the intersection of the two maximal compact subgroups sitting
at the ends of the edge. Every Iwahori being endowed with two canonical (O /m)*-valued
characters, choosing one of those characters amounts to choosing an orientation on the cor-
responding edge. The standard Iwahori subgroup I = I; corresponds to the edge between K
and yK~~!, and changing the orientation on this edge amounts to replacing the character
(28) €I+ (d mod )by (2%) €I~ (a mod ).
More generally, for n > 1, the n-th standard Iwahori subgroup

,_ (0 0
" ATrO O



corresponds to the path between K and v"K~~", the set of Iwahori subgroups of depth n is
in bijection with the set of paths of length n on the tree, and choosing an orientation on such
a path amounts to choosing one of the two (O /n™)*-valued characters of the corresponding
Iwahori.

The new vector v; is by definition a non-zero vector in the unique line of V; on which I,
acts by (‘; Z) — wi(d). Clearly, for every n > 1, G acts transitively on the set of oriented
paths of length n. Hence finding a G-orbit inside the G x G x G-orbit of v; ® vy ®v3, amounts to
finding a G-conjugacy class I’ x I x I"" inside the G x G x G-conjugacy class of I, X I, X Ip,.

A most natural way of defining such a G-conjugacy class (almost uniquely) is by imposing
the smallest of the three compact open subgroups to be the intersection of the two others.

For instance, the test vector v"v1 ® v9 ® vg in Theorem 3 corresponds to the G-conjugacy
class of Y"K~~" x K x I,,. The linear form on V3 given by v +— £(7"-v1 ® v9 ® v) is invariant
by v"K~~™" N K = I,,, hence belongs to the new line in the contragredient of V3.

Visualized on the tree, the condition on the three compact open subgroups means that the
longest path should be exactly covered by the two others, as shown on each of the following
two pictures.

We would like to thank Dipendra Prasad for having shared this point of view with us.

1.3 Main result

Given an admissible representation V' of G and a character n of F*, we let V ® n denote the
representation of G on the same space V with action multiplied by 7o det, called the twist of
V by n.

If n1, m2 and n3 are three characters of F'* such that n1m2ns = 1, then the G-representations
Vi@ Vo® Vsand (Vi ®@n) @ (Vo ®@n) @ (V3 ®n3) are identical, therefore

Homg(Vi @ Vo ® V3,C) = Homg (Vi @ m1) @ (Va @ m2) @ (V3 @ n3), C). (2)

Hence finding a test vector in V; ® V4 ® V3 amounts to finding one in (Vi @ m1) ® (Vo ®
n2) ® (V3 ® n3) for some choice of characters 1y, 72 and n3 such that n1m2m3 = 1. We would
like to exhibit a test vector in the G x G x G-orbit of v} ® v}, ® vf, where v} denotes a new
vector in V; ®7);, and we want it to be fixed by an open compact subgroup as large as possible.
Therefore the conductors of V; ® n; should be as small as possible.

Denote by n?in the minimal possible value for the conductor of V; ® n, when 7 varies.
Finally, let n™" denote the minimal possible value of

cond(Vh ® m1) + cond(Va ® n2) + cond (V3 ® n3),

when (11, 12,n3) runs over all possible triples of characters such that n17m2n3 = 1. Note that
because of the latter condition, the inequality n™® > pipn 4 plin 4 ng‘in is strict in general.

Also note that the conductor of a representation is at least equal to the conductor of
it’s central character. Equality holds if, and only if, the representation is principal and has
minimal conductor among it’s twists.



Definition 1.1. (i) The representation V; is minimal if n; = ni"in.
(ii) The triple of representations (V7, Vo, V3) satisfying (1) is minimal if

(a) either all non-supercuspidal V;’s are minimal,

(b) or none of the V;’s is supercuspidal and n™® = n; + ng + ng3.

It is clear from the definition that for any V7, V5 and V3, there exist characters 71, 19 and
n3 such that nimans = 1 and (V1 ® 1, Vo @ 12, V3 @ 13) is minimal. Our main result states:

Theorem 4. Suppose that at least one of Vi, Vo and V3 is not supercuspidal, and that if
two amongst them are supercuspidal with the same conductor then the third one is a ramified
principal series. Assume that (Vi,Va, V3) is minimal and e(Vi @ Vo @ V3) = 1. If ng > ny and
ng > no, then vy QY™™ - vy ® v and Y™™ - v] ® V9 ® vg are both test vectors.

Remark 1.2. The test vector v1 ® v™7 ™2 - v ® vg can be visualized on the tree as follows:

In, YT I, y"2 T3

Remark 1.3. Assume that (V7, V5, V3) is minimal and that at least one of V;’s is not super-
cuspidal. Then ¢(V; ® Vo ® V3) = —1 if, and only if, one of the representations, say Vi, is a
twist of the Steinberg representation by an unramified character n and V5 is a discrete series
whose contragredient is isomorphic to V3 twisted by n (see [P, Propositions 8.4, 8.5, 8.6]).

Remark 1.4. Finding test vectors in the case when all the V;’s are supercuspidal remains
an open question. Consider for example the case when the V;’s have trivial central characters
and share the same conductor n. It is well known that the Atkin-Lehner involution (% )
acts on v; by the root number €(V;) = +1. It follows that if e(V})e(V2)e(V3) = —1, then
l(v1 @ v ® 1}3) =0.

If V7 is unramified and V5, V3 are supercuspidal of even conductor n, trivial central
characters and €(V5)e(V3) = —1, then by applying the Atkin-Lehner involution one sees that
E(’y"/ 200 @ v9 & v3) = 0. Similarly, if V; is the Steinberg representation and Vs, V3 are
supercuspidal of odd conductor n, trivial central characters and €(V2)e(V3) = 1, then by
applying the Atkin-Lehner involution one sees that 6(7("*1)/ 201 ® va @ v3) = 0.

1.4 Application of test vectors to subconvexity

Test vectors for trilinear forms play an important role in various problems involving L-
functions of triple products of automorphic representations of GL(2).

One such problem, studied by Bernstein-Reznikov in [BR1, BR2| and more recently by
Michel-Venkatesh in [MV1, MV2], is about finding subconverity bounds for the L-functions of
automorphic representations of GL(2) along the critical line. More precisely, given a unitary
automorphic representation II of GL(N) over a number field E, the subconvexity bound
asserts the existence of an absolute constant § > 0 such that :

L(I1,1/2) <p .y CADY473,



where C(II) denotes the analytic conductor of II. We refer to [MV2] for the definition of C'(II)
and for various applications of subconvexity bounds to problems in number theory, such as
Hilbert’s eleventh problem. Let us just mention that the subconvexity bounds follow from

the Lindeloff Conjecture, which is true under the Generalized Riemann Hypothesis.
In [MV2, 1.2] the authors establish the following subconvexity bound for GL(2) x GL(2):

L(I; ® Iy, 1/2) < p,0(1L) C(H1)1/275,

and obtain as a corollary subconvexity bounds for GL(1) and GL(2). A key ingredient in
their proof is to provide a test vector in the following setup: let I’ be the completion of E
at a finite place and denote by V; the local component of II; at F' (i = 1,2). Let V3 be a
minimal principal series representation of G = GLa(F') such that (1) is fulfilled, and denote
by ¢ a normalized G-invariant trilinear form on V; ® Vo ® V3(the process of normalization is
explained in [MV2, 3.4]). Then one needs to find a norm 1 test vector v@v'®@v" € V1@ Vo V3
such that
o @0 ©0") >0, ny ',

which can be achieved either by using the test vectors from our main theorem, or by a direct
computation in the Kirillov model as in [MV2, 3.6.1].

1.5 Organization of the paper

In section 2 we recall basic facts about induced admissible representations of G which are used
in section 3 to prove Theorem 3 and a slightly more general version of Theorem 4 in the case
when at most one of the representations is supercuspidal. Section 4 recalls some basic facts
about Kirillov models and contains a proof of Theorem 4 in the case of two supercuspidal
representations. Finally, in section 5 we study test vectors in reducible induced representation,
as initiated in the work of Harris and Scholl [HS].
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author would like to thank also Paul Broussous and Nicolas Templier for many interesting
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2 Background on induced admissible representations of G

2.1 New vectors and contragredient representation

Let V be an irreducible, admissible, infinite dimensional representation of G with central
character w. To the descending chain of open compact subgroups of G

K=Ig>I=L> 251, I



one can associate an ascending chain of vector spaces for n > 1:

Inw a b o a b
Vv —{UGV‘<C d>v—w(d)v,forall (c d>€In}.

Put V0% = VK There exists a minimal n such that the vector space VI»“ is non-zero. It
is necessarily one dimensional, called the new line, and any non-zero vector in it is called a
new vector of V' (see [C]). The integer n is the conductor of V. The representation V is said
to be unramified if n = 0.
The contragredient representation V is the space of smooth linear forms ¢ on V', where
G acts as follows:
VgeG, WYoeV, (g-9)v)=¢(g " v).

There is an isomorphism V~Ve wl, hence V and V have the same conductor n.
Moreover, under this isomorphism the new line in V' is sent to:

{vev( (‘CL Z)-v:w(a)v,for all (‘CL Z) eIn},

which is the image of the new line in V' by the Atkin-Lehner involution (% ).

2.2 Induced representations

Let (p, W) be a smooth representation of a closed subgroup H of G. Let Ay be the modular
function on H. The induction of p from H to G, denoted Ind%p, is the space of functions f
from G to W satisfying the following two conditions:

(i) for all h € H and g € G we have f(hg) = AH(h)fép(h)f(g);

ii) there exists an open compact subgroup K¢ of G such that for all k € K and g € G we
! !
have f(gk) = f(9g).

The action of G is by right translation: for all ¢g,¢' € G,(g - f)(¢') = f(¢'g). With the
additional condition that f must be compactly supported modulo H, one gets the compact

induction denoted by ind%. When G/H is compact, there is no difference between Ind% and
ind%.

Let B be the Borel subgroup of upper triangular matrices in G, and let T' be the diagonal

torus. The character A is trivial and we will use Ag = 6! with § <8 Z) = [§| where | |

is the norm on F. The quotient B\G is compact and can be identified with P!(F).

Let ¢ and i/ be two characters of F* and x be the character of B given by
a *\ _ ,
X (0 d) = p(a)p'(d).

The next two sections are devoted to the study of new vectors in V = Ind%(x).



2.3 New vectors in principal series representations

Assume that V = Ind%(y) is a principal series representation of G, that is u/p~t # | - |*1.
Then V has central character w = ppu’ and conductor n = cond(p) + cond(p’). Let v denote
a new vector in V.

When V is unramified the function v : G — C is such that forallb € B, g€ Gand k € K

v(bgk) = x(0)3(b)2v(g),

whereas, if V is ramified, then for all b € B, g € G and k = <: 2) S

1
v(bgk) = x(0)d(b)>w(d)v(g)-
We normalize v so that v(1) =1 and put
_ 1 _ 1
o= p(m)rlt and BTN = (el
Lemma 2.1. If V is unramified then for all r > 0,

a’fT5 Jifk €I\ Ispq for0<s<r-—1,

o=

Similarly forr > 1,

, . asﬁr—s_as—l—lﬁr—l—s cifk €I\ I4411,0<s<r—1,
(0 0=y )(k) = St
0 if ke,
4o gy = | AR TRe D
an v — v =
! ! 0 Jifke K\ I.
Proof: 1If k € I, then v "kvy" € K, so (7" -v)(k) = a"v(y "k7") = a”. Suppose that

k= (Ccl Z) € I5 \ Is41 for some 0 < s <7 —1. Then 7 °c € O* and

rom=are( 4 ) e (4TI 8 ) —wgr

C s

The second part of the lemma follows by a direct computation. ]

For the rest of this section we assume that V' is ramified, that is n > 1. We put
m = cond(p) so that n —m = cond(u).

By [C, pp.305-306] the restriction to K of a new vector v is supported by the double
coset of (1. 9) modulo I,,. In particular if x4/ is unramified (m = 0), then v is supported by
() L= Ty (V) = K\ T

If 1 <m <n—1, then v is supported by I, (.} ) I, = Iy \ In41.

If p is unramified, then v is supported by I,. We normalize v so that v (.}, 9) = 1.



Lemma 2.2. Suppose that p is unramified and p' is ramified. Then, for allT > 0 and k € K,

ol . k k
arp(d) k=" ") €l

0 , otherwise.

a’(d) ,ifk= ) e Ligr \ Ingri1,
(Wr-v - oflwrﬂ-v) (k) = * d

0 , otherwise.

b

Proof: For k = <ch d

> € K we have

™

_ _ a 7b
a0l = vk = 5, ).
It is easy to check that for every s > 1,
Kn B7r S'Y_r = Lstr- (3)

It follows that 4" -v has its support in I,4,. If k € I,,,, then ¢ € 7™ O* for some m > n,
d € O* and we have the following decomposition:

a w'b\ _ (detk 7w "cb 1 0 a1 0 ()
"¢ d ) 0 T " ed a1 0 gmtre 1)

a™"(y"v)(k) = p(det k) (m~™ " ed) (up') (7" e = ' (d).

Hence

Lemma 2.3. Suppose that p/ is unramified and p is ramified. Then for all r > 0,

a®B 5 (%) Jif k= <* *> €I\ Isq1, with0<s<r,
c x

0 ,ifke L.

(v"-v)(k) =
Moreover, if r > 1, then

T det k . _ * ok
<VW—ﬁVAWNM= o 1 (£55%) ,#k—<c*>en\nﬂ,

0 , otherwise.

Proof: We follow the pattern of proof of lemma 2.2. The restriction of 7" -v to K is zero
outside
KABY (K\T)y ™" = K\ L.

ForOﬁsﬁrandk:z(Z b

d

a w'b\ _ [tk g4 dkN 1o0) (1 14 L 5)
"¢ d ) 0 T "c 11 0 -1 )

) € I\ I;11 we use the following decomposition:




Since d € O and 7"¢~ ! € O we deduce that:

det k)//(—wfrc) ‘71'71071‘ _ ,U<

e

det k&

T S¢

o™ (3" 0) (k) = o Jasrgre.

0

For the sake of completeness, we mention one more result. We omit the proof, since it
will not be used in sequel of this paper.

Lemma 2.4. If p and p' are both ramified (0 < m < n), then for allr >0 and k € K,

. kX
o (e ) 1 (d) ,sz=<c d)eImH\IWH,

0 , otherwise.

(3 o)) =

2.4 New vectors in special representations

In this section, we will assume that Ind%(y) is reducible, that is % =L

wo_ .
2.4.1 Case - =|-|

In this case, there exists a character n of F* such that u = n| - ]7% and p/ = n| - ]% The
representation Ind%((n o det)éfé) has length 2 and has one irreducible one dimensional sub-
space, generated by the function nodet. When 7 is trivial the quotient is called the Steinberg
representation, denoted St. More generally, the quotient is isomorphic to 7 ® St and is called
a special representation. There is a short exact sequence

_1

0— 7 ®C — Ind%((n o det)s 2)L0j>77®8t—>0. (6)

The representation 1 ® St is minimal if,1 and only if, 7 is unramified. Then the subspace of
K-invariant vectors in Ind%((n o det)d~2) is the line n ® C with basis 1 o det. Since

K=1U(BnNK) 01 I
10
there exists v! (resp. ©®\) in Ind§((n o det)éfé) taking value 1 (resp. 0) on I and 0
(resp. 1) on K \ I. Both v/ and v®\ are I-invariant and v/ + v\ is K-invariant. Hence
proj(v”) = —proj(v*\)
Let us compute " -v

is a new vector in 1 ® St whose conductor is 1.
I as a function on G. As in section 2.3, put

ol = (@) =n(r)  and BV =g (m)|r|E = n(w).
{M Jifk eI,

Lemma 2.5. For all r > 0, we have (7" -v!)(k) = ,
0 Lifke K\l

Proof: By (3), we have K N By"Iy~" = I, 1, hence 4" -v! vanishes on K \ I,;1.
For k € I,y 1, Y "kvy" € I, hence 7" vl (k) = a™v! (v "ky") = . O



2.4.2 Case %l =]t

The notations and results from this section will only be used in section 5. There exists a
character n of F* such that p =n|- \% and p/ = n|- ]_% The representation Ind%((n o det)d %)
has length 2 and the special representation 1 ® St is an irreducible subspace of codimension
1. There is a short exact sequence

0 — 7 ® St — IdS((n o det)d?) 2 o C — 0. (7)

When 7 is unramified, the space of K invariant vectors in Ind%((nodet )& %) is the line generated
by the function v¥ taking constant value 1 on K, that is for all b in B and k in K:

o™ (bk) = n(det (b)) (D).

-1

We normalize the linear form proj* by proj*(v®) = 1. The function 7 - v —n(m)~1v®, whose

image by proj* is 0, is a new vector in 1 ® St.
Let us compute v as functions on G. As in section 2.3, put

_ 1 _ _1 _
ot =p(mnlz =n(mlx] and BT =4 (m)|a] "2 = p(w)|A| T
Lemma 2.6. For allr >0,

a’fr Jifk €I\ Ispq for0<s<r—1,

Similarly forr > 1,

afBrS —attprTles if ke I\ I11,0< s <71 —1,

r K r—1 K
2wt —« v ) (k) =
(v gl )(k) {0 ifkel.

and (0" — By o) (k) =

ar(1-8y L ifkel,
0 Jifke K\ I,.

It is worth noting that v behaves as the new vector in an unramified representation (see
Lemma 2.1). The proof is the same.

3 The case when at most one representation is supercuspidal

In this section we prove the following result.

Theorem 5. Assume that (Vi,Va, V3) is minimal, e(V) ® Vo ® V3) =1 and that at most one
representation is supercuspidal. Then, up to a permutation of the V;’s, exactly one of the
following holds:

(a) n3 > mny, ng > ng, and Y37 ™ v Q Uy @ vz and v1 @Y™ T2 vy @ vy are both test vectors;
(b) n1 =ng > n3, and v1 ® vy ® Y'vs is a test vector, for all 0 < i < ny — na.

By symmetry, it is enough to prove in case (a) that "3 ~™ .v; ® ve ® v3 is a test vector.

10



Lemma 3.1. Under the assumptions in theorem b, if ni, ny and nz are not all equal, then
V1 and Vo are non-supercuspidal and minimal.

Proof: ~ Assume first that we are in case (a), that is ng > ny and ng > ng. Since all
representations of conductor at most 1 are non-supercuspidal and minimal, we may assume
that ng > 2. Moreover by (1):

cond(ws) < max(cond(wy), cond(ws)) < max(ny,ng) < ns,

hence V3 is either supercuspidal or non-minimal. Since (V1, Va, V3) is minimal, this proves our
claim in this case.

Assume next that we are in case (b), that is ny = ny > n3. As in previous case, we may
assume that n; = ng > 2. Then if only one amongst V; and V5 is non-supercuspidal and
minimal, say Vi, one would obtain

cond(w;) = n; > max(ng — 1,n3) > max(cond(ws), cond(ws)),

which is false by (1). Hence the claim. O

If ny = ne = n3 then we can assume without loss of generality that Vi and V5 are non-
supercuspidal and minimal. Furthermore, by Theorem 2 one can assume that the V;’s are not
all three unramified, nor are all three twists of the Steinberg representation by unramified
characters. Finally, if all the three representations have conductor one and if exactly one
among them is special, we can assume without loss of generality that this is V3.

3.1 Choice of models

If V; is a principal series for ¢ = 1 or 2, then by minimality there exist characters p; and p of
F*, at least one of which is unramified, such that pu; ' # | - [*' and

V;=IndGx; , where x; (8 Z) = pi(a)pi(d).
Using the natural isomorphism
Ind%y; = Ind%x} , where X/ <8 Z) = pi(a)p;(d)

one can assume that p1 and pf, are unramified.

If V; is a special representation, then by minimality there exists an unramified character
7n; such that V; = n; ® St. We put then

=

_1 1 .
pi=mil-172, pi=mi|-[? and  x; = (n; o det)d
and choose as model for V; the exact sequence (6):
0= 7 ®C — IndG(vi) 2% v; — 0.

As new vectors, we choose v; = proj;(v!) in V; and vy = pron(vf\I) in Va.
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3.2 Going down using Prasad’s exact sequence

We will now explain how Prasad constructs a non-zero G-invariant linear form on V1 ® Vo ® V3.
First, there is a canonical isomorphism:

Homg (Vi ® Va ® V3,C) = Homg (Vi ® Va, V3). (®)
Lemma 3.2. We have
Homg (Vi @ Va, Va) = Homg (ReSG Ind§ X% (x1 x x2), ‘7;>,
where the restriction is taken with respect to the diagonal embedding of G in G x G.

Proof:  This is clear when V} and V, are principal series. Suppose V2 = 72 ® St. Tensoring
the exact sequence (6) for V5 with the projective G-module V; and taking Homg (-, V3) yields
a long exact sequence:

0 — Homg (v1 ® VQ,’V§> — Homg <V1 ® IndS (x2), f/}) — Homg (v1 ® 772,’1/2).
By minimality and by the assumption made in the beginning of section 3, we have
Homg (Vi ® o, V3) = 0. 9)
Hence there is a canonical isomorphism:
Homg (Vi @ V3, V) = Home (Vi @ Indfi(x2), V3 )

This proves the lemma when Vj is principal series. Finally, if V; = 177 ® St for some unramified
character 71, then analogously there is a canonical isomorphism:

Homg (V1 ® IndF(x2), ‘75) — Homg <Indg(><1) ® Ind(x2), ‘7:;) :

O

The action of G on (B x B)\(G x G) = P}(F) x P1(F) has precisely two orbits. The

first is the diagonal Ap\ ¢, which is closed and can be identified with B\G. The second is its
complement which is open and can be identified with T\G via the bijection:

NG — <B\G x B\G) \Ap¢
Tg — (Bg,B(1§)9)
Hence, there is a short exact sequence of G-modules:
0 — ind%(x1x5) <% Resg Ind5x% (xa x x2) — Indg(xlxgéé) — 0. (10)

The surjection res is given by the restriction to the diagonal. The injection ext takes a function

h € ind%(x1x4) to a function H € Ind$*%(x1 x x2) vanishing on Ap\g, such that for all

ged
H(g, (? é) g) = h(g).

Applying the functor Homg (o, T};) yields a long exact sequence:

0 — Homg (Indg <X1X25%) , "73) — Homg (ResG Indgig()ﬁ X XQ),%) —

— Homg (indg <X1X/2) , %) — Exté; <Indg (X1X25%>,I7§> — -+ (11)

12



Lemma 3.3. Hom(;(Indg(Xl)@d%),fvg) =0.

Proof: 1f, say V; is special, then the claim is exactly (9), so we can assume that V7 and V5

are both principal series. s

Suppose that Homg (Ind% (x1x20 %), V3) # 0, in particular, V3 is not supercuspidal.

If V1 and V4 are both ramified, this contradicts the minimality assumption, namely that

I — 1 + ng + n3, since ny = cond (Vs ® u;l) whereas ng > cond (Vs ® p2).

Otherwise, if for example V; is unramified, then ne = ng > ny = 0 which is impossible by

the assumptions in theorem 5. . U
By [P, Corollary 5.9] it follows that Ext};(lndg()ﬁxgéé), V3) = 0, hence (11) yields:

7,Ll’l’l

Homg (ReSG Indgig(xl X X2),%> = Homg (ind%(xlxé), 175) (12)

Finally, by Frobenius reciprocity
Homg <ind%(x1x/2), V;) = Homy (Xlxé, @) . (13)
Since by (1) the restriction of XX} to the center equals wy !, it follows from [W, Lemmes 8-9]

that the latter space is one dimensional. Thus, we have five canonically isomorphic lines with
corresponding bases:

044 € Hom(;<V1®V2®V37(C>
U
0#1 € Homg (Ind%(xl) © IndF (x2) ® vg,C)
U
0#¥ € Homg (ReSG nd$ X% (y1 x X2),/‘}g> (14)
1
0£d € Homg <indg(X1X/2)a/‘};>
1
0#£¢ € Homyp <X1X’27 ‘73\;)

Observe that ¢ is a linear form on V3 satisfying:

VieT, YveVs,  p(tv) = (xaxa) ) e). (15)

Moreover, for all v € Ind%(x1), v' € Ind%(x2) and v € Vi, we have the formula:

t(proj, (v) ® projp(v) ® ") = Y ® V' ® ") = /

vl (98)9)¢lg - ")dg,  (16)
™G

where for i = 1,2, proj, is the map defined in (6), if V; is special, and identity otherwise.

3.3 Going up
Lemma 3.4. For all i € 7, o(v'-v3) # 0.
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Proof:  Take any vy € V3 such that ¢(vg) # 0. By smoothness v is fixed by the prin-
cipal congruence subgroup ker(K — GL2(O /7*0)), for some sp > 0. Then p(7*°-vg) =
(1) (%) p(vg) # 0 and %0 vy is fixed by the congruence subgroup

1, = {k c K‘k: = (0 1) (mod WQSO)}.

Hence go(V;Sl) # {0}, for all s > 2sq. Since I /I} is a finite abelian group, Vgsl decomposes as
a direct sum of spaces indexed by the characters of I,/I!. By (15) and by the fact that p1 1}

is unramified, ¢ vanishes on all summands of Vgl1 other than VIS’W3 (defined in section 2.1).
Hence ¢(V. Is’w?’) #{0}. By [C, p.306] the space V4*“* has the following basis:
(U3 S A B ) 787”3'7}3) .

It follows that o(7¢-v3) # 0 for some i € Z, hence by (15), p(v'-v3) # 0 for all i € Z.
Note that the claim also follows from the first case in [GP, Proposition 2.6] applied to the
split torus T of G. O

Let n = max(ni,n2,n3) > 1 and put

1 @)
In = (W"O 1)’

Consider the unique function h € indg (x1x%) which is zero outside the open compact
subset T'J,, of T\G and such that for all by € O and ¢y € 7" O we have h ( 1 bO) =1.

: co 1
For every 0 < i <n —ns, J, fixes v*-v3.

By definition, the function g — h(g)p(g-vs) factors through G — T\G and by lemma 3.4:

(1)) (7" -vs) = /T SN0 Pl )y = o0 w0 JRCE (17)

JIn

Now, we will compute H = ext(h) as a function on G x G. Recall that H : G x G — C is
the unique function satisfying:

(i) for all bi,be € B, g1,92 € G, H(b1g1,b2g2) = Xl(bl)XQ(bQ)(S%(ble)H(gl,92),
(i) for all g € G, H(g,9) = 0 and H(g,({ 5) 9) = h(g)-

Since G = BK, H is uniquely determined by its restriction to K x K. Following the notations
of section 2.3 put

ot = w(m)lxl? and Bt = pif(m)|x| 73

Lemma 3.5. For all k1 = ( ) and ko = <: ;) i K we have
2 a2

di)wn (ZL852) ik € 1y and by € K\ 1,
H(ky1, ko) =

, otherwise.
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1 b

Proof: By definition H(k1,k2) = 0 unless there exist kg = (c 1
0

) € J, such that

kikg'€e B and  koky! <(1) é) € B,

in which case

—1 —1 0 1 1 -1 -1 01
H (k1 ko) = xa (ki kg e (o (1 0))52 (ki kakg (1 0>>h(/<:0). (19)
From klko_l € B, we deduce that % =¢g € 7"O. From k:gko_l <(1) (1)> € B we deduce that

ﬁ—; = by € O. Since, for i € {1,2}, both ¢; and d; are in O, and at least one is in O it follows
that
di,co € OF, de €O and c; € 0. (20)

Hence ki € I, and ko € K \ I. Moreover

1 det ky * (0 1 —dethy
/{?1]{0_ :(chdgtko d1> and /{:Qko_ (1 0):(62d8tk0 02>.

Since n > ng and n > 1 we have uo(det ky) = 1, hence

—det k —det k
H(k1, ko) = py (di) o (72> = wi (d1)ws (72> : (21)
Cco Cc2
. 1 dgcgl
Conversely, if k1 € I, and ky € K \ I one can take kg = crd 1 . O
14

Remark 3.6. One can define h and compute the corresponding H for values of n smaller
than max(ni,n2,n3). However, H does not need to decompose as a product of functions
of one variable as in the above lemma, and the corresponding element in V; ® V5 will not
be a pure tensor. For example, if ng = 0 and n; = ne > 0, we can take n = 0 and put
Jo=(49) NGLy(F). Then by (19) and (20) one finds that for all ky € K and ks € K

wa (— det k2) . X X .
H (k1 ko) = {u1uz-7<d1cz—cld2> Jifdi € 0%, ¢ € 0% and dicy # c1d

0 , otherwise.

Now, we want to express H € V1 ® V5 in terms of the new vectors v1 and vy. Put

A ovg — By oy, if V4 is unramified,
vf =y , if V4 is special,
ATy , otherwise,
) (22)
vy — oy Yv2 , if Vo is unramified,
K\I . . .
and v5 = { v, \ , if V5 is special,

Vg , otherwise.
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Lemma 3.7. With the notations of (22), H is a non-zero multiple of vi ® vs.

Proof: Both H and v ® v are elements in Indgig (Xl X XQ), hence it is enough to compare

their restrictions to K x K. By Lemmas 2.1, 2.2, 2.3, 2.5 and 3.5 both restrictions are
supported by I, x (K \ I).
In order to avoid repetitions or cumbersome notations, we will only give the final result:

H = MAapa(—1)a* " (v @ v3) , where

N -1
N (1 — 5—:) , if V; is unramified, (23)
Z 1 , if V; is ramified.
If V; is unramified (i = 1,2), then ; # «; and \; # 0. O

Since by definition, for any v € V3, we have ¢(H ® v) = W(H)(v) = ®(h)(v), it follows
from Lemma 3.7 and (17) that for every ¢, 0 < i <n — ng:

P(v] ® v5 ® 7" v3) # 0. (24)

At this stage, we do have an explicit test vector, which is proj;(v]) ® proj,(vi) ® vs €
V1 ® Vo ® V3. By section 2.4.1 we have :

C . v — ﬁlvn_l-vl , if V1 is unramified,
proj; (vy) =

ATy , otherwise,
. e . (25)
vy — 0 y-vg , if Vo is unramified,

and proj,(v3) = .
V9 , otherwise.

In the next two sections we will simplify it and deduce Theorems 3 and 5.

3.4 Proof of Theorem 3
Suppose that ny = ny = 0, so that n = max(ni,n2,n3) = ng > 1. Then (24) yields:
6((7”-1}1 — By ) ® (7-v2 — ague) ® vg) # 0.
This expression can be simplified as follows. Consider for m > 0 the linear form:
UVm (@) =L(Y" 11 QU R e) € Vs.

As observed in the introduction, ¥y, is invariant by " K~~" N K = I,, hence vanishes
for m < n = cond(V3). Therefore, for n > 2:

f((V"'vl — By ) @ (y-vg — agwe) ® U3)

= —aotn(v3) + Prastn—1(v3) + Yu-1(y~"v3) = Bihn—o(y~" -v3)
= _a2¢n(v3)
= —al(y" v ® vy ®v3) # 0.

If n =1, only the two terms in the middle vanish and we obtain

al(y-v1 ® vg ®v3) + Bré(v1 ® y-v2 @ v3) # 0.
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(0 1 {0 1 1. (0 7 ]
Putw—<ﬂ_ 0>.Thenw7—<1 0>€Kand7 w—<7T O)ET(‘K. Hence:

Brl(vi @ y-va ®@v3) = Brh(yy tw-vy @ wy-vg @ w-v3)
= Blwl(ﬂ)f(V'm & vg ®w-1)3)

Therefore
E(’y-vl R v ® (w-v3 + 0610421)3)) # 0.

In particular
U(y-v; ®vg) # 0.

1

/—\/17 - . . . .
Since YKyNK =1, ¥(y-v1 ® vg) € V3 e , cannot vanish on the line V373 which is
generated by vz, and therefore

(y-v1 @va ®@u3) = ¥Y(y-v1 ®va)(vz) #0.

Hence, if n > 1, v™v1 ® vo Q@ v3 is a test vector. By symmetry v; ® v ve ® v3 is a test vector
too. This completes the proof of Theorem 3. ]

3.5 End of the proof of Theorem 5

By Theorem 3 we may assume that Vi or V5 is ramified.
If Vi and V4 are both ramified then Theorem 5 follows directly from (24) and (25).
If V; is unramified (24) yields:

5((7"'01 — Byt ) @ur @ vg) £ 0.

Since n; = 0 < ng, we are in case (a) of Theorem 5, hence ng < ng = n, which implies
-1 1—n3 _
T Ky N1y, = Ip,—1 and

-1
~[n3717w3

(v L @uue) eV = {0}.

Therefore £(7"3 1] ® vo ® v3) # 0, that is 7™ -v1 ® v ® v3 is a test vector.
Finally, if V5 is unramified (24) yields:

6(7”3*"1 01 @ (y-v2 — ague) @ 1)3) £ 0.
Since ny = 0 < nq, we are in case (a) of Theorem 5, hence ny < ng = n, which implies
—ni—1 ~[n3717w3_1
g(,yng M=l ® v9 ® .) <A = {0}
It follows that £(7"3 "™ .v; ® y-v9 @ v3) = £(Y ™M Ly @ vy @ v~ 1-v3) = 0.

Therefore £(y™ ™™ -v; ® v9 ® v3) # 0, that is Y71 .v; @ v9 ® v3 is a test vector.
The proof of Theorem 5 is now complete. U
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4 Proof of Theorem 4 when two of the representations are
supercuspidal

The proof in this case follows the original approach of Prasad [P, page 18]. We are indebted
to Paul Broussous who has first obtained and shared with us some of the results described
here.

Suppose given Vi, Vo and V3 as in theorem 4 and such that exactly two of the V;’s are
supercuspidal. The condition (1) forces the representation with the largest conductor V3 to
be supercuspidal and we may assume that V5 is supercuspidal too, whereas V; is minimal.

4.1 Kirillov model for supercuspidal representations

Suppose given an irreducible supercuspidal representation V of G with central character
w. Fix a non-trivial additive character ¢ on F' of conductor 0. We identify F' with the
unipotent subgroup N of B and denote by ¥ Kw the corresponding character of NF*. Then
the compactly induced representation indﬁ px (1 Ww) is naturally isomorphic to the space
C°(F™) of compactly supported locally constant functions on F* on which B acts as follows:

(6 ) 7@ =t (3) £(%)- (26)

It is well known (see [B, §4.7] that the restriction of V' to B is irreducible and isomorphic
to indf] px (¥ M w). In other terms there is an unique way to endow the latter with a G-action
making it isomorphic to V. Hence the action of B on C°(F*) defined in (26) can be uniquely
extended to G so that the resulting representation is isomorphic to V. It is called the Kirillov
model of V', with respect to .

The characteristic function of O is a new vector in the Kirillov model.

4.2 Choice of models

We first choose a model for V. Consider the character x; of B defined by xi1(§5) =
]%\_%wl (d). The claim of the theorem is invariant by unramified twists. By the minimality
assumption, after twisting V4 by an appropriate unramified character (and V3 by its inverse),
we can assume either that V; = Indg)ﬁ, or that Vj is the Steinberg representation. In both
cases Vj is the unique irreducible quotient of Indgxl.

Lemma 4.1. The natural inclusion off/vl n Indg(xl_l) induces an isomorphism:
Home(Vz @ V3, V1) = Hom(Ve ® Vi, Ind(x; )-

Proof: 'The lemma is clear if V; is a principal series. If V; is the Steinberg representation, the

condition €(V; ® Vo®V3) = 1 implies that Homg (Vo ® V3, C) = Homg(Va, V3) = 0. The lemma

then follows from the long exact sequence obtained by applying the functor Homg (V2 ® V3, e)

to the short exact sequence (7). O
By Frobenius reciprocity:

Homg (Ve @ V3, Ind%(x;")) = Homp(Va ® V4, Xl_léé).
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Let us choose Kirillov models for V5 (resp. V3) with respect to ¢ (resp. 1), so that vectors
in V5 and V3 are elements in C°(F*). For v/ € Vo and v” € V3 we define:

d(v,0v") = /FX v ()" (z)|z| T d* . (27)

Lemma 4.2. We have 0 # ® € Homp(Va ® ‘/3,)(1_15%).

Proof: Since v9 and vz are given by the characteristic function of O*, ®(vq,v3) = 1 # 0. By
(1), ® respects the central action. Since 1) = 1, ® is also equivariant with respect to the
action of V. Finally, for any a € F'*,

P((8 ?) e (g (1)) ) = /FX v'(am)v”(ax)|x|_1dxx = |a|®(v,v") =

1

= (x1'02) (§9) 2(v',0").

]
It follows then from [B, Proposition 4.5.5] that for any v ® v/ ® v" € V; @ V2 ® V3 we have
vy @v") = / v(k)®(k -V k- v")dk. (28)

K

4.3 The case of unequal conductors

In this subsection we assume that ng # ng, so ny < ng. Since Vj is minimal, it follows then
from (1) that ny < ns.
We first show that 737" .v; ® v ® vs is a test vector. Since ®(vg,v3) # 0 by lemma 4.2,

~Ing, . .
it follows that 0 # ((e ® v ® v3) € V} il , hence there exists 0 < i < ng — nq such that
(v v1 @ vy ®v3) # 0. Now, for every 0 < i < ng — Ny, we have
Ing—l - 'YiInl’Y_i N Ing
hence
i ’vln3—17W371
(A v @uee) € Vs = {0}.
Therefore £(7™ ™™ -v; ® va ® v3) # 0 as wanted.
Next, we show that v;®7™~"209®uvs is a test vector, assuming that £(e®+™3 ™ "20,®v3) # 0.
As in the previous paragraph, there exists 0 < i < ng—n;j such that £(y; @7 2vy®v3) # 0.
Moreover, for every 0 < i < ng — nj, we have
g1yt C A Ly TR e
hence o
g(,yi.,vl ®,yn27n3,02 ) c V’y ng—17 W3 _ {0}
Therefore ¢(v; ® ™72 -v9 ®@ v3) # 0 as wanted.
Finally, we prove the above assumption that /(e ® 7"37"2.v9 ® v3) # 0.
Recall that (.9, 3) - v; is sent by the 1som0rphlsm Vi ® w; ~1 >~ V; to a new vector in V.
Moreover by (2) any test vector in V1 ® V2 ® V3 yields a test vector in Vi ® Vo ® V3. By
applying lemma 4.2 to V; ® Vs ® V4 one gets

l(e® ( 92 o) 1)2®( 73 0)-1)3) # 0,
hence ¢(e ® v~ "2.99 ® v3) # 0. This completes the proof of theorem 4 in this case.
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4.4 The case of equal conductors

In this subsection we assume that no = ng, hence V; is a ramified principal series. Since V;
is minimal, it follows then from (1) that n; < ng. By (28) and lemma 2.2 we have

(Y™™ v @ g @ ug) = / v1(k)®(k - vo, k- v3)dk = o™ ™™ / (wiwaws)(d)dk # 0.

Ing Ing

where d is the lower right coeflicient of k.
Recall again that (.9, §) - v; is sent by the 1somorphlsm Vi ® w; ~1 >~V to a new vector in

‘71‘- Moreover by (2) any test vector in V1 ® Vg ® Vg yields a test vector in V; ® Vo ® V3, hence

£ wp ety M) (0 8) 0 ® (0 4) 02 ® (s B) - vs) #0,

™

£(v1 ® va @ v3) = wi ("7 )E (<7r9L3 DT (0 ) i @ ® ”3> # 0.

This completes the proof of Theorem 4. O

5 Test vectors in reducible induced representation

In this section, we generalize the local part of the paper [HS] by Michael Harris and Anthony
Scholl on trilinear forms and test vectors when some of the V;’s are reducible principal series
of G. The results of Harris and Scholl have as a global application the fact that a certain
subspace, constructed by Beilinson, in the motivic cohomology of the product of two modular
curves is a line. However, we are not going to follow them in this direction.

As in [HS], we will only consider reducible principal series having infinite dimensional
subspaces (see section 2.4.2), since for those having infinite dimensional quotients (see section
2.4.1) test vector can be obtained by preimage of test vectors in the quotient. It follows then
from [HS, Propositions 1.5, 1.6 and 1.7] that under the assumption (1):

dim Homg (Vi @ Vo ® V3,C) = 1. (29)

This is particularly interesting for Vi = V5 = V3 = Ind%(&é) since, according to Theorem
2(ii), the space Homg(St ® St ® St, C) vanishes.

Remark 5.1. The case when for 1 < i < 3, V; = Ind%((n; o det)d %), with 7172m3 non-trivial
(quadratic), is not contained explicitly in [HS], but can be handled as follows. Since

Homg <Indg((771772 o det)éé), Ind%((n3~to det)éfé)) =0,
it follows easily from the short exact sequence (7) for V3 that there is an isomorphism
Homg (Vi ® Va, V) = Home(Vi © Vo, St @ 15 1),

and the latter space is one dimensional by [HS, Proposition 1.6].

In [HS], Harris and Scholl also exhibit test vectors when the three representations involved
have a line of K-invariant vectors. The following proposition generalizes their results.
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Proposition 6. (i) Suppose that for 1 <i<3,V; = Indg((modet)éé), with n; unramified
character such that nin3n3 = 1. Then vE @ vl ® v is a test vector.

(i) Suppose that for 1 < i < 2, V; = Ind%((n; o det)é%), with n; unramified, and V3 is
irreducible such that n?n3ws = 1. Then v -vE @ vl @ vz and vE @y 0K @ v3 are test
vectors.

(i) Suppose that Vi = Ind%((n; o det)&é) with m1 unramified, and that Vo and V3 are ir-
reducible with n2wews = 1. Suppose that either Vo is non-supercuspidal and minimal,
or Vo and V3 are both supercuspidal with distinct conductors. Then exactly one of the
following holds:

(a) ng > ny and vf ® ™M T .y ® vs and 7"3-2}{( ® v9 ® v3 are both test vectors;
(b) n3 =no and , for every i, 0 <i < nz, ¥'-vff ® vy @ v3 is a test vector;

(¢) Va is special, n3 = 0, and vi @ ve ® v-v3 and y-v& @ vy ® v3 are both test vectors.

Remark 5.2. One should observe that the test vectors in Proposition 6 :

— do not belong to any proper subrepresentation of Vi ® Vo ® Vs;

— are fixed by larger open compact subgroups of G x G x GG, than those fixing the test
vectors in the irreducible subrepresentation of V; ® V ® V3 given by Theorem 4.

Proof: As explained in the introduction, twisting allows us to assume that 7, =7 = 1.
(i) If n3 = 1 this is [HS, Proposition 1.7]. Otherwise n3 is the unramified quadratic character
and we consider Prasad’s short exact sequence (10):

res

0 — ind$1 2% Vi @ V3 £ Tnd462 — 0. (30)
Since Homg(Indg5%,Indg((n3_1 o det)&fé)) = 0, one has :
Homg (V7 & Vs, 175) = Homg(indgl,/‘}g) = Homrp(1, \7;;&)

Denote by ¢ a generator of the latter. It follows from the proof of Lemma 3.4, where the
irreducibility of V3 is not used, only it’s smoothness, that ¢(vi) # 0 (the point is that by
(7), a basis of the Is-invariants in V3 is given by 7% vi for 0 <i < s).

It follows then by exactly the same argument as in the proof of [P, Theorem 5.10], that
vE @l @ vk is a test vector. The only point to check is that the denominator in the formula
displayed in the middle of [P, page 20] does not vanish.

(i) For ng = 0, this is [HS, Proposition 1.6].
For n3 > 1, again by Lemma 3.4 we have gp(v?) = 0 and the usual process, as in the proof
of Theorem 3, allows to prove that v -0 ® vi ® v3 and v ® v .0 ® v3 are test vector.

(iii)(a) If Vo and V3 are both supercuspidal the claim follows from lemma 4.1 by exactly
same arguments that allowed to prove theorem 4 in this case. So we can assume that V5 is
non-supercuspidal and minimal.
First we choose a model of V5 such that po is unramified and consider the exact sequence
(10):
0 — ind% (5 2x2) <% Vi ® Va 2= TndS(6x2) — 0.
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If Homg <Ind%(5x2), %) = 0, then we obtain isomorphisms
Homg <V1 ® Vo, V;) = Homg (indg(é_%xg), Vg) = Homrp (5%)(2, ‘73|/T)

and as in section 3 we obtain that vI* ® 7"37"2.05 ® v3 is a test vector.

If Homg (Indg(éxg),%) # 0, then n3 > ngo implies that there exists an unramified

character 7 such that dxo = (no det)&fé and 175 =n®St. So ng =0 and nz = 1. It is easy
then to check that the image of vf ® y-vo® € V; ® V3 by res is not a multiple of 1o det, hence

it yields a non zero element of fv;; Since v 'Ky N K = I, it is actually a non zero element of
STws! :
V3 s , hence vf & v-v2 @ v3 1s a test vector.

By choosing a model of V, with pf, unramified, and applying the above arguments to
1
Vo ® Ind%(62) one can prove that 7™ -0 ® vy ® v3 is a test vector.

(#3)(b) For n3 = 0, this is [HS, Proposition 1.5].

For ng > 1, assume first that Homg <Vg,f/§) # 0. Then the G-invariant trilinear form
on V; ® Vo ® V3 is obtained by composing projj ® id ® id with the natural pairing between
Vo ~ 17§ and V3. Since the natural pairing between /‘}g and V3 is non-zero on a couple of new
vectors, it follows that for all 4, ’yi-v{( ® v9 ® v3 is a test vector.

If Homg (Vg, 175) = 0, we apply the techniques of section 3 to Vo ® V3 ® Ind%(éé). There

are isomorphisms
Home (V2 ® V3 ® V4, C) = Homyp (X3XI2’ Indg(y%)w) — Homyp <X3X'2, ‘71\/T>

Taking a generator ¢ of the latter space, one has p(y%-vf) # 0 for all i, by adapting the proof
of Lemma 3.4 as above. Then exactly the same computations as in the proof of Theorem 4(b)
show that viv{( ® v9 ® vg is a test vector, for all 0 < i < ng.

(7ii)(c) This case follows from (iii)(a) applied to V} @ V3 @ V5. O
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