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ABSTRACT

In this paper, we consider a collaborative scheme in wireless sen-
sor networks where the multiple access protocol is a DS-CDMA
one. When the receiver is equipped with an antenna array, it has
been shown that efficient blind receivers can be derived using the
PARAFAC tensor model. In general, the parameters of the PARAFAC
model are fitted using an alternating least squares algorithm. Herein,
we consider the case where each receiver has a single antenna. There-
fore, by allowing collaboration in a predefined neighborhood, we de-
rive a distributed alternating least squares algorithm including some
average consensus steps.

1. INTRODUCTION

In recent years, the deployment of sensors for monitoring, collabo-
rative information processing and control has drawn a considerable
attention. In particular, wireless sensor networks that can operate
autonomously, i.e. without a fusion center collecting and process-
ing all measurements, exhibit desirable properties such asrobustness
against node failure [1]. The coordinated action of different sensors
requires local exchange of information. In this paper, we consider
the exchange of information between sensors grouped in two clus-
ters. The data are transmitted over multiple access fading channels.
Data are recovered in a totally blind way.

Multiple access protocols such as Time Division Multiple Ac-
cess (TDMA) can induce a latency that can be damaging for control
purposes for example. In this case, Direct-Sequence Code Division
Multiple Access (DS-CDMA) is certainly well indicated. In the last
decade, by exploiting several diversities, new signal processing tech-
niques based on tensor modeling have been developed. With a very
high efficiency, they allow the blind estimation of transmitted infor-
mation sequences [2, 3, 4, 5]. In general, these works are devoted to
communication systems with an antenna array at the receiver. How-
ever, many wireless devices are limited by size, hardware complexity
or other constraints to a single antenna. The powerful tensor based
methods cannot be applied for such nodes. In this paper, by resorting
to the idea of collaborative signal processing, we show how estimat-
ing the channel, symbols, and codes in a distributed way wheneach
node in the network has a single antenna. The received data samples
can be stored in a three-way array, or a third-order tensor, admitting
a PARAFAC model [6]. In general, the parameters of the PARAFAC
model are estimated using an Alternating Least Squares (ALS) algo-
rithm. In this paper, we derive a distributed version of ALS using av-
erage consensus iterations. Average consensus is an important prob-
lem in algorithm design for distributed computing. In its distributed

framework, it has been extensively studied in computer science (dis-
tributed agreement and synchronization problems for example). It is
is a central topic for load balancing (with divisible tasks)in parallel
computers and also has found application in distributed coordina-
tion of mobile autonomous agents, distributed data fusion in sensor
networks, and distributed estimation and control [7].
Notations: Vectors are written as boldface lower-case letters (a,b,· · · )
and matrices as boldface capitals (A,B,· · · ). Ai. andA.j denote re-
spectively theith row and thejth column of theI×J matrixA. AT

stands for the transpose ofA whereasAH stands for its complex
conjugate.diag(.) is the operator that forms a diagonal matrix from
its vector argument whereasvec(.) forms a vector by stacking the
columns of its matrix argument. ForX ∈ C

I×R, andY ∈ C
J×R,

the Khatri-Rao product, denoted by⊙, is defined as follows:

X ⊙ Y =











Ydiag(X1.)
Ydiag(X2.)

...
Ydiag(XI.)











∈ C
IJ×R. (1)

In the sequel, we will make use the properties of the Khatri-Rao
product and the Frobenius norm given below:

vec(Xdiag(z)YT ) = (Y ⊙ X)z, (2)

X ⊙Y = ΠΠΠ(Y ⊙ X), (3)

‖X‖2
F

= ‖ΠΠΠX‖2
F

, (4)

∥

∥
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X1 · · · XM

)∥
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2

F
=

M
∑

m=1

‖Xm‖2
F

, (5)

∥

∥

(

x1 · · · xM

)∥

∥

2

F
=

M
∑

m=1

‖xm‖2
2 , (6)

ΠΠΠ, a permutation matrix, andX being matrices with compatible di-
mensions.

2. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider a wireless sensor network composed of smart devices
that can sense, compute and exchange information with theirneigh-
bors. The sensors are grouped in two clusters A and B, where the
Q sensors in cluster A transmit their information to theK sensors
in clusterB using a synchronous DS-CDMA protocol through a flat
fading channel. Each of the sensors spreads its informationsequence
sn,q, n = 1, · · · , N , and encodes it using a code{cp,q} of lengthP
before transmission through an unknown channel characterized by a



fading gainak,q, for a transmission between theqth sensor of clus-
ter A and thekth sensor of cluster B. The baseband received signal
of each sensor is sampled at the chip rate and decomposed intoits
polyphase components. So, in the noiseless case, the signalreceived
by thekth sensor of cluster B, for thenth symbol and thepth chip is
given by:

xk,p,n =

Q
∑

q=1

ak,qcp,qsn,q . (7)

If a central node collects the received signal samplesxk,p,n, we can
build a third-order tensorX ∈ C

K×P×N from these samples. The
data collected from a given sensork can be cast into aP ×N matrix

Xk.. =







xk,1,1 · · · xk,1,N

...
. . .

...
xk,P,1 · · · xk,P,N






= Cdiag(Ak.)S

T (8)

that can be viewed as a slice ofX , whereA = [ak,q] ∈ C
K×Q,

C = [cp,q ] ∈ C
P×Q, andS = [sn,q] ∈ C

N×Q. In order to recover
the information symbolssn,q solely fromX ∈ C

K×P×N , we can
then make use of tensor-based signal processing methods developed
in the last decade [2].

2.1. PARAFAC model

From (7), one can note thatX admits a PARAFAC model [6], (also
called CANDECOMP [8]), in which the tensor is completely char-
acterized by the three loading, or factor, matricesA, C, and S.
PARAFAC is certainly the most popular tensor model that can be
found in the literature. That is surely due to its essential uniqueness,
which means that each factor matrix can be determined up to col-
umn scaling and permutation, i.e. two sets of matrices{A, C,S}

and{Ã, C̃, S̃} giving rise to the same tensorX are linked by the
following relationsÃ = AΠ∆Π∆Π∆A, C̃ = CΠ∆Π∆Π∆C , S̃ = SΠ∆Π∆Π∆S , with
∆∆∆A∆∆∆C∆∆∆S = IQ, whereΠΠΠ is aQ × Q permutation matrix whereas
∆∆∆A,∆∆∆C , and∆∆∆S areQ × Q diagonal matrices. A sufficient con-
dition for such an uniqueness, called Kruskal’s condition,states that
the PARAFAC decomposition (7) is essentially unique if [9, 2]

kA + kC + kS ≥ 2(Q + 1), (9)

wherekA denotes the Kruskal-rank, also called k-rank, ofA, i.e.
the greatest integerkA such that any set ofkA columns ofA is
independent. The rank and the Kruskal-rank ofA are linked by the
following inequalitykA ≤ rank(A).

Another feature of PARAFAC is to provide a simple link be-
tween the unfolded forms of a tensor and its factor matrices.Un-
folded forms of a tensor are obtained by concatenating tensor slices
along the same mode. Indeed, as defined in (8) for the first mode, we
can define slices along the second and the third modes respectively
as follows:

X.p. =







x1,p,1 · · · xK,p,1

...
. . .

...
x1,p,N · · · xK,p,N






= Sdiag(Cp.)A

T , (10)

X..n =







x1,1,n · · · x1,P,n

...
. . .

...
xK,1,n · · · xK,P,n






= Adiag(Sn.)C

T . (11)

So, using (1), the three vertically unfolded matrix representations for
X are respectively given by:

X1 =







X1..

...
XK..






= (A⊙ C)ST ∈ C

KP×N ,

X2 =







X.1.

...
X.P.






= (C ⊙ S)AT ∈ C

PN×K ,

X3 =







X..1

...
X..N






= (S ⊙ A)CT ∈ C

NK×P .

2.2. PARAFAC fitting using ALS

Given the tensorX , various algorithms can be used for estimating
the factor matricesA, C, andS (see [10] for a comparison of these
methods). The alternating leas squares (ALS) algorithm is the most
used one. It acts by alternately minimizing the cost functions in the
LS sense

J1 =
∥

∥

∥
X1 − (A ⊙ C)ST

∥

∥

∥

2

F
, (12)

J2 =
∥

∥

∥X2 − (C ⊙ S)AT
∥

∥

∥

2

F
, (13)

J3 =
∥

∥

∥
X3 − (S ⊙ A)CT

∥

∥

∥

2

F
. (14)

given initial approximations of two factor matrices,A
(0) andC

(0)

for instance.

2.3. Problem statement

As stated above, thekth sensor in cluster B receives data that can be
cast in the matrixXk... In order, to retrieve the informative symbol
matrix S, a bilinear decomposition is involved. Such a decomposi-
tion is generally non unique. Uniqueness of PARAFAC (a trilinear
decomposition) can be exploited by sending the matricesXk.. to a
central node where collected data can be cast into a tensorX . The
central node performs the PARAFAC decomposition ofX and then
send the estimated factor matrices, or at leastS to the sensors. Due to
the existence of a central node, such a scheme is particularly vulner-
able. Resorting to distributed estimation is then well suited. One can
imagine that sensors exchange their received data samples with their
neighbors. As a consequence, after such an information exchange,
from its own data matrix and those received from its neighbors, each
sensor can form a tensor, which is in fact a sub-tensor ofX . Unfor-
tunately, we cannot ensure that all sub-tensors inherit theuniqueness
property of the global tensor. Therefore, in such a scheme, some
sensors can obtain undesirable estimates, i.e. estimates that cannot
be linked to the actual factor matrices in a unique way. The purpose
of the following section is to derive a distributed estimation scheme,
preserving the PARAFAC uniqueness property.

3. DISTRIBUTED ALS ALGORITHM

Recently, a great effort has been devoted to the derivation of dis-
tributed estimation algorithms [7, 11, 12]. Most of them make use
of the consensus algorithm. In this framework, from the centralized
ALS, we derive a distributed ALS algorithm (D-ALS).



3.1. Consensus based estimation of the symbol matrixS

The symbol matrixS can be estimated by minimizing the cost func-
tionJ1, which can be rewritten as:

J1 =
∥

∥

∥
X1 − YS

T
∥

∥

∥

2

F
,

with Y = A ⊙ C. From the definition of the Khatri-Rao product
(1), we get:

Y =







Y1

...
YK






=







Cdiag(A1.)
...

Cdiag(AK.)






.

By minimizingJ1, givenY, we get

Ŝ
T =

(

Y
H
Y

)−1

Y
H
X1.

This solution can also be written as:

Ŝ
T =

(

1

K

K
∑

k=1

Y
H
k Yk

)−1(

1

K

K
∑

k=1

Y
H
k Xk..

)

. (15)

Note that the computation of (15) results on averaging localesti-
matesΓΓΓk(0) = Y

H
k Yk andΘΘΘk(0) = Y

H
k Xk... Such averaging

can be achieved using the consensus algorithm. We have to runtwo
average consensus in parallel so that

ΓΓΓk(t) →
1

K

K
∑

k=1

ΓΓΓk(0) =
1

K

K
∑

k=1

Y
H
k Yk,

ΘΘΘk(t) →
1

K

K
∑

k=1

ΘΘΘk(0) =
1

K

K
∑

k=1

Y
H
k Xk...

Therefore, the local estimate ofS
T , defined aŝST

k = ΓΓΓ−1
k (t)ΘΘΘk(t)

converges towardŝST . One can note that for the calculation of
ΓΓΓk(0) andΘΘΘk(0) all the sensors should have the same approxima-
tion of the loading matrixC, a non restrictive condition.

3.2. Consensus based estimation of the code matrixC

The code matrixC can be estimated by minimizingJ3, which can

be rewritten asJ3 =
∥

∥

∥
X3 − Z̃C

T
∥

∥

∥

2

F
, with Z̃ = (S ⊙ A). By

using the property (4) of the Frobenius norm, we also haveJ3 =
∥

∥ΠΠΠX3 − ZC
T
∥

∥

2

F
where

Z = A ⊙ S = ΠΠΠZ̃ =











Z1

Z2

...
ZK











,

with Zk = Sdiag(Ak.). Therefore, the minimization ofJ3 yields

Ĉ
T =

(

Z
H
Z

)−1

Z
HΠΠΠX3.

This solution can also be written as:

Ĉ
T =

(

1

K

K
∑

k=1

Z
H
k Zk

)−1(

1

K

K
∑

k=1

Z
H
k X

T
k..

)

. (16)

As previously, the computation of (16) results on averaginglocal
estimatesΛΛΛk(0) = Z

H
k Zk andΨΨΨk(0) = Z

H
k X

T
k... The averaging

process by means of the consensus algorithm yields:

ΛΛΛk(t) →
1

K

K
∑

k=1

ΛΛΛk(0) =
1

K

K
∑

k=1

Z
H
k Zk,

ΨΨΨk(t) →
1

K

K
∑

k=1

ΨΨΨk(0) =
1

K

K
∑

k=1

Z
H
k X

T
k...

Therefore, the local estimate ofC
T , defined aŝCT

k = ΛΛΛ−1
k (t)ΨΨΨk(t)

converges towardŝCT .

3.3. Estimation of the channel matrixA

The channel parameters are intrinsically local. Thereforethere is
no need to share these parameters between different sensors. In a
centralized scheme, the channel matrix is obtained by minimizing
J2. Knowing that the three cost functions are equivalent, we derive
the estimation of the channel parameter by minimizingJ1. We can
note that by using (5) and (6),J1 can also be written as

J1 =
∥

∥

∥
X

T
1 − S(A⊙ C)T

∥

∥

∥

2

F

=
∥

∥

∥

(

X
T
1.. − Sdiag(A1.)C

T · · ·

· · ·XT
K.. − Sdiag(AK.)C

T
)∥

∥

∥

2

F

=
K
∑

k=1

∥

∥

∥
X

T
k.. − Sdiag(Ak.)C

T
∥

∥

∥

2

F

=

K
∑

k=1

∥

∥

∥vec(XT
k..) − (C ⊙ S)AT

k.

∥

∥

∥

2

2
. (17)

As a consequence, by the code and the symbol matrices by theirlocal
estimates, the local channel parameters can be estimated asfollows:

Â
T
k. = (Ĉk ⊙ Ŝk)†vec(XT

k..). (18)

4. AVERAGE CONSENSUS ALGORITHM

Let G = {K, E} be an undirected connected graph representing
the communication graph between the collaborating sensors. K =
{1, · · · , K} andE denote respectively the node set and the edge set,
where each edge{i, j} ∈ E is an unordered pair of distinct nodes.
Let Rk(0) be a matrix assigned to nodek at timet = 0. The dis-
tributed average consensus problem consists in computing the aver-

age(1/K)
K
∑

k=1

Rk(0) at every node, via local communication and

computation on the graph. So, nodek carries out its update, at each
step, based on its local state and communication with its neighbors
Ki = {j|{i, j} ∈ E}.

There are several simple methods for distributed average con-
sensus. For example, each node can store a table of all initial node
values known at that time. At each step each pair of neighborsex-
change tables of initial values and update their tables. In this flood-
ing algorithm, all nodes know all initial values in a number of steps
equal to the diameter of the graph, at which point each can compute
the average [7]. In widely used average consensus algorithms, each



node updates itself by adding a weighted sum of differences between
neighboring node values and its own. In matrix form, we get:

Rk(t + 1) = Rk(t) +
∑

j∈Ki

wk,j (Rj(t) − Rk(t)) , (19)

wherewk,j is a weight associated with the edge{k, j}. In the sequel,
we assume that the weights are symmetric. Asymptotic convergence
is achieved by choosing for example uniform weights

wk,j = 1/dk j 6= k, {k, j} ∈ E , (20)

wheredi is the degree of nodei.

4.1. Distributed ALS algorithm using average consensus

The D-ALS algorithm is constituted by interlacing local ALSsteps
with consensus iterations. By considering perfect exchange during
consensus iterations, it is summarized below:

1. For k = 1, · · · , K, initialize Ĉk(0) = ΩΩΩ ∈ C
P×Q, with

ΩΩΩ chosen in a pre-definite set of possible code matrices, and
Âk.(0) ∈ C

1×Q with random values. Set the D-ALS itera-
tion i = 0, and select a numberT of consensus iterations.

2. Fork = 1, · · · , K, computeYk(i) = Ĉk(i)diag(Âk.(i)),
ΓΓΓk(i, 0) = Y

H
k (i)Yk(i), andΘΘΘk(i, 0) = Y

H
k (i)Xk...

3. Run the consensus algorithm forΓΓΓk andΩΩΩk

(a) Fort = 0, 1, · · · , T − 1,

ΓΓΓk(i, t+1) = ΓΓΓk(i, t)+
∑

j∈Kk

wk,j (ΓΓΓj(i, t) −ΓΓΓk(i, t))

ΘΘΘk(i, t+1) = ΘΘΘk(i, t)+
∑

j∈Kk

wk,j (ΘΘΘj(i, t) −ΘΘΘk(i, t))

(b) SetΓΓΓk(i) = ΓΓΓk(i, T ) andΩΩΩk(i) = ΩΩΩk(i, T ).

4. Incrementi

5. Compute the local estimates of the symbol matrixS

Ŝk(i) = ΓΓΓ−1
k (i − 1)ΩΩΩk(i − 1)

6. Fork = 1, · · · , K, computeZk(i) = Ŝk(i)diag(Âk.(i −
1)), ΛΛΛk(i, 0) = Z

H
k (i)Zk(i), andΨΨΨk(i, 0) = Z

H
k (i)XT

k...

7. Run the consensus algorithm forΛΛΛk andΨΨΨk

(a) Fort = 0, 1, · · · , T − 1,

ΛΛΛk(i, t+1) = ΛΛΛk(i, t)+
∑

j∈Kk

wk,j (ΛΛΛj(i, t) −ΛΛΛk(i, t))

ΨΨΨk(i, t+1) = ΨΨΨk(i, t)+
∑

j∈Kk

wk,j (ΨΨΨj(i, t) −ΨΨΨk(i, t))

(b) SetΛΛΛk(i) = ΛΛΛk(i, T ) andΨΨΨk(i) = ΨΨΨk(i, T ).

8. Compute the local estimates of the code matrixC

Ĉk(i) = ΛΛΛ−1
k (i)ΨΨΨk(i)

9. Compute the local estimates of the channel parameters

Â
T
k.(i) =

(

Ĉk(i) ⊙ Ŝk(i)
)†

vec(XT
k..)

10. Return to step 2 until a convergence criterion is reached.

5. SIMULATION RESULTS

In this section, we present some results obtained by simulating a
network withQ = 3, 4 andK = 9. The informative symbols were
randomly generated from a QPSK alphabet. The code sequences
were orthogonal binary sequences taking values from{−1, 1}. We
considered three scenarios for the connection topology between the
sensors in cluster B: a ring (all the sensors have a connectivity degree
equals to3), a grid (the connectivity degree are:4, 6, 4, 6, 9, 6, 4, 6, 4),
and a modified grid (3, 6, 4, 6, 7, 6, 4, 6, 4). We varied the number of
consensus iterations between1 and3. We denoted by D-ALS(i,j),
the D-ALS corresponding to theith topology of connection with
j consensus iterations. For the average consensus iterations, the
weights were computed using the uniform scheme [13]. The results
below are averaged values over100 independent Monte-Carlo runs.
The performance is evaluated according to the NMSE (Normalized

Mean Square Error), given by:(1/K)
K
∑

k=1

‖Xk..−Ĉkdiag(Âk)ŜT

k ‖
2

F

‖Xk..‖
2

F

.

We considered 1000 iterations of ALS. For both ALS and D-ALS,
the convergence rate were greater than90%. In Fig. 1, we depict
the histogram corresponding to the number of iterations required for
the algorithm convergence. We can note that the behavior of the
ALS and D-ALS approaches are similar except for the case where
the topology of connection in cluster B corresponds to a ring(We
used three consensus iterations).
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Fig. 1. Histogram of the number of iterations for convergence in the
ALS (top left) and D-ALS cases: ring (top right), grid (bottom left),
modified grid (bottom right).

In Figures 2 and 3, the NMSE (mean and median values) is plot-
ted as a function of the number of iterations. It can be seen that the
connection topology impacts the convergence of the D-ALS algo-
rithm. Connection topologies with greater connectivity degree have
convergence properties (speed and final value) similar to those ob-
tained with ALS. In Fig. 4, we note that even for a single con-
sensus iteration the D-ALS algorithm converges towards thesame
value than ALS. However, the convergence speed is lower. It can be
accelerated by increasing the number of consensus iterations.
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Fig. 2. Mean NMSE forQ = 3 and three consensus iterations.
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Fig. 3. Median NMSE forQ = 3 and three consensus iterations.
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Fig. 4. Median NMSE forQ = 4 and different number of consensus
iterations.

6. CONCLUSION

We have derived a distributed version of the ALS algorithm gener-
ally used for fitting PARAFAC or other tensor models. Resorting to
a distributed scheme is of particularly importance when thereceiver
nodes are not equipped with an antenna array, as usually in wireless
sensor networks. The proposed algorithm interleaves ALS iterations
with average consensus ones. Our first evaluations of the proposed
algorithm, show that for graphs with a strong connectivity asingle
consensus iteration can be sufficient for convergence. Future works
include evaluation in noisy environments, optimality of consensus
weighting matrix, asynchrony, and a deeper convergence analysis.

7. REFERENCES

[1] R. Olfati-Saber, A. Fax, and R. Murray, “Consensus and coop-
eration in networked multi-agent systems,”Proc. of the IEEE,
vol. 95, no. 1, pp. 215–233, Jan. 2007.

[2] N.D. Sidiropoulos, G.B. Giannakis, and R. Bro, “Blind
PARAFAC receivers for DS-CDMA systems,”IEEE Trans. Sig-
nal Process., vol. 48, no. 3, pp. 810–823, March 2000.

[3] A.L.F. de Almeida, G. Favier, and J.C.M. Mota, “PARAFAC-
based unified tensor modeling for wireless communication sys-
tems with application to blind multiuser equalization,”Signal
Proc., vol. 87, no. 2, pp. 337–351, Feb. 2007.

[4] D. Nion and L. De Lathauwer, “An enhanced line search scheme
for complex-valued tensor decompositions. Application inDS-
CDMA,” Signal Proc., vol. 88, no. 3, pp. 749–755, March 2008.

[5] A.Y. Kibangou and G. Favier, “Blind equalization of nonlinear
channels using tensor decompositions with code/space/time di-
versities,”Signal Proc., vol. 89, no. 2, pp. 133–143, Feb. 2009.

[6] R.A. Harshman, “Foundation of the PARAFAC procedure:
models and conditions for an ”explanatory” multimodal factor
analysis,”UCLA work. papers phon., vol. 16, pp. 1–84, 1970.

[7] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,”J. Parallel Distrib. Comput.,
vol. 67, pp. 33–46, 2007.

[8] J.D. Caroll and J.J. Chang, “Analysis of individual differ-
ences in multidimensional scaling via an N-way generalization
of ”Eckart-Young” decomposition,”Psychometrika, vol. 35, pp.
283–319, 1970.

[9] J.B. Kruskal, “Three-way arrays: rank and uniqueness oftrilin-
ear decompositions, with application to arithmetic complexity
and statistics,”Lin. Algebra Appl., vol. 18, pp. 95–138, 1977.

[10] G. Tomasi and R. Bro, “A comparison of algorithms for fitting
the PARAFAC model,”Comp. Stat. Data Anal., vol. 50, no. 7,
pp. 1700–1734, 2006.

[11] G. Mateos, I.D. Schizas, and G.B. Giannakis, “Consensus-
based distributed least-mean square algorithm using wireless ad
hoc networks,” inProc. Allerton Conf., UIUC, Illinois, USA,
2007, pp. 568–574.

[12] S. Bolognani, S. Del Favero, L. Schenato, and D. Varagnolo,
“Distributed sensor calibration and least-square parameter iden-
tification in WSNs using consensus algorithms,” inProc. Aller-
ton Conf., UIUC, Illinois, USA, 2008, pp. 1191–1198.

[13] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsik-
lis, “Convergence in multiagent coordination, consensus,and
flocking,” in Proc. IEEE CDC/ECC, Seville, Spain, Dec. 2005,
pp. 2996–3000.


