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Abstract 

In this paper, we describe two series of experiments that examine audiovisual face-to-face interaction 
between naive human viewers and either a human interlocutor or a virtual conversational agent. The 
main objective is to analyze the interplay between speech activity and mutual gaze patterns during 
mediated face-to-face interactions. We first quantify the impact of deictic gaze patterns of our agent. We 
further aim at refining our experimental knowledge on mutual gaze patterns during human face-to-face 
interaction by using new technological devices such as non invasive eye trackers and pinhole cameras, 
and at quantifying the impact of a selection of cognitive states and communicative functions on recorded 
gaze patterns. 
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1. INTRODUCTION 
Building Embodied Conversational Agents (ECA) able to engage in convincing face-to-face 
conversation with a human partner is certainly one of the most challenging Turing tests one can imagine 
(Cassell, Sullivan et al. 2000). The challenge is far more complex than the experimental conditions of 
previous Loebner Prize competitions2 where dialog is conducted via textual information: the ECA 
should not only convince the human partner that the linguistic and paralinguistic contents of the answers 
that are generated in response to human inquiries have been produced by a human intelligence, but also 
generate the proper multimodal signals that should fool human perception. We are however very close 
to being able to conduct such experiments (see for example the joint Interspeech/Loebner Speech & 
Intelligence Competition 2009). Automatic learning techniques that model perception/action loops at 
various levels of human-human interaction are surely key technologies for building convincing 
conversational agents. George, the talkative bot that won the Loebner Prize 2005, learned its 
conversation skills from the interactions it had with visitors to the Jabberwacky website, and through 
chats with its creator, Mr Carpenter. Similarly the first Turing test involving a non interactive virtual 
speaker (Geiger, Ezzat et al. 2003) has demonstrated that image-based facial animation techniques are 
able to generate and render convincing face and head movements. 
Combining a pertinent dialog management capability with convincing videorealistic animation is still 
not sufficient to produce a real sense of presence (Riva, Davide et al. 2003). The sense of “being there” 
requires basic components of situated face-to-face communication such as mixed initiative, back 
channeling, turn taking management, etc. The interaction requires a detailed scene analysis and a control 

                                                 
1 Now with Carmeq GmbH, Carnotstr. 4 D-10587 Berlin  

2 The Loebner Prize for artificial intelligence awards each year the computer program that delivers the most human-like responses to 
questions provided by a panel of judges over a computer terminal. 
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loop that knows about the rules of social interaction: the analysis and comprehension of an embodied 
interaction is deeply grounded in our senses and actuators and we have strong expectations about how 
action-perception loops are encoded by multimodal signals. 
We describe here part of our efforts for designing virtual ECAs that are sensitive to the environment 
(virtual and real) in which they interact with human partners. We focus on the control of eye gaze and 
blinks. We describe the multiple scientific and technological challenges we face, the solutions that have 
been proposed in the literature and the ones we have implemented and tested. 

2. EYE GAZE AND HUMAN-COMPUTER INTERACTION 

2.1  Face-to-face interaction, attention and deixis 
Eye gaze is an essential component of face-to-face interaction. Eyes constitute a very special stimulus in 
a visual scene. Gaze and eye-contact are important cues for the development of social activity and 
speech acquisition (Carpenter and Tomasello 2000). In conversation, gaze is involved in the regulation 
of turn taking, accentuation and organization of discourse (Kendon 1967; Argyle and Cook 1976). We 
are also very sensitive to the gaze of others when directed towards objects of interest within or even 
outside our field of view, notably when interpreting facial expressions (Pourtois, Sander et al. 2004). In 
the Posner cueing paradigm (Posner 1980; Posner and Peterson 1990), observers’ performance in 
detecting a target is typically better in trials in which the target is presented at the location indicated by a 
former visual cue than in trials in which the target appears at an uncued location (Driver, Davis et al. 
1999). Langton et al. (1999; 2000) have also shown that observers react more quickly when the cue is an 
oriented face than when it is an arrow or when the target itself changes. 
Eye gaze is thus capable of attracting visual attention whereas visual features associated with the objects 
themselves such as highlighting or blinking attract less attention, unless they convey important 
information for the recognition of a scene. Perceptual salience is thus not the only determinant of 
interest. The cognitive demand of a task has a striking impact on the human audiovisual analysis of 
scenes and their interpretation. Yarbus (1967) showed notably that eye gaze patterns are influenced by 
the instructions given to the observer during the examination of pictures. Similarly Vatikiotis-Bateson et 
al. (1998) showed that perceivers’ eye gaze patterns during audiovisual speech perception are influenced 
both by environmental conditions (audio signal-to-noise ratio) and by the recognition task (identification 
of phonetic segments vs. the sentence’s modality). Buchan et al. (Buchan, Paré et al. 2007) replicated 
this experiment comparing judgments on speech and emotion. 

2.2 Interacting with humanoids and avatars 
The faculty of interpreting others’ eye gaze patterns is thus crucial for humans and machines interacting 
with humans. For the “theory of mind” (TOM) as described by Baron-Cohen (Premack and Woodruff 
1978), the perception of gaze direction is an important element of the set of abilities that allow an 
individual, based on the observation of the actions and behavior, to infer the hidden mental states of 
another. Several TOM characterizations have been proposed (Baron-Cohen, Leslie et al. 1985; Leslie 
1994). Baron-Cohen proposes an Eye Direction Detector (EDD) and an Intentionality Detector (ID) as 
basic components of a Shared Attention Mechanism (SAM) that is essential to bootstrapping the TOM. 
The actual implementation of these modules requires the coordination of a large number of perceptual, 
sensorimotor, attentional, and cognitive processes.  
Scassellati (2001) notably applied the “theory of mind” concept to humanoid robots developing an 
“embodied theory of mind” to link high-level cognitive skills to the low-level motor and perceptual 
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abilities of such a robot. The low-level motor abilities included for example coordinated eye, head and 
arm movements for pointing. The low-level perceptual abilities consisted in essentially detection of 
salient textures and motion for monitoring pointing and visual attention. This work still inspires much 
research on humanoid robots where complex behaviors emerge from interaction with the environment 
and users despite the simple tasks achieved by the robot such as expressing empathy for Kismet 
(Breazeal 2000) or following turn-taking for Robita (Matsusaka, Tojo et al. 2003; Fujie, Fukushima et 
al. 2005). 
 

Environment 

Multimodal gestural score Multimodal perceptual score

Cognitive 
state 

of self 

SettingsEstimated profile 
of the other(s) Profile of self 

Content Process Reaction Estimated cognitive 
state 

of the other(s) 

ECA 

 

Figure 1: ECA-Human interaction scheme. The environment hosts human partner(s). The perception-
action loops are regulated by three main layers: reactive, process and content (Thórisson 2002). The 
parameters of these modules are set according to the computed ECA profile that may vary according to 
social needs as put forward in the Communication Accommodation Theory (CAT, Giles and Clair 
1979). Note that a mutual belief space is built by converging representations of estimated and actual 
profiles and cognitive states of the interlocutors. The profile can for example instruct the content 
module to approach or recede from the phonological space of the interlocutor. 

3. INTERACTING WITH AN ECA 
Most ECAs derive their “theory of mind” from high-level linguistic information gathered during the 
dialog. These virtual agents are generally not equipped with the means to derive meaning from the 
implicitly and explicitly communicational gestures of a human interlocutor and are also not generally 
equipped to generate such gestures for communication purposes. For example, in the study by Os et al 
(Os, Boves et al. 2005) an ECA is used as a virtual advisor. It gives advices, instructions and some back 
channel information but is not equipped with sophisticated scene analysis and computes his gesturing 
only on the basis of dialogic information. The failure of the ECA to gain users’ satisfaction was 
attributed to the poor performance of individual components of the system (speech recognition, 
audiovisual synthesis, etc). Another possible way of improving users’ commitment is via grounding. 
Eye gaze of ECAs can be generated without grounding these gestures in the scene by simply 
reproducing statistical properties of saccadic eye movements (Lee, Badler et al. 2002; Peters, Pelachaud 
et al. 2005). Visual attention models have however been developed aiming at reproducing eye 
movement patterns of subjects viewing natural scenes. Notably, Itti et al. (2003) propose a model that 
couples physical scene analysis and control of eye gaze of a virtual ECA while preserving cognitive 
permeability of the analysis strategy thanks to the use of a so-called pertinence map. Our visual attention 
model (Picot, Bailly et al. 2007) incorporates the identification of potential objects of interest around 
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each fixation point: in particular a face recognition module has been added to elicit multimodal 
behaviour adapted to face-to-face communication. 
In situations where context-aware face-to-face interaction is possible, an ECA should be able to give 
direct and indirect signs that it actually knows about where the interaction is taking place, who is its 
interlocutor and what service it may provide to the user considering the given environment. By 
signalling its ability to interpret human behavior, the system encourages the interlocutor to exhibit the 
appropriate natural activity. Such a complex face-to-face interaction requires intensive collaboration 
between an elaborate scene analysis and the specification of the task to be performed in order to 
generate appropriate and convincing actions of the ECA (see Figure 1). 
Our perspective is to develop an embodied TOM for an ECA that will link high-level cognitive skills to 
the low-level motor and perceptual abilities and to demonstrate that such a TOM will provide the 
information system with enhanced user satisfaction and efficient interaction. The motor abilities are 
principally extended towards speech communication i.e. adapting content and speech style to pragmatic 
needs (e.g. confidentiality), speaker (notably age and possible communication handicaps) and 
environmental conditions (e.g. noise). If the use of a virtual talking head instead of a humanoid robot 
limits physical actions, it extends the domain of interaction to the virtual world. The user and the ECA 
can thus employ both physical and virtual objects – such as icons surrounding the virtual talking head – 
in their interaction. 
The two experiments described here analyze gaze behaviour during live face-to-face dialogs between 
naive subjects and one reference interlocutor. Our research strategy is in fact to analyse and model the 
adaptive behaviour of a few reference subjects when interacting with various subjects and in various 
conditions: ECA control and embodiment are data-driven and aim at reproducing behaviour of their 
human alter egos. In experiment I, the reference interlocutor is an ECA: we evaluate here its ability to 
elicit mutual visual attention with its human interlocutors. This experiment focuses on deictic gestures 
attracting attention to common objects in the mutual shared visual field. Despite the rough control 
strategy of the gaze patterns, we show that subjects benefit significantly from these deictic gestures and 
– as for the case of priming by human gaze - can not avoid using them. Experiment II focuses on eye 
contact and mutual attention. The reference interlocutor here is the human speaker who donated his 
voice and appearance to the ECA so that control strategies can be fed back into the ECA, notably to 
better handle the interplay between deixis and mutual attention in future replications of experiment I. 
Both experiments build on previous experimental work performed mainly with non interactive videos. 
They should be considered as a further step towards the automatic measurement and comprehensive 
modelling of multimodal behaviour of human and virtual agents during live face-to-face interactions. 

4. EXPERIMENT I. ECA THAT ATTRACTS ATTENTION  
The first experiment (Bailly, Elisei et al. 2005; Raidt, Bailly et al. 2006) involves a face-to-face 
interaction between an embodied conversational agent (ECA) and several other naïve human 
interlocutors. The ECA is embodied as a virtual talking head obtained by cloning one target human 
speaker named HL in the following. This female speaker is also the target speaker of Experiment II. We 
test here the impact of assistance given by the ECA on task-oriented interactions. A card game was 
designed during which the multimodal deictic gestures of the ECA aims at attracting attention of 
subjects towards regions of interest that are either appropriate or inappropriate for the given task. 
Despite the fact that subjects were explicitly instructed not to take ECA behaviors into account (as in 
Langton, Watt et al. 2000), we show that most of the subjects are drastically influenced by ECA hints 
and that the benefit in case of appropriate gestures – compared with inappropriate or no ECA gestures – 
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is quite large: 10% of the task duration in case of deictic head and gaze movements, up to 20% when 
these deictic gestures are accompanied with a spoken instruction. 

 
Figure 2 : Face-to-face interaction platform with an ECA (left) that provides deictic hints (see Figure 3) 
to a subject whose gaze is monitored. The hints help - or disturb - the subject in playing a virtual card 
game consisting of playing as fast as possible a card (white card here at the bottom of the screen) on 
one of eight possible positions (coloured boxes) according to different conditions. 

4.1 Experimental Setup 

4.1.1 Hardware 

Sensors. The core element for the experiments described here is a Tobii 1750 eye-tracker3 realized as a 
standard-looking flat screen that discretely embeds infrared lights and a camera. It allows us to detect, at 
up to 60Hz4, the eye gaze of the user whose head can move and rotate freely in a fairly unrestricted 3D 
volume having the shape of a 40cm edge cube centered at 50cm away from the screen. To ensure the 
required accuracy of tracking each user must follow a short calibration procedure. During interaction 
with the system, the user sits in front of the eye-tracker where our 3D talking head faces him, as shown 
in Figure 2. Hardware and software allow the user to interact with the system using speech, eye gaze, 
mouse and keyboard. Additional data inputs (video camera, speech recognition, etc.) are available for 
other experimental setups. 

Actuators. The visual representation of our ECA is implemented as the cloned 3D appearance and 
articulation gestures of a real human (Revéret, Bailly et al. 2000; Bailly, Bérar et al. 2003), (see Figure 
2). The eye gaze can be controlled independently to look at 2D objects on the screen or spots in the real 
world outside the screen. Ocular vergence is controlled and provides a crucial cue for inferring spatial 
cognition. The virtual neck is also articulated and head movements accompany the eye-gaze movements. 
Standard graphic hardware with 3D acceleration allows real-time rendering of the talking head on the 
screen. The ECA also uses speech: audiovisual utterances can either be synthesized from text input or 
mimic pre-recorded human stimuli. We expect that the proper control of these capabilities will enable 
the ECA to maintain mutual attention - by appropriate eye saccades towards the user or his/her points of 
interest – and actively draw the user's attention. 

                                                 
3 Please consult http://www.tobii.se/ for technical details. 
4 The eye-tracker delivers in fact asynchronous gaze data with time stamps at a maximum rate of 60Hz. Gaze data are only sent when estimated gaze 

displacements exceed a fixed threshold. We post-process date off-line for further analysis by eliminating outliners and up-sampling at a fixed frequency of 
60Hz. 
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4.1.2 Software: scripting multimedia scenarios 

The interaction during the virtual card game is described by an event-based language. This language 
allows the simple description and modification of multimedia scenarios. Compiled scenarios allow 
accurate recording of the multimodal input/output events and their timing. 
In our event-based language a finite state machine (FSM) describes each scenario as a series of states 
with pre-conditions and post-actions. Each input device emits events according to user action and an 
internal model of the interaction space. Triggerable areas on the screen, such as selectable icons or areas 
of the talking head are defined and surveyed by the eye tracker. Each time the user looks at such a zone, 
the system posts new events, such as “entering zone” and “leaving zone” and may emit additional “zone 
fixation duration” events. The FSM is called each time an event is generated or updated. 

As the user progresses in the scenario, the FSM specifies the events that can trigger entry into each state. 
Pre-conditions consist of conjunctions or successions of expected multimodal events as for instance 
recognized keywords, mouse clicks or displacements, eye movements or gaze directed to active objects. 
Each event is time-stamped. Pre-conditions can include tests on intervals between time-stamps of 
events. This allows, for example, association of speech items in terms of words that are identified as a 
sub product of speech recognition with a certain focus of attention. Post-actions typically consist of the 
generation of multimodal events. Time-stamps of these events can be used to delay their actual 
instantiation in the future (watchdogs for example). Post-actions can also generate phantom events, to 
simulate multimodal input, to share information or to trigger pre-conditions for following states of the 
FSM. 

4.2 The interaction scenario 

4.2.1 Design of the card game 

To follow up on the findings of Langton and Driver about the special ability of human faces and eyes to 
direct attention, we designed an interaction scenario where an ECA should direct the user’s attention in 
a complex virtual scene. Our aim was to investigate the effect of deictic gestures on the user’s 
performance during a search and retrieval task. We chose an on-screen pair matching game, where the 
user is asked to locate the correct target position of a played card. 

The card game consists in pairing cards. Eight target cards placed on the sides of the screen are turned 
over (with visible face up) once the played card initially positioned at the lower middle of the screen is 
selected with a mouse click (see Figure 3). The target cards are numbered from 1 to 8 and the play card 
has a random number between 1 and 8. The play card has then to be laid over one of the target cards 
with the same digit. To avoid memory effects, the target cards are shuffled before each turn. The target 
position is thus chosen randomly but uniformly distributed amongst the eight possibilities provided that 
the number of cycles is a multiple of eight. This should compensate for possible influences of the 
different positions on the users’ performance. The background color of the cards is fixed for each 
position. 

4.2.2 Experimental conditions 

In absence of assistance from the ECA, users have to explore most of the possible target cards to find 
the good match. A condition with no ECA is thus used as reference. When the ECA is displayed, we 
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instruct the subjects that the deictic behavior of the ECA is unpredictable and that they should not pay 
attention to it as in Langton et al (2000). 

We tested different experimental conditions corresponding to different levels of assistance and help by 
the ECA that is displayed in the center of the screen when present. Screenshots of the game interface are 
given in Figure 3. The ECA can utter spoken commands and indicate directions with a rapid eye saccade 
combined with a slower head turn. 

General information explaining the task is given as text on the screen at the beginning of the experiment. 
The user is instructed to play the chosen card on the target position as fast as possible but no strategy is 
suggested. 

Each experimental condition has 24 measurement cycles. It is preceded by three training cycles for the 
subjects to become accustomed with the task and experimental conditions. The characteristics of the 
upcoming condition are described as text informing the user about the expected gaze behavior of the 
clone.  

4.2.3 Data acquisition 

For the evaluation of the experiments, the time-to-complete (TC) and the gaze behavior have been 
monitored. TC was measured as the time span between the first mouse click on the played card and the 
click on the correct target position. As the card game was displayed on the monitor with embedded eye-
tracking, the visual focus of the user on the screen was recorded. We thus computed which objects on 
the screen were looked at and how much time users spent on them. Possible objects were the eight cards 
on the sides and the face of the ECA. Eye gaze towards the played card was not monitored. 

At the end of the experiment, which lasted about 15 minutes, participants were asked to answer a 
questionnaire. They notably had to indicate which condition they considered as the easiest to perform 
and which condition seemed the fastest. 

4.2.4 Data processing 

Time-to-complete. Before evaluating TC, extreme outliers (distances from median > 5 times inter 
quartile range) were detected and deleted from the remaining valid data. Such outliers may be due to the 
fact that a two screen setup was chosen for the experiment. The mouse pointer may leave the screen on 
one side to appear on the other screen. This happened occasionally when users overshot the target card 
which made them loose time while moving the mouse pointer back into view. The distribution of TC is 
log-normal. We thus analyse the logarithms of TC within each experiment. 

Number of cards inspected. The number of possible target positions looked at while searching for the 
correct target position was determined to analyse the search strategy of the subjects. In order to verify 
the reliability of the data collected by the eye tracker, the percentage of time reliably monitored by the 
eye tracker during the duration of the search of a respective cycle was calculated. A threshold of 95% 
was chosen to consider blinks and classify measured data as valid. If this requirement was not fulfilled, 
the data of this cycle was just discarded. If less than 60% of all cycles of a condition were not valid, the 
data of this condition were entirely discarded. We characterized the log-normal distribution of the 
number of cards inspected during a game. ANOVA and T-test analysis was then performed on valid data 
and significant differences between pairs of distributions are indicated in figures with stars. 
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4.3 Run A: does our clone have cues to direct social attention? 

This first run aimed at evaluating the capacity of our ECA to attract users’ attention using facial cues 
and quantifying the impact of good and bad hints on the users’ performance. This work builds on the 
psychophysical experiments on visual priming of Langton et al. (Langton and Bruce 1999; Langton, 
Watt et al. 2000) using photographs of faces looking at different parts of the screen. In Langton’s 
experiments, the impact on reaction time was more effective for the vertical dimension and remained 
small (10ms). We show here that these findings are confirmed by more realistic conditions and that 
much larger benefits can be expected. 

4.3.1 Conditions 

The first series of experiments consisted of four different conditions, screenshots of which are displayed 
in Figure 3. For condition 1, no ECA was displayed. For condition 2, the ECA was visible and provided 
bad hints: it indicated randomly one of the non-matching positions with a facial gesture as soon as the 
user selected the played card. In condition 3, it indicated the correct target position. In condition 4, cards 
remained upside down and the correct visual cues provided by the ECA were the only ones to find the 
correct target position without a try-and-error strategy. 
In all conditions where the ECA is displayed it encouraged the user with randomly chosen utterances 
alternating between motivation and congratulation after each turn. The utterances were generated off-
line to avoid computation delays. 
We had strong predictions about the data to be collected. Corresponding to the design of the experiment 
we expected a negative influence on subjects’ performance when the clone provided misleading cues 
and a positive influence when it provided good hints. The condition where no clone was displayed 
served as a reference. From the fourth condition, we expected to measure the precision with which the 
gaze direction of the ECA could be perceived. 

Ten users (six male and four female) participated in the first series of experiments. Participants ranged 
from 23 to 33 years of age and most were students. All regularly used a computer mouse and none 
reported vision problems. The dominant eye was the right eye for all but one subject. Each user had to 
play the game with the four experimental conditions as described above. Order of conditions was 
counterbalanced among subjects. 

 

 
Cond. 1: no clone Cond. 2: wrong cues Cond. 3: correct cues Cond. 4: numbers hidden

Figure 3: Experimental conditions: The experiment was divided into four conditions with different levels 
of help and guidance by the clone. 

 * (p<10-3) 
* (p<10-4) 
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Figure 4: Mean TC (left) and number of cards inspected (right) for our four conditions and all subjects 
pooled. Each bar represents 10 x 24 = 240 card pairings. An ANOVA analysis distinguishes between 3 
groups of conditions with highly significant differences for number of cards inspected (p<0.05). 

4.3.2 Results 
Errors. Most errors occur during condition 4 where users could only rely on the gestures of the ECA. In 
total there are 34 cases in which subjects clicked on a wrong card before finding the correct target 
position (15% error), although one subject accomplished the task without any errors. This indicates that 
users have difficulties to precisely interpret the gaze direction of the ECA. Nevertheless, all of these 
errors occurred between neighbouring cards. Since the average number of inspected cards is close to 1 
(see Figure 4), we consider the assistance given by the facial gestures as sufficient as long as the user 
has additional information to localize the target position as it is the case in the other conditions. 
Time-to-Complete. There is no significant effect for conditions on mean TC for this run (F(3,36)=1; 
p>0.39). Conditions 1 and 2 lead in fact to similar results: giving no cues has almost the same effects as 
giving bad cues (see Figure 4): subjects just ignored consciously the behaviour of the ECA. 
Number of cards inspected. Conditions have a strong effect on this parameter (F(3,36)=36.96; p<0.001). 
Pair-wise T-tests reveal a clear advantage for condition 3 over conditions 1 and 2. On average users 
indeed inspected 0.5 fewer cards with a correct gaze than with a wrong or absent deictic gaze (see 
Figure 4). We interpret this as a clear decrease of cognitive load since less cognitive resources are used 
for matching cards. 
Questionnaire. 4 of the 10 subjects think they were faster with the helpful assistance of the ECA and 
preferred this condition to play the card game. 

4.4 Run B : impact of concomitant speech on deixis? 
This experiment aims at evaluating the benefit of multimodal deixis in drawing user’s attention using 
facial cues together with a spoken instruction. 

4.4.1 Conditions 
This second series of experiments consists likewise of four different conditions. As a major difference 
with Run A, the head and gaze movements of the clone are accompanied by the uttering of the 
demonstrative adverb “là!” (engl.: “there!”). The signal duration is 150ms. Condition 1 with no clone 
was replicated for reference. In conditions 2 (wrong cues) and 3 (good cues) speech onset is initiated 
150ms after the onset of the deictic gestures: this delay corresponds to the average duration of the eye 
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saccade towards the target position implemented in our ECA. All other rewarding utterances are now 
omitted. Condition 4 of experiment I is replaced by a condition with correct hints, where an additional 
delay of 300 ms was introduced between the gestural and the following acoustic deictic gestures in order 
to comply with data on speech and gesture coordination (Castiello, Paulignan et al. 1991). We expect 
this natural coordination to enhance the ability of the ECA to attract user attention.  
Fourteen users (ten male and four female) participated in this experiment. They range from 21 to 48 
years of age and most are students. All regularly use a computer mouse and none reported vision 
problems. The dominant eye is the right eye for 8 subjects and the left eye for the other 6 subjects. As in 
Run A, order of presentations is counterbalanced. 
 

 
Figure 5. Statistical analysis of TC and Number of cards inspected for each condition. Each bar 

represents 15 x 24 = 360 card pairings. * denotes significant differences. 

4.4.2 Results 
The average number of cards was greatly reduced for conditions 1, 2 and 3 in comparison with Run A 
while the average TC for the reference condition 1 was increased by 230 ms: a turn lasts on average 1.72 
s for Run A vs. 1.95 s for Run B. We hypothesize that the spoken instruction forced subjects to take a 
first decision rapidly while the perception of the verbal prompt increased the response time. 
Time-to-Complete. Conditions have now a strong effect on this parameter (F(3,52)=3.76; p<0.02). The 
difference between TC for conditions 1 and 2 vs. 3 and 4 (see Figure 5) is now significant (p<0.007). 
The detailed analysis of TC reveals a clear advantage for 7 of 14 subjects for condition 3 (with correct 
cues) vs. condition 2 (with misleading cues), and for 8 of 14 subjects compared to condition 1 (without 
the ECA). These users now gain a substantial amount of almost 400 milliseconds (∼20% of the mean 
duration of a game) at each turn when the target position was correctly cued. 
Number of cards inspected. Conditions have a clear effect on this parameter (F(3,52)=17.8; p<0.001). 
Note that all subjects inspect on average 2 cards. Pair-wise T-test analysis reveals however a clear 
advantage (p<0.002) for condition 3 and 4 (correct cues) over conditions 1 and 2 (none or bad cues). On 
average users indeed inspect 0.7 fewer cards with a correct gaze than with a wrong or absent deictic 
gaze (see Figure 5). No clear tendency can be reported when considering influence of delay on 
performance. 
Questionnaire. 11 of the 14 subjects estimated that they were quickest when correct hints were given by 
the ECA. Most of the subjects declared that they glance a lot at the ECA giving correct hints and discard 

* (p<7.10-3) * (p<2.10-8) 
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gestures in condition 2 but that these cues have poor influence on their speed. The movements of the 
ECA were judged realistic. 

4.5 Discussion 
When considering the number of cards inspected and the number of wrong selections in condition 4 of 
Run A, the current control and rendering of deictic gestures of the ECA are sufficient for subjects to 
localize targets, as long as there is information available at the target position to make the final decision. 
Without such additional information the gestures of the ECA are sometimes not precise enough to 
discriminate between close neighboring objects. Apart from the limitations of 3D rendering on a 2D 
screen, this may be due to the synchronization between gaze and head orientation that are not yet 
derived from empirical data. An additional limitation is the poor rendering of the facial deformations 
around the eyes of the ECA when eye gaze deviates from head direction, e.g. eyelids lower when gaze 
direction is down. We have developed an eyelid model (Elisei, Bailly et al. 2007) that may resolve this 
problem. Further runs of this experiment will be used to evaluate the perceptual pertinence of these 
objective enhancements of the ECA control and embodiment. 
Several subjects complained of being disturbed by rewarding utterances in Run A. Therefore these 
utterances do not contribute to maintain attention and increase naturalness of the interaction. A more 
appropriate feedback should be short and clear according to the instruction given to subjects to react 
quickly. The use of speech to complement gaze and head deixis in Run B demonstrates that the 
pertinence of the ECA behavior has a significant impact on subjects’ performance. 
The constraints on speech-gaze synchronization seem quite lax. Kaur et al. (Kaur, Tremaine et al. 2003) 
have shown that “the fixation that best identifies the object to be moved occurs, on average, 630 ms 
before speech onset with a range of 150 to 1200 ms for individual subjects”. Note however that these 
large time lags concern fixations triggering natural planning of deictic gestures… not the final intended 
communicative gestures. Multimodal perceptual binding is known to be flexible and binding window is 
known to narrow with age (Lewkowicz 1996). Apparent performance – such as measured by reaction 
times – may be nevertheless quite insensitive to multimodal asynchrony while regions that mediates this 
binding may be more or less activated depending on time shifts (Miller and D’Esposito 2005). 
Additional experiments should be conducted to have a better insight on the impact of multimodal 
synchrony on cognitive load. 
The results of Run B show that the pairing performance could still be improved using multimodal 
deixis: imperative deixis using hand-finger pointing (Rochet-Capellan, Laboissière et al. 2008) is 
expected to further augment this benefit. A more important finding is the reduced number of cards 
inspected. The majority of participants managed to complete the task looking at significantly less cards 
when the ECA was providing helpful assistance. This means that even if they do not improve their 
speed, the search process is more efficient and probably more relaxed. We conclude that ECA assistance 
diminishes the cognitive load of the subjects. The answers to the questionnaire confirm this finding as 
the positive ratings for naturalness of the ECA and the preference for the condition where it is providing 
correct hints are revealed more clearly for Run B compared with Run A. 
The experimental scenario presented here could likely be further improved by displaying more objects 
on the screen and using smaller digits. This should enhance the benefit of ECA assistance since this 
would require a closer examination of the objects and increase the number of objects to check in order to 
find the correct one without the assistance of the ECA. However, we consider the results with the 
current implementation as sufficient confirmation of our assumptions and encouraging motivation to 
study further possibilities to enhance the capabilities of the ECA. 
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5. EXPERIMENT II. MEDIATED FACE-TO-FACE COMMUNICATION 
In Experiment I, subjects triggered saccades towards the ECA mainly to register gaze direction. Spoken 
instructions were very short and did not provide complementary information to gaze. During more 
complex interactions involving - or not - common objects of interest, interlocutors spend most of the 
time looking at each other. Gaze patterns during conversation are complex and depend on multiple 
factors such as cognitive load, cognitive and emotional state, turn, topic, role in the conversation as well 
as social factors (Argyle and Cook 1976; Goodwin 1980; Haddington 2002). Experiment II was 
designed to collect precise data on mutual gaze in order to build and parameterize a model that could 
supplement our ECA with effective visual attention. 
The second experiment thus involves a mediated face-to-face conversation between our target human 
speaker and several naïve human interlocutors. The face-to-face conversation is performed through a set 
of two screens, pinhole cameras and microphone/headphone pairs (see Figure 6). Videos, audio signals 
and gaze estimates are synchronized and recorded on both sides. Thanks to a very precise measurement 
of the gaze direction with eye trackers and image-based estimation of the position of eyes and mouth of 
the respective scrutinized video, we are able to distinguish between four regions of interest on the face 
(see Figure 7) as well as to detect saccades, fixations and blinks. 
In order to be able to build an empirical model of visual attention, the number of parameters has to be 
minimized and number of observations maximized. We thus focused on simple pre-scripted dialogs 
where most of the factors influencing gaze behavior listed above are either kept constant or implicitly 
controlled: interlocutors are involved in a sentence repeating game where each speaker either instructs 
and listens or listens and repeats. Roles (initiator vs. respondent) are swapped at the middle of the game. 
We show that gaze patterns and blinking rate are influenced by the respective roles and cognitive states 
of the interlocutors during mediated audiovisual face-to-face conversations. 

   

Figure 6. Mediated face-to-face conversation (from Raidt 2008). People sit in two different rooms and 
dialog through couples of cameras, screens, microphones and loudspeakers. Gaze of both interlocutors 
are monitored by two eye-trackers embedded in the TFT screens. Note that pinhole cameras and seats 
are positioned at the beginning of the interaction so that the cameras coincide with the top of the nose of 
each partner’s face. 
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Figure 7 : Analyzing gaze patterns after compensating for head movements. The four regions of fixation 
on the face: left and right eye, mouth and face. The later label is assigned to fixations towards the mid-
sagittal plane above the nose. Regions are determined a posteriori by the experimenters by positioning 
dispersion ellipsis on fixation points gathered for each experiment after compensating for head 
movements. 

5.1 Experimental Setup 

The experimental platform is displayed in Figure 6. It gives interlocutors the impression of facing each 
other across a table. A small pinhole camera placed at the center of a computer screen films the subject 
facing the screen. The video image is displayed on the screen facing the interlocutor, which is equipped 
symmetrically. Prior to each recording session, the screens function as inversed mirrors so that subjects 
see their own video image in order to adjust their rest position. We determined that eye contact is 
optimal when the middle of the eyebrows of the video image coincides with the position of the camera 
on the screen. A camera located above (vs. below) the screen would generate the impression of seeing 
the interlocutor from above (vs. below). This would make direct eye contact impossible (Chen 2002). 
The audio signals are exchanged via microphones and earphones. Video and audio signals as well as 
gaze directions are recorded during the interaction. For this purpose we use computer screens by Tobii 
Technology ® with embedded eye trackers. At the beginning of the recording a calibration phase writes 
a synchronization time stamp to the data streams. This particular setting (mediated interaction, 2D 
displays, non intrusive eye tracking) limits the working space but is fully compatible with our target 
application of an interactive ECA displayed on a screen. 
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Figure 8: Time chart of the “predefined” cognitive states for one elementary exchange of the one-line 
interaction scenario. Prephonation starts at the first lip opening gesture preceding the utterance (usually 
300ms before any speech is produced). This cognitive state has been added for analyzing the particular 
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gaze patterns at speech onsets. “Reading” starts at the first fixation downwards. “Else” states are added 
between each turn if necessary. 

5.2 Scenario 

One subject (initiator) reads and utters a sentence that the other subject (respondent) should repeat 
immediately in a single attempt. The initiator is instructed to face the screen when uttering a sentence. 
Roles of initiator and respondent are subsequently swapped. Semantically Unpredictable Sentences 
(SUS) (Benoît, Grice et al. 1996) are used in this sentence-repeating game to force the respondent to be 
highly attentive to the audiovisual signal. With this rather restricted scenario of interaction we try to 
isolate the main elements of face-to-face interaction and elicit mutual attention. The scenario imposes a 
clear chaining of cognitive states and roles (see Figure 8) that avoids complex negotiation of turn taking 
and eases state-dependent gaze analysis. We study inter- and intra-subject variability. In each dyad the 
reference target interlocutor HL interacts with subjects of the same social status, cultural background 
and sex (French female senior researcher). We recall here that HL is the human model of the talking 
head used in experiment I. 
Each session consists of an on-line interaction using the full experimental setup (Run A) followed by a 
faked interaction (Run B). Subjects were instructed that the experiment was designed to quantify the 
impact of visual feedback on visiophony. For Run B, the reference speaker HL was supposed to 
participate as instruction giver with live audio but without visual feedback. HL was thus expected to 
have ungrounded gaze behavior. But the subjects are in fact confronted with an audiovisual stimulus 
videotaped during a previous Run A by HL with one female colleague. Most subjects do not notice that 
the Run B stimuli are pre-recorded. 
Each subject thus experiences three tasks of ten sentences each: (1) repeating SUS given on-line by the 
target speaker; (2) uttering SUS and checking the correct repetition by the target speaker; (3) repeating 
SUS given off-line by the target speaker. 

5.3 Data processing & labeling 

Fixations were identified in the raw gaze data using a dispersion-based algorithm (Salvucci and 
Goldberg 2000). An affine transform was applied to compensate for head movements determined by a 
robust feature point tracker. All fixations were projected back on a reference head position (see Figure 
7). Dispersion ellipses for all regions of interest (ROI) were positioned a posteriori by the experimenter 
on this reference image given all fixation points produced during the interaction. Fixations were then 
assigned to one to these ROIs: 'left eye’, ‘right eye’, ‘mouth’, ‘face’ (other parts than the three preceding 
ones such as nose), ‘other’ (when a fixation hits other parts of the screen) or ‘none’.  
The speech data were aligned with the phonetic transcriptions of SUS sentences and sessions were 
further segmented into sequences assigned to six different cognitive states (CS): ‘pre-phonation’, 
‘speaking’, ‘listening’, ‘reading’, ‘waiting’ and ‘thinking’ (see Figure 8). 

We also distinguish role (initiator vs. respondent). Differences are, for example, expected to occur 
during listening. When listening to the respondent, the initiator already knows the linguistic content of 
the SUS he has just pronounced, and visual benefit provided by lip reading is not as crucial for speech 
comprehension as it is when the message is not known. Note also that some states depend on role: 
‘waiting’ is the CS of the respondent while the initiator is reading or the CS of the initiator after having 
uttered a sentence while waiting until the respondent begins to repeat the sentence. There are also 
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sequential dependencies between CS: ‘pre-phonation’ preceding speaking is triggered by pre-phonatory 
gestures such as lip opening, ‘speaking’ triggers ‘listening’ for the interlocutor, etc. Some CS appear 
only in one of the two roles. The CS ‘reading’ only occurs while a subject is initiator (‘reading’ next 
sentence to utter) and the CS ‘thinking’ only occurs while a subject is respondent (mentally preparing 
the sentence to repeat). We also labeled blinks. Most ECAs generate blinks with a simple random event 
generator. We will however show that blinking frequency is highly modulated by CS and role. 

5.4 Results 

We recorded interactive sessions of our target subject with 12 interlocutors but only 9 of these pairs 
have valid gaze data for all sessions. The data analyzed in the following thus concerns these 9 subjects. 
The results clearly confirm the triangular pattern of fixations (see Figure 7) scanning the eyes and the 
mouth previously obtained by Vatikiotis-Bateson, Eigsti et al (1998). They also confirm our choice to 
distinguish cognitive state and role. 

5.4.1 Run A: mediated one-line face-to-face 

This run starts immediately after a first calibration procedure of the eye gaze tracker. HL first instructs 
from a list of 10 SUS then roles are exchanged and a further exchange of 10 SUS is performed. 

Fixations and cognitive states. We define fixation profiles as the relative distribution of fixations 
among the ROI within a given activity. For statistical analysis we only considered 5 ROIs: ‘left eye’, 
‘right eye’, ‘mouth’, ‘face’ and ‘none’. The ROI ‘else’ was disregarded since it almost never occurred 
during the analyzed sessions. We investigated the influence of the two factors ‘role’ and ‘cognitive 
state’ on the mean fixation profiles calculated for our target subject during the nine interactions (see 
Figure 9). This means at least 180 fixations of our target subject for each CS (90 for each role). Using 
MANOVA we compared the multivariate means of the fixation profiles of the CS (pre-phonation, 
speaking, listening, and waiting) that occur in both roles. We found that fixation profiles are 
significantly influenced by role (F(5,871)=297, p<0.001) and CS (F(30,4375)=50.5, p<0.001). 

 
Figure 9: Fixation profiles of all interactions of our target speaker over role (initiator, respondent), 
ROI (face, right eye, left eye, mouth, else) and cognitive state CS (speaking, listening, waiting, reading, 
pre-phonation, thinking, else). The bars represent the means of the percentage of fixation time on ROI 
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during an instance of a cognitive state. The diagram is completed by bars (ROI named “n” for “none”) 
representing the means of percentage of time when no fixations are detected. 

 
Figure 10. Distribution of fixation durations as a function of ROI. Longer fixations to the mouth could 
be explained by smooth pursuit of a ROI in motion. 

Durations of fixations. We also characterized the duration of fixations over region of interest and role 
(see Figure 11). The ANOVA provided no reason to distinguish for role (F(1,2981)=2.22, p>0.15). The 
influence of ROI however is highly significant (F(4,2986)=66.5,p<0.001). Post hoc analysis shows that 
there is no difference between durations of fixations of the ROIs “right eye” and “left eye” 
(F(1,2248)=0.13,p>0.7). In comparison, fixations to the face are significantly shorter and fixations to the 
mouth significantly longer. 

Blinks. Increased cognitive load is known to be correlated with fewer blinks (Wallbott and Scherer 
1991). Our data reveal that blink rate does not strongly depend on role (F(1,94)=7,p=0.01) but is highly 
dependent on cognitive state (F(6,94)=54,p<0.001) (see also Peters and O’Sullivan 2003). A detailed 
analysis of the influence of CS on blink rate showed that ‘speaking’ accelerates blink rate, whereas 
‘reading’ and ‘listening’ slow it down or even inhibit blinks (see Figure 11). Particularly, in the role of 
respondent, the CS ‘listening’ strongly inhibits blinks. Strikingly, blinks often occur at the change-over 
from reading to speaking (pre-phonation). This might be explained by the linkage of blinking and major 
saccadic gaze shifts proposed by Evinger et al (1994). 
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Figure 11. Blinking rate (average number of blinks per second) as a function of cognitive state for each 
interlocutor over role of our target speaker (left: initiator, right: respondent). Significant contrasts are 
evidenced such as less blinking when speaking compared to listening. Only data for 4 CS common for 
both roles are considered for analysis. Note that CS “reading” and “thinking” generate almost no 
fixations towards the face and that blinks are almost impossible to detect in this case. 

 
Figure 12. Comparing mean fixation profiles of all subjects acting as respondent in Run B (faked 
interaction at the left) vs. Run A (one-line interaction at the right). Same conventions as Figure 9. The 
presence of ‘Else’ states during faked interactions could be explained by the absence of reactive 
chaining of instructions. 

5.4.2 Run B: faked face-to-face 

To verify the impact of live feedback, we compared the fixation profiles measured during the online 
interaction with those of the faked interaction (using the pre-recorded stimulus). After finishing Run A 
naïve subject were instructed that HL would not have any visual feedback. In fact a pre-recorded 
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stimulus was played back hoping that the sentence repeating game would keep the same rhythm. In fact 
no subject reported any awareness of this manipulation. Figure 12 shows that gaze behaviour confirms 
this conservative sense of presence: a MANOVA contrasting runs and CS indeed shows that interaction 
condition is not significant (F(5,56)=1.55, p=0.18) whereas CS has a significant impact on subjects’ 
behaviour (F(25,280)=1.65, p<0.03). The only difference between interaction conditions is the spurious 
presence of ‘Else’ states during faked interactions due to minor desynchronizations between cognitive 
activities of the interlocutors that do not impact the global picture. 

This control experiment confirms that the cognitive state is the main determinant of the gaze behaviour 
and this behaviour is sufficiently consistent – at least for HL – among interactions to fool the control of 
perception-action loops of the interlocutors. 

LE RE

EL

FA

MO

INI

Pdf of durations 
of fixations 

Pdfs of blinking 
delay & frequency  

Figure 13. Modeling duration of fixations and blink frequency as a HMM. Hidden states are possible 
ROI of the gaze (LE vs RE: left and right eyes; MO: mouth; FA: face and EL elsewhere). When entering 
a state a fixation is emitted (dotted arrows) according to a state-dependent distribution (dark gray). The 
transition matrix between states (dark arrows) specifies the CS-dependent scan of the interlocutor’s 
face. The initial state (INI) does not emit any fixation but sets the average delay of the first blink and the 
blinking rate according to HMM-specific distributions (light gray). It also specifies the way the ECA 
will start to scan the face by transition probabilities (light gray arrows). 

5.5 Modeling 

A generative model of visual attention during face-to-face interaction is proposed. It extends Lee et al.’s 
model (Lee, Badler et al. 2002) by taking into account both the cognitive states of the speaker as well as 
the statistical distribution of gaze fixations on important regions of interest on the face of the 
interlocutor. The control model for the gaze of our talking head was built by training and chaining role- 
and CS-specific Hidden Markov Models (HMM). Given a succession of CSs with associated durations it 
computes parameters describing the fixations of the ECA towards the various ROI on the face of its 
interlocutor. HMM states correspond to the different ROIs while observations specify the durations of 
the fixations (see Figure 13). 

The transition probabilities of the HMM are computed from the transition matrix between the different 
ROI within a given CS and role as observed during the mediated face-to-face experiment. An initial 
state in each HMM was added to address the particular distribution of the first fixation as emphasized by 
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the particular distribution of prephonatory gaze patterns as well as the blinking behavior. State-
dependent observation probabilities determine the duration of the fixation emitted by the HMM at each 
transition. The probability density functions of these durations are computed from data gathered during 
the interactions: fixations to the mouth are for instance longer than fixations to the eyes. Based on these 
parameters we use the same generation process as proposed by Lee (Lee, Badler et al. 2002) to control 
on-line the gaze of the clone of our target speaker: generators of random numbers with appropriate 
statistical distributions (uniform for state transitions, Gaussian for observations) are used to trigger state 
transitions and set durations of fixations and blink parameters. 

Parameters of the HMM can then be switched and set according to cognitive state and role (see Figure 
13) so as to signal scene comprehension by the appropriate statistical distribution of the ECA’s gaze 
over regions of interest of its human interlocutor. 

5.6 Discussion 

These results confirm the eyes and mouth as dominant target zones (Vatikiotis-Bateson, Eigsti et al. 
1998). Our data also confirm that the nose also attracts a significant number of fixations. Buchan et al 
(Buchan, Paré et al. 2008) suggest that “subjects might be using the nose as a central vantage point that 
permits a monitoring of the eyes and the face for social information” (see also Blais, Jack et al. 2008, for 
culture-specific gaze patterns contrasting holistic and analytical strategies). This momentary “de-
zooming” of the elements of the face can in fact be interpreted as a scan reset that checks for other facial 
information’s complementary – or indirect connection – to speech communication such as facial 
expressions. Another possibility is that the pinhole camera and small wire may also have attracted visual 
attention. Note however that the seats of the interlocutors were positioned at the start of the experiment 
so that the camera coincides with the top of their nose ridge when their own video is displayed on their 
screen. The only way to test this hypothesis is to use high quality teleprompters. Apart from its cost, 
such an experimental setting also impacts on interaction distance. 

Coordination of turntaking by gaze patterns has been mainly documented by human transcriptions of 
dialogs (Goodwin 1980; Rutter and Durkin 1987; Novick, Hansen et al. 1996): eye contact is claimed to 
signal beginning as well as end of turns. Using automatic eyetracking devices, our data suggest that eye 
contact with the right eye of the conversational partner may signal that the speaker is ready to speak. We 
did not observe such a specific trigger for the end. Prosody and other non verbal cues (Duncan 1972) 
probably support this function. This eye preference is also no longer observed in the course of speech 
production. Our analysis is however focused on gaze distribution: with much more experimental data, 
data mining techniques such as time series analysis (Povinelli and Feng 2003) could be used to search 
for signatures of state transitions by specific sequences of multimodal events including not only gaze 
patterns but also head movements, facial gestures or speech events. Such sequences of multimodal 
events are expected to be much more robust to monitor turns and joint attention than single unimodal 
events. 

We have also shown that role has a significant impact on fixation profiles as well as on blinking rate. 
When listening, respondents should for instance gaze towards the mouth to benefit from lip reading, 
while the initiators do not need to rely on audiovisual speech perception since they already know the 
content of the message. The segmentation of the interaction into cognitive states explains a large part of 
the variability of the gaze behavior of our reference subject. In order to act as expected by human 
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interlocutors, the ECA should thus at least be aware of its own cognitive state and its role in the 
interaction. 

6. CONCLUSIONS AND PERSPECTIVES 
Believability of context-sensitive ECAs is conditioned by both physical realism and social intelligence. 
Both impact the regulation of perception/action loops. As developed by Morgan & Demuth (Morgan 
and Demuth 1996) for syntax: linguistic structures, scene and language understanding as well as social 
rules are learnt and established from the multimodal signals exchanged. The quality of signal production 
and perception is of prime importance for building efficient interactive agents. Virtual agents in turn 
benefit from a detailed analysis of multimodal input and output patterns observed during human-human 
interactions and from the interplay with their cognitive interpretation. Monitoring multimodal signals 
during live interactions and building comprehensive models that link them with information structure, 
communicative and social functions and that ground them with the environment in which the interaction 
takes place is a key issue for efficient situated face-to-face interaction involving artificial agents. 

Based on our findings, we have established a basis for a context-aware eye-gaze generator for an ECA. 
In order to develop an improved gaze generator we should isolate the significant events detected in the 
multimodal scene that impact the closed-loop control of gaze. We should notably investigate the 
influence of eye saccades produced by the interlocutor as potential exogenous events that drive gaze. 
Furthermore other cognitive and emotional states as well as other functions of gaze (deictic or iconic 
gestures) should be implemented. 

We will extend this study to other modalities including audible and visible speech, facial expressions, 
hands and head movements. We expect multimodal behaviors to be coordinated by extensive multi-
layered action-perception loops with different scopes and latencies. The control of the loops, the way we 
react and adapt to the others, is of course not only motivated by our role in the dialog, as shown in this 
paper, but more generally by social factors that have been voluntarily minimized in this study. 
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