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ABSTRACT

In this paper, we consider a collaborative scheme in wigsetesn-
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framework, it has been extensively studied in computenseiédis-
tributed agreement and synchronization problems for el@mip is
is a central topic for load balancing (with divisible tasksparallel

sor networks where the multiple access protocol is a DS-CDMAyomputers and also has found application in distributeddioa-
one. When the receiver is equipped with an antenna arragsit h tjon of mobile autonomous agents, distributed data fusiosensor

been shown that efficient blind receivers can be derivedguie
PARAFAC tensor model. In general, the parameters of the PRRA
model are fitted using an alternating least squares algoriderein,
we consider the case where each receiver has a single anfédrara-
fore, by allowing collaboration in a predefined neighborhowe de-
rive a distributed alternating least squares algorithruoiog some
average consensus steps.

1. INTRODUCTION

In recent years, the deployment of sensors for monitorintjalco-
rative information processing and control has drawn a clamable
attention. In particular, wireless sensor networks that aperate
autonomously, i.e. without a fusion center collecting anacpss-
ing all measurements, exhibit desirable properties suchlastness
against node failure [1]. The coordinated action of différgensors
requires local exchange of information. In this paper, wesater
the exchange of information between sensors grouped in g c
ters. The data are transmitted over multiple access fadiagrels.
Data are recovered in a totally blind way.

Multiple access protocols such as Time Division Multiple-Ac
cess (TDMA) can induce a latency that can be damaging foralont

purposes for example. In this case, Direct-Sequence Codsidi
Multiple Access (DS-CDMA) is certainly well indicated. |he last
decade, by exploiting several diversities, new signal @ssing tech-

niques based on tensor modeling have been developed. Witya v

high efficiency, they allow the blind estimation of transdt infor-
mation sequences [2, 3, 4, 5]. In general, these works axgeto
communication systems with an antenna array at the recéiosv-
ever, many wireless devices are limited by size, hardwargbeaxity
or other constraints to a single antenna. The powerful telnased
methods cannot be applied for such nodes. In this papershbytieg
to the idea of collaborative signal processing, we show hetmat-
ing the channel, symbols, and codes in a distributed way \elheh
node in the network has a single antenna. The received daf@es

networks, and distributed estimation and control [7].

Notations: Vectors are written as boldface lower-case lettarb( - -)
and matrices as boldface capita®s,B,- - - ). A;. andA ; denote re-
spectively thath row and thejth column of thel x J matrix A. AT
stands for the transpose &f whereasA stands for its complex
conjugatediag(.) is the operator that forms a diagonal matrix from
its vector argument whereagc(.) forms a vector by stacking the
columns of its matrix argument. Fa& € C/*#, andY e C/*F,
the Khatri-Rao product, denoted by, is defined as follows:

Ydiag(Xi.)
Ydiag(Xa.)

XoY= e Cl/xR,

_ M
Ydiag(X1.)

In the sequel, we will make use the properties of the Khaao-R
product and the Frobenius norm given below:

vee(Xdiag(z)Y") = (Y ©X)z, (2)
XoY = IYoX), 3)
X% = |IX|%, 4)
M
(X X )|n = Y IXel:, (5)
m];l
(% v )fn = Y lxml3 (6)

II, a permutation matrix, anX being matrices with compatible di-
mensions.

2. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider a wireless sensor network composed of saddes
that can sense, compute and exchange information withribaih-

can be stored in a three-way array, or a third-order tengonjtéing
a PARAFAC model [6]. In general, the parameters of the PARBFA
model are estimated using an Alternating Least Squares YAlg8-

bors. The sensors are grouped in two clusters A and B, where th
@ sensors in cluster A transmit their information to tResensors
in clusterB using a synchronous DS-CDMA protocol through a flat

rithm. In this paper, we derive a distributed version of Alsthg av-
erage consensus iterations. Average consensus is an anpprob-
lem in algorithm design for distributed computing. In itstdibuted

fading channel. Each of the sensors spreads its informs¢iqunence
Sn,g»n =1,---, N, and encodes it using a codle, , } of length P
before transmission through an unknown channel charaetkthy a



fading gainas,q, for a transmission between tith sensor of clus-

So, using (1), the three vertically unfolded matrix repreagons for

ter A and thekth sensor of cluster B. The baseband received signalt’ are respectively given by:

of each sensor is sampled at the chip rate and decomposeitsinto
polyphase components. So, in the noiseless case, the sigealed
by thekth sensor of cluster B, for theth symbol and theth chip is
given by:

Q

Lk,pn = E Qk,qCp,qSn,q-
q=1

@)

If a central node collects the received signal samples.., we can

build a third-order tensat’ € CEX*P*¥ from these samples. The

data collected from a given sengocan be cast into & x N matrix
Tk,1,1 Tk,1,N

Xk..

_ = Cdiag(A)S™ (8)

Tk,P,1 Tk,P,N

that can be viewed as a slice af, where A = [a; ] € CK*€,
C = [cp,q] € CP*Q, andS = [s,,4] € CV*?. In order to recover
the information symbols,, , solely fromx € CK**P*¥ e can
then make use of tensor-based signal processing methoel®pes
in the last decade [2].

2.1. PARAFAC model

From (7), one can note that admits a PARAFAC model [6], (also
called CANDECOMP [8]), in which the tensor is completely cha
acterized by the three loading, or factor, matricks C, and S.
PARAFAC is certainly the most popular tensor model that can b
found in the literature. That is surely due to its essentigdueness,

which means that each factor matrix can be determined uplto co

umn scaling and permutation, i.e. two sets of matrifAs C, S}
and{A, C, S} giving rise to the same tensar are linked by the
following relationsA = AIIA 4, C = CHA¢, S = SIIAg, with
A AcAs =1, wherell is a@Q x @ permutation matrix whereas
A4 Ac, andAgs are@ x Q diagonal matrices. A sufficient con-
dition for such an uniqueness, called Kruskal's conditiiates that
the PARAFAC decomposition (7) is essentially unique if [P, 2

ka +kc+ks >2(Q + 1), 9)

whereka denotes the Kruskal-rank, also called k-rank,of i.e.

the greatest integeta such that any set ofa columns ofA is

independent. The rank and the Kruskal-rankAo&re linked by the
following inequalityka < rank(A).

Another feature of PARAFAC is to provide a simple link be-
tween the unfolded forms of a tensor and its factor matridés-
folded forms of a tensor are obtained by concatenating tesi®es
along the same mode. Indeed, as defined in (8) for the first masle
can define slices along the second and the third modes regbgct
as follows:

Z1,p,1 TK,p,1

X, = = Sdiag(C,.)A", (10)
ZT1,p,N TK,p,N
T1,1,n ZT1,P,n

X .= : : = Adiag(S,.)C". (11)
TK,1,n TK,Pn

Xi..

X, = —(A®C)ST e CKP*N,
Xk..
X1

Xy = : =(CoS)AT e CPN*K
X.p.
X1

X3 = : =(SoA)C" eCVE,
X N

2.2. PARAFAC fitting using ALS

Given the tensoft’, various algorithms can be used for estimating
the factor matriced\, C, andS (see [10] for a comparison of these
methods). The alternating leas squares (ALS) algorithrhdsost
used one. It acts by alternately minimizing the cost fumim the
LS sense

5 = HX1—(A®C)STH2F, (12)
J = HXz—(C@S)ATHQF, (13)
Tz = HX‘;*(S@A)CTH; (14)

given initial approximations of two factor matricea,(”) and C®
for instance.

2.3. Problem statement

As stated above, thieth sensor in cluster B receives data that can be
cast in the matriXX;. . In order, to retrieve the informative symbol
matrix S, a bilinear decomposition is involved. Such a decomposi-
tion is generally non unique. Unigueness of PARAFAC (artelr
decomposition) can be exploited by sending the matKgs to a
central node where collected data can be cast into a teYisdthe
central node performs the PARAFAC decompositionmtoéind then
send the estimated factor matrices, or at I&8astthe sensors. Due to
the existence of a central node, such a scheme is partigularier-
able. Resorting to distributed estimation is then welleiitOne can
imagine that sensors exchange their received data samiptethair
neighbors. As a consequence, after such an informatioraegeh
from its own data matrix and those received from its neighpeach
sensor can form a tensor, which is in fact a sub-tensdr .ob/nfor-
tunately, we cannot ensure that all sub-tensors inheritiigueness
property of the global tensor. Therefore, in such a schemmes
sensors can obtain undesirable estimates, i.e. estintetesannot

be linked to the actual factor matrices in a unique way. Thpqse

of the following section is to derive a distributed estimatscheme,
preserving the PARAFAC uniqueness property.

3. DISTRIBUTED ALS ALGORITHM

Recently, a great effort has been devoted to the derivatiatise
tributed estimation algorithms [7, 11, 12]. Most of them malse
of the consensus algorithm. In this framework, from the idized
ALS, we derive a distributed ALS algorithm (D-ALS).



3.1. Consensus based estimation of the symbol matr As previously, the computation of (16) results on averadowl
estimates\ (0) = Z Z;, and¥,(0) = ZX{ . The averaging

The symbol matrixS can be estimated by minimizing the cost func- process by means of the consensus algorithm yields:

tion J1, which can be rewritten as:

9 K K
T =[x -vsT| Ak(t)a%ZAk(O): LN 707,
k=1 k=1

=l

with Y = A ® C. From the definition of the Khatri-Rao product

(1), we get: K K
— %Z\pk(o) = % >z X
Y. Cdiag(A)) k=1 k=1
Y= : = : - Therefore, the local estimate 6f7, defined a<C} = A" (£) Wy (t)
Yk Cdiag(Ak.) converges toward€'” .

By minimizing 71, givenY, we get
3.3. Estimation of the channel matrix A

& H H
S’ = (Y Y) Y Xy The channel parameters are intrinsically local. Therefbeze is
. . . no need to share these parameters between different serisas
This solution can also be written as: centralized scheme, the channel matrix is obtained by niivig

J>. Knowing that the three cost functions are equivalent, wévee

K -1 K
_ (1 H 1 H the estimation of the channel parameter by minimizihg We can
- ( Z Y, Yk) (K Z Y X’““) - (19 note that by using (5) and (6)/; can also be written as

k=1
Note that the computation of (15) results on averaging |lesat T = HXT —S(A® C)TH2
matesT';,(0) = Y7 Y, and©,(0) = Y/ X,.. Such averaging ! F
can be achieved using the consensus algorithm. We have tavoun _ H (XT _ Sdiag(AL)CT
average consensus in parallel so that h

XK — Sdiag(Ak.)C )H

K K
rk(t)e%Zrk(o):%ZYfYk, K ,
=1 = - ¥ fo - Sdiag(AkA)CTH
) K 1 I . k=1 F
—_ = — ., K
e(t) — K;ek(o) K;Yk X, _ ZHvec(xg_)_(CQS)AﬂE. 17)
k=1

Therefore, the local estimate 8f , defined asS] = ', ' (t)©,(¢)

converges toward$”. One can note that for the calculation of Asaconsequence, by the code and the symbol matrices bydtair
T (0) and©,(0) all the sensors should have the same approximaestimates, the local channel parameters can be estimatelitbass:
tion of the loading matri>C, a non restrictive condition. R R .

AT = (Cr © S vec(X]). (18)
3.2. Consensus based estimation of the code mati

The code matrixC can be estimated by minimizings, which can 4. AVERAGE CONSENSUS ALGORITHM

be rewritten as/; = HX3 -zc’ H WithZ = (SO A). By |etg — {K, £} be an undirected connected graph representing
using the property (4) of the Frobenius norm, we also hdye=  the communication graph between the collaborating sengors-

[IX5 — ZC" HF where {1,---, K} and€ denote respectively the node set and the edge set,
where each edgéi, j} € £ is an unordered pair of distinct nodes.
VA Let R (0) be a matrix assigned to nodeat timet = 0. The dis-
Zo tributed average consensus problem consists in computengwvier-

Z=A0S=NZ= ] . -
: age(1l/K) Z R (0) at every node, via local communication and
Zx computatlon on the graph. So, noklearries out its update, at each
step, based on its local state and communication with itghixeirs
Ki={jl{i,j} € €}.
There are several simple methods for distributed average co
sensus. For example, each node can store a table of all ol
] ] ] values known at that time. At each step each pair of neighéors
This solution can also be written as: change tables of initial values and update their tableshimftood-
ing algorithm, all nodes know all initial values in a numbéisteps

K -1 K ) . r
— (i Z foZk> (% Z Zz’fo) . @6) equal to the diameter of the graph, at which point each carpaten

with Z;, = Sdiag(Ay.). Therefore, the minimization qQf’; yields

T = (z”z)f1 ZHTIX .

the average [7]. In widely used average consensus alg@jteath



node updates itself by adding a weighted sum of differenetsden
neighboring node values and its own. In matrix form, we get:

Ri(t+1) =R(t) + > wi; (R;(t) —Ri(t),  (19)

JEK;

wherew;, ; is a weight associated with the edge j}. In the sequel,
we assume that the weights are symmetric. Asymptotic cgevee
is achieved by choosing for example uniform weights

j#k Ak, j}€E,

whered; is the degree of node

wy,; = 1/dg (20)

4.1. Distributed ALS algorithm using average consensus

The D-ALS algorithm is constituted by interlacing local Als&ps
with consensus iterations. By considering perfect exchahging
consensus iterations, it is summarized below:

1. Fork = 1,--- K, initialize C(0) = Q € C’*?, with

5. SIMULATION RESULTS

In this section, we present some results obtained by simglat
network with@Q = 3,4 and K = 9. The informative symbols were
randomly generated from a QPSK alphabet. The code sequences
were orthogonal binary sequences taking values ffer, 1}. We
considered three scenarios for the connection topologydwsat the
sensors in cluster B: a ring (all the sensors have a conitgategree
equals tad), a grid (the connectivity degree ark:6, 4,6, 9, 6, 4, 6, 4),
and a modified gridg; 6, 4, 6, 7, 6, 4, 6, 4). We varied the number of
consensus iterations betweemnd3. We denoted by D-ALS(j),
the D-ALS corresponding to thé&h topology of connection with
j consensus iterations. For the average consensus itexatioa
weights were computed using the uniform scheme [13]. Thates
below are averaged values ou&0 independent Monte-Carlo runs.
The performance is evaluated according to the NMSE (Noredli

K —C iag(A ST 2
Mean Square Error), given byl /K) [P~ Crdies(Ar)Si [
k=1

X5 113

Q chosen in a pre-definite set of possible code matrices, ane considered 1000 iterations of ALS. For both ALS and D-ALS,

A} (0) € C'*? with random values. Set the D-ALS itera-
tions = 0, and select a numb@r of consensus iterations.

2. Fork = 1,--- , K, computeY (i) = Cx(i)diag(Ayx (i),
T4(3,0) = Y& (i)Y, (i), and®y (i,0) = Y& (1) X. .

3. Run the consensus algorithm 10§ and€2y,
(@ Fort=0,1,---,T—1,

Ty (i, t+1) = Ti(i,t)+ Y wp; (T5(i,t) — (i, 1))
JERK

O (i, t+1) = O (i,t)+ Y we; (6;(i, 1) — Ok(i, 1))
JEKL
(b) Setl’, (7,) =TI (i, T) anko(z) = Qk(l, T)
4. Increment
5. Compute the local estimates of the symbol marix

Sk(i) =Ty '(i — 1)Q(i — 1)

6. Fork = 1,---, K, computeZ (i) = Sy (i)diag(Ay (i —
1)), Ax(3,0) = ZH (i) Z (i), and¥y, (i, 0) = Z (i) XF .

7. Run the consensus algorithm fo and¥y,

(@ Fort=0,1,---,T—1,
Ap(i t+1) = Ak (i, )+ > wiy (Ay(ist) — Ak(i, 1))
JEK
Wy (i, t4+1) = Wy (i, )+ Y wiy (¥5(3,8) — Ui (i, 1))
JEKL

(b) SetAy (i) = Ax(i,T) andWy, (i) = ¥ (i, T).
8. Compute the local estimates of the code mattix
Cr(d) = Ay (1) (i)
9. Compute the local estimates of the channel parameters
AL() = (Gyo Sk(i))T vee(XT )

10. Return to step 2 until a convergence criterion is reached

the convergence rate were greater thafc. In Fig. 1, we depict
the histogram corresponding to the number of iterationsired for

the algorithm convergence. We can note that the behavioheof t
ALS and D-ALS approaches are similar except for the case avher
the topology of connection in cluster B corresponds to a (\vg
used three consensus iterations).
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Fig. 1. Histogram of the number of iterations for convergence @ th
ALS (top left) and D-ALS cases: ring (top right), grid (battdeft),
modified grid (bottom right).

In Figures 2 and 3, the NMSE (mean and median values) is plot-
ted as a function of the number of iterations. It can be seattlie
connection topology impacts the convergence of the D-Alg®-al
rithm. Connection topologies with greater connectivitgide have
convergence properties (speed and final value) similardsettob-
tained with ALS. In Fig. 4, we note that even for a single con-
sensus iteration the D-ALS algorithm converges towardsstme
value than ALS. However, the convergence speed is loweanlte
accelerated by increasing the number of consensus itesatio
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Fig. 2. Mean NMSE forQ = 3 and three consensus iterations.
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Fig. 3. Median NMSE for@Q = 3 and three consensus iterations.
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Fig. 4. Median NMSE forQ) = 4 and different number of consensus
iterations.

6. CONCLUSION

We have derived a distributed version of the ALS algorithmege
ally used for fitting PARAFAC or other tensor models. Resuytio
a distributed scheme is of particularly importance whenrgoeiver
nodes are not equipped with an antenna array, as usuallyéhess
sensor networks. The proposed algorithm interleaves Agrations
with average consensus ones. Our first evaluations of thzopeal
algorithm, show that for graphs with a strong connectivitsiragle
consensus iteration can be sufficient for convergence.ré&uarks
include evaluation in noisy environments, optimality ohsensus
weighting matrix, asynchrony, and a deeper convergendgsasa
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