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LIFSHITZ TAILS FOR ALLOY TYPE MODELS IN A

CONSTANT MAGNETIC FIELD

FRÉDÉRIC KLOPP

Dedicated to the memory of Pierre Duclos.

Abstract. In this note, we study Lifshitz tails for a 2D Landau Hamil-
tonian perturbed by a random alloy-type potential constructed with sin-
gle site potentials decaying at least at a Gaussian speed. We prove that,
if the Landau level stays preserved as a band edge for the perturbed
Hamiltonian, at the Landau levels, the integrated density of states has

a Lifshitz behavior of the type e− log2 |E−2bq|.

Résumé. Dans cette note, nous démontrons qu’en dimension 2, la den-
sité d’états intégrée d’un opérateur de Landau avec un potentiel aléatoire
non négatif de type Anderson dont le potentiel de simple site décrôıt au
moins aussi vite qu’une fonction gaussienne admet en chaque niveau de
Landau, disons, 2bq, si celui-ci est un bord du spectre, une asymptotique

de Lifshitz du type e− log2 |E−2bq|.

0. Introduction

Consider the Landau Hamiltonian

H0 = H0(b) := (−i∇−A)2 − b.

It is essentially self-adjoint on C∞
0 (R2). Here A = (− bx2

2 , bx1
2 ) is the magnetic

potential, and b > 0 is the constant scalar magnetic field. It is well-known
that the spectrum σ(H0) of the operator H0(b) consists of the so-called
Landau levels 2bq, q ∈ Z+, and each Landau level is an eigenvalue of infinite
multiplicity.
Consider now a random Z

2-ergodic alloy-type electric potential

V (x) = Vω(x) :=
∑

γ∈Z2

ωγu(x− γ), x ∈ R
2.

We assume that

• H1: The single-site potential u satisfies the estimates

1

C
1{x∈R2 ; |x−x0|<1/C} ≤ u(x) ≤ Ce−|x|2/C
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2 FRÉDÉRIC KLOPP

for some C > 0, x0 ∈ R
2.

• H2: The coupling constants {ωγ}γ∈Z2 are non-trivial, almost surely

bounded i.i.d. random variables.

These two assumptions guarantee Vω is almost surely bounded. On the
domain of H0, define the operator H = Hω := H0(b) + Vω. The integrated
density of states (IDS) for the operator H is defined as a non-decreasing
left-continuous function Nb : R → [0,∞) which, almost surely, satisfies

∫

R

ϕ(E)dNb(E) = lim
R→∞

R−2Tr (1ΛR
ϕ(H)1ΛR

) , ∀ϕ ∈ C∞
0 (R).

Here and in the sequel 1O denotes the the characteristic function of the set

O, and ΛR :=
(

−R
2 ,

R
2

)2
. By the Pastur-Shubin formula (see e.g. [9, Section

2]), we have
∫

R

ϕ(E)dNb(E) = E (Tr (1Λ1ϕ(H)1Λ1)) , ∀ϕ ∈ C∞
0 (R),

where E denotes the mathematical expectation. Moreover, there exists a set
Σ ⊂ R such that σ(Hω) = Σ almost surely, and supp dNb = Σ. The aim
of the present article is to study the asymptotic behavior of Nb near the
edges of Σ. It is well known that, for many random models, this behavior is
characterized by a very fast decay which goes under the name of “Lifshitz
tails”. It was studied extensively (see e.g. [6, 9, 4] and references therein).

In order to fix the picture of the almost sure spectrum σ(Hω), we assume
b > 0, and make the following two additional assumptions:

• H3: the support of the random variables ωγ , γ ∈ Z
2, consists of the

interval [ω−, ω+] with ω− < ω+ and ω−ω+ ≤ 0.
• H4: M+ −M− < 2b where

±M± := ess-sup
ω

sup
x∈R2

(±Vω(x)).

Assumptions H1 – H4 imply M−M+ ≤ 0. Moreover, the union ∪∞
q=0[2bq +

M−, 2bq + M+] which contains Σ, is disjoint. Let W be the bounded Z
2-

periodic potential defined by

W (x) :=
∑

γ∈Z2

u(x− γ), x ∈ R
2.

On the domain of H0, define the operators H± := H0 + ω±W . It is easy to
see that

σ(H−) ⊆ ∪∞
q=0[2bq +M−, 2bq], σ(H+) ⊆ ∪∞

q=0[2bq, 2bq +M+],

and

σ(H−) ∩ [2bq +M−, 2bq] 6= ∅, σ(H+) ∩ [2bq, 2bq +M+] 6= ∅, ∀q ∈ Z+.

Set

{E−
q } := ∂σ(H−) ∩ [2bq +M−, 2bq], {E+

q } := ∂σ(H+) ∩ [2bq, 2bq +M+].

The standard characterization of the almost sure spectrum (see also [6, The-
orem 5.35]) yields

Σ = ∪∞
q=0[E

−
q , E

+
q ],
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i.e. Σ is represented as a disjoint union of compact intervals, and each
interval [E−

q , E
+
q ] contains exactly one Landau level 2bq, q ∈ Z+.

We describes the case E−
q = 2bq, q ∈ Z+. This is the case if and only if

ω− = 0; in this case, the random variables ωγ , γ ∈ Z
2, are non-negative

which we assume from now on. We describe the behavior of the integrated
density of states Nb near E−

q , q ∈ Z+; mutandi mutandis, the same results

hold for E+
q .

In [5] (see Theorem 2.1), the authors describe the logarithmic asymptotics
of Nb(2bq + E) − Nb(2bq) when E → 0+ if u does not decay as fast as in
assumption H1. In the case of assumption H1, the authors obtained the
correct logarithmic upper bound and a lower bound that they deemed not
to be optimal. In our main result, we obtain the correct lower bound.

Theorem 1. Let b > 0 and assumptions H1 – H4 hold. Suppose that

ω− = 0, and that

(1) P(ω0 ≤ E) ∼ CEκ, E ↓ 0,

for some C > 0 and κ > 0. Fix the Landau level 2bq = E−
q , q ∈ Z+. Then,

(2) lim
E↓0

ln | ln (Nb(2bq + E)−Nb(2bq)|

ln | lnE|
= 2.

In [5], the easy half of (2) is proved under less restrictive assumptions;
indeed, Theorem 5.1 of [5] states in particular that, under our assumptions,

lim sup
E↓0

ln | ln (Nb(2bq + E)−Nb(2bq)|

ln | lnE|
≤ 2.

So it suffices to prove

(3) lim inf
E↓0

ln | ln (Nb(2bq + E)−Nb(2bq)|

ln | lnE|
≥ 2.

The improvement over the results in [5] is obtained through a different anal-
ysis that borrows ideas and estimates from [1]. The basic idea is to show
that, for energies at a distance E from 2bq, the single site potential can be
replaced by an effective potential that has a support of size approximately
| logE|1/2 (see section 2 and Lemma 3 therein). This can then be used to
estimate the probability of the occurrence of such energies.

1. Periodic approximation

We now recall some useful results from [5]. Pick a > 0 such that ba2

2π ∈ N.

Set L := (2n+1)a/2, n ∈ N, and define the random 2LZ2-periodic potential

(4) V per
L,ω (x) = V per

L,ω (x) :=
∑

γ∈2LZ2

(Vω1Λ2L
) (x+ γ), x ∈ R

2.

On the domain of H0, define the operator Hper
L,ω := H0 + V per

L,ω . For brevity

set T2L := R/(2LZ2), T∗
2L := T

∗
2L. On the domain of h0 define the operator

h(θ) = hper(θ) := h0(θ) + V per
L,ω , θ ∈ T

∗
2L,

and set

Hper :=

∫

Λ∗
2L

⊕ hper(θ)dθ.
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As above, the operators H0 and Hper
L,ω are unitarily equivalent to the opera-

tors H0 and Hper respectively. Set

(5) N per
L,ω(E) = N per

L,ω(E) := (2π)−2

∫

Λ∗
2L

N(E;hper(θ))dθ, E ∈ R.

Here and in the sequel, for E a real number and T , a self-adjoint operator
with compact resolvent, N(E;T ) denotes the number of the eigenvalues of
T less than E counted with the multiplicities.
One has

Theorem 2 ([5]). Assume that hypotheses H1 and H2 hold. Let q ∈ Z+,

η > 0. Then there exist ν > 0 and E0 > 0 such that for E ∈ (0, E0] and
n ≥ E−ν we have

E

(

N per
L,ω(2bq + E/2) −N per

L,ω(2bq −E/2)
)

− e−E−η

≤ Nb(2bq + E)−Nb(2bq − E)

≤ E

(

N per
L,ω(2bq + 2E) −N per

L,ω(2bq − 2E)
)

+ e−E−η
.

Denote by Πq, q ∈ Z+, the orthogonal projection onto Ker(H0 − 2bq). One

can define the bounded operator ΠqVωΠq acting on ΠqL
(
R
2). It is ergodic

with respect to the group of magnetic translations (see e.g. [5] for details and
references). It also admits an integrated density of states that we denote by
ρq.
For θ ∈ T

∗
2L, we have σ(h(θ)) = ∪∞

q=0 {2bq}, and dim Ker (h(θ) − 2bq) =

2bL2/π for each q ∈ Z+ (see [3]). Denote by Πq(θ) : L
2(Λ2L) → L2(Λ2L) the

orthogonal projection onto Ker (h(θ) − 2bq), and by rq,L,ω(θ) the operator
Πq(θ)V

per
L,ωΠq(θ) defined and self-adjoint on the finite-dimensional Hilbert

space Πq(θ)L
2(Λ2L). Then, one has

ρq,L,ω(E) = (2π)−2

∫

Λ∗
2L

N(E; rq,L,ω(θ))dθ, E ∈ R.

By analogy with (5), let the function ρq,L,ω denote the IDS for the operator

Rq,L,ω :=

∫

Λ∗
2L

⊕rq,n,ωdθ

defined and self-adjoint on PqL
2(Λ2L × Λ∗

2L) where Pq :=
∫

Λ∗
2L

⊕Πq(θ)dθ.

Note that Rq = PqV
per
L,ωPq and Pq = UΠqU

∗. So ρq,L,ω(E) is the integrated

density of states of the periodic operator ΠqV
per
L,ωΠq. One has

Theorem 3 ([5]). Assume that the hypotheses of Theorem 2 hold. Let

q ∈ Z+ η > 0. If q ≥ 1, assume M < 2b. Then, there exist ν = ν(η) > 0,

C > 1 and Ẽ0 > 0, such that for each E ∈ (0, Ẽ0) and L ≥ E−ν, we have

E (ρq,L,ω(E/C))− e−E−η

≤ Nb(2bq + E)−Nb(2bq) ≤ E (ρq,L,ω(CE)) + e−E−η
.

The estimate (3) and thus Theorem 1 is then a consequence of
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Theorem 4. For η ∈ (0, 1), there exists Cη > 0 such that, for E sufficiently

small and L ≥ 1, one has, for almost all ω,

(6) e| logE|1−η log | logE‖ΠqV
per
L,ωΠq

≥



 inf
γ∈Λ2L





∑

|β−γ|≤| logE|(1−η)/2

ωβ



− e−| logE|1−η/Cη



Πq.

The proof of Theorem 4 relies on Lemma 3 that shows that we can “enlarge”
the support of the potentials at the expense of a small price. Lemma 3 is
stated and proved in section 2.
Let us now use Theorem 4 to complete the proof of (3) and thus of Theo-
rem 1. Pick L ≍ E−ν , ν given by Theorem 3 and fix η ∈ (0, 1) arbitrary.
Thus, by the definition of ρq,L,ω, using (6), we obtain, for E > 0 small,

Nb(2bq + E)−Nb(2bq) ≤ CLd
P

(

σ(ΠqV
per
L,ωΠq) ∩ (−∞, CE] 6= ∅

)

+ e−E−η

≤ CLd
P



 inf
γ∈Λ2L

∑

|β−γ|≤| logE|(1−η)/2

ωβ − e−| logE|1−η/Cη ≤ e−| logE|/2



+ e−E−η

≤ CL2d
P





∑

|β|≤| logE|(1−η)/2

ωβ ≤ 2e−| logE|1−η/Cη



+ e−E−η
.

as the random variables are i.i.d. Hence, by a classical standard large devi-
ation result (see e.g. [2]), using the assumption (1), we obtain that

Nb(2bq + E)−Nb(2bq) ≤ Cηe
−| logE|2−2η/Cη .

As this holds for any η > 0, we obtain (3) and thus complete the proof of
Theorem 1. �

2. The proof of Theorem 4

Recall that Πq = Πq(b), q ∈ Z+ is the orthogonal projection on eigenspace
corresponding to the q-th Landau level for the Landau Hamiltonian H0 with
constant magnetic field b > 0. We recall

Lemma 1 ([7]). Pick p > 1 and let V ∈ Lp(R2) be radially symmetric.

Let (µq,k(V ))k∈Z+ be the eigenvalues of the compact operator ΠqVΠq repeated

according to multiplicity.

Then, for k ∈ Z+, one has

µq,k(V ) = 〈V ϕq,k, ϕq,k〉

where

• the functions ϕq,k are given by

ϕq,k(x) :=

√

q!

πk!

(

b

2

)(k−q+1)/2

(x1 + ix2)
k−qL(k−q)

q

(

b|x|2/2
)

e−b|x|2/4,

for x ∈ R
2,
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• L
(k−q)
q are the generalized Laguerre polynomials given by

L(k−q)
q (ξ) :=

q
∑

l=max{0,q−k}

(

k

q − l

)

(−ξ)l

l!
, ξ ≥ 0, q ∈ Z+, k ∈ Z+,

• 〈·, ·〉 denotes the scalar product in L2(R2).

Finally, for k ∈ Z+, a normalized eigenfunctions of ΠqVΠq corresponding

to the eigenvalue µq,k(V ) is equal to ϕq,k. In particular, the eigenfunctions

are independent of V .

We denote by D(x,R) the disk of radius R > 0, centered at x ∈ R
2. We set

νq,k(R) := µq,k(χD(0,R)) where χA is the characteristic function of the set
A..

Lemma 2. Fix q ∈ Z+. Define ̺ = ̺(R) := bR2/2 and

(7) νaq,k(R) =
e−̺̺−q+1+k

q!

(k − ρ)2q−1

k!
.

Pick β ∈ (0, 2). Let f : [1,+∞) → [1,+∞) be such that

(8) k2q−1f−2q(k) →
k→+∞

0 and kf−β(k) →
k→+∞

0.

Then, there exists k0 ≥ 1 and C > 0 such that, for k ≥ k0,

(9) sup
R>0

̺(R)≤k−f(k)

∣

∣

∣

∣

∣

νq,k(R)

νaq,k(R)
− 1

∣

∣

∣

∣

∣

≤ C

(

k2q−1

f2q(k)
+

k

fβ+1(k)

)

.

This lemma is an extension of Corollary 2 in [1] to a larger range of radii R.

Proof of Lemma 2. By Lemma 1, passing to polar coordinates (r, θ) in the
integral 〈χD(0,R)ϕq,k, ϕq,k〉, and changing the variable br2/2 = ξ, we im-
mediately that the eigenvalues νq,k(R) of the operator ΠqχD(0,R)Πq can be
written as

(10) νq,k(R) =
q!

k!

∫ ̺

0
ξk

[

L(k−q)
q (ξ)

]2
e−ξ dξ.

For q = 0, we have

(11) ν0,k(R) =
1

k!

∫ ̺

0
ξk e−ξ dξ =

e−̺̺k+1

k!

∫ 1

0
eρt+k log(1−t) dt.

Now, using a Taylor expansion at 0 and the concavity of t 7→ ρt+k log(1−t),
write
∫ 1

0
eρt+k log(1−t) dt =

∫ (k−ρ)−β/2

0
eρt+k log(1−t)dt+

∫ 1

(k−ρ)−β/2
eρt+k log(1−t)dt

=

∫ (k−ρ)−β/2

0
e−(k−ρ)t

(

1 +O(k(k − ρ)−β)
)

dt

+O
(

e−(k−ρ)1−β/2
)

=
1

k − ρ
+O

(

k

(k − ρ)β+1

)
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This and (11) yields (9) when q = 0.
Consider now the case q ≥ 1. For some Cq > 0, one has

(12) ∀k ≥ 1, sup
s∈{0,...,q}

∣

∣

∣

∣

ks−q

(

k

q − s

)

(q − s)!− 1

∣

∣

∣

∣

≤
Cq

k
.

In order to check (9), we assume first of all that k ≥ q. In this case,
using (12), we have

νq,k(R) =
q!

k!

q
∑

l,m=0

(−1)l+m 1

m!l!

(

k

q − l

)(

k

q −m

)∫ ̺

0
e−ξξk−q+m+ldξ

= V (k, q) +R(k, q)

(13)

where

V (k, q) =
1

k!q!

q
∑

l,m=0

(−1)l+m

(

q

l

)(

q

m

)

k2q−l−m

∫ ̺

0
e−ξξk−q+m+ldξ

=
1

k!q!

∫ ̺

0
e−ξξk−q (k − ξ)2q dξ,

(14)

and

|R(k, q)| ≤
Cq

k

1

k!q!

q
∑

l,m=0

(

q

l

)(

q

m

)

k2q−l−m

∫ ̺

0
e−ξξk−q+m+ldξ

≤
Cq

k

1

k!q!

∫ ̺

0
e−ξξk−q (k + ξ)2q dξ.

(15)

For ρ ≤ k − f(k), one computes

(16)

∣

∣

∣

∣

|R(k, q)|

V (k, q)

∣

∣

∣

∣

≤ C
k2q−1

f2q(k)
→

k→+∞
0

by our assumption on f .
On the other hand, as in the case q = 0, we have

∫ ̺

0
e−ξξk−q (k − ξ)2q dξ = e−ρρk−q+1(k − ρ)2qI(k, ρ)

where

I(k, ρ) =

∫ 1

0
eρξ (1− ξ)k−q

(

1 +
ρ

k − ρ
ξ

)2q

dξ.

The function t 7→ ρt+ (k− q) log(1− t) + 2q log

(

1 +
ρ

k − ρ
t

)

is concave on

[0, 1] and its derivative at 0 is

ρ− k + q + 2qρ/(k − ρ) = (ρ− k)
(

1 +O(k(k − ρ)−2)
)

.

Hence, as in the case q = 0, we obtain that

I(k, ρ) =
1

k − ρ
+O

(

k

(k − ρ)β+1

)

.

Plugging this into (14), using (16) and (15), and replacing in (13), we ob-
tain (9) for q ≥ 1.
This completes the proof of Lemma 2. �
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We will now use Lemma 2 to obtain “enlarge” our potentials and prove

Lemma 3. Let q ∈ Z+ and fix b > 0. Fix ε > 0. There exists a constant

C0 > 0 and R0 > 1 such that, for each R ≥ 1,

(17) ΠqχD(0,ε)Πq ≥ e−C0R2 logR
(

ΠqχD(0,R)Πq − e−R2/C0ΠqχD(0,2R)Πq

)

.

This lemma is basically Lemma 2 in [1] except that we want to control the
behavior of the constants coming up in the inequality in terms of R.

Proof of Lemma 3. We fix δ ∈ (0, 1), and, bearing in mind Lemma 3, namely (9)
and (7), we know that for k ≥ k0 = CR2 with C > b/2 (hence, for some
R0 > 0, k − f(k) ≥ ρ(R) for R ≥ R0 large where f is defined in Lemma 3),
implies

(1− δ)
e−̺(R̃)̺(R̃)k−q+1

q!

(k − ρ(R̃))2q−1

k!
≤ νn,k(R̃)

≤ (1 + δ)
e−̺(R̃)̺(R̃)k−q+1

q!

(k − ρ(R̃))2q−1

k!
,

for R̃ ∈ [R/2, 2R]. We will show that, if R ≥ R0, then, the operator inequal-
ity

(18) ΠqχD(0,ε)Πq ≥ C1

(

ΠqχD(0,R)Πq − C2ΠqχD(0,2R)Πq

)

holds with the following constants:

•

(19) C1 := min
k∈{0,...,k0}

νn,k(ε)

νn,k(R)
≥

1

C0
e−2CR2 logR ;

as k0 = CR2, the lower bound is a consequence of (9) and (7) written
for νn,k(ε);

•

(20) C2 :=
1 + δ

1− δ
2−2(k0−n+1)e−̺(R)+̺(2R) ≤ e−R2/C0 .

By Lemma 1, the operators ΠqχD(0,ε)Πq, ΠqχD(0,R)Πq, and ΠqχD(0,2R)Πq,
are reducible in the same basis {ϕn,k}k∈Z+ . Hence, in order to prove (18),
it suffices to check that the numerical inequalities

(21) νn,k(ε) ≥ C1 (νn,k(R)− C2 νn,k(2R))

hold for each k ∈ Z+. If k ≤ k0, then (21) is valid because in this case (19)
implies νn,k(ε) ≥ C1νn,k(R) which obviously entails (21). If k > k0, by (19)
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and (20) we have

νn,k(R)− C2νn,k(2R) ≤ (1 + δ)
e−̺(R)̺(R)−q+1

q!

(k − ρ(R))2q−1̺(R)k

k!

−

(

1 + δ

1− δ
2−2(k0−q+1)e−̺(R)+̺(2R)

×(1− δ)
e−̺(2R)̺(2R)−q+1

q!

(k − ρ(R))2q−1̺(2R)k

k!

)

= (1 + δ)
e−̺(R)

q!

(k − ρ(R))2q−1̺(2R)k−q+1

k!
22(q−1)

(

2−2k − 2−2k0
)

.

Hence, we find that νn,k(R)−C2νn,k(2R) ≤ 0 if k ≥ k0, which again implies
(21). This completes the proof of Lemma 3. �

We now prove Theorem 4.
The magnetic translations for the constant magnetic field problem in two-
dimensions are defined as follows (see e.g. [8]). For any field strength b ∈ R,
any vector α ∈ R

2, and f ∈ C∞
0 (R2), we define the magnetic translation by

α as

U b
αf(x) := e

ib
2
(x1α2−x2α1)f(x+ α).

In a standard way, the family {U b
α | α ∈ R

2} extends to a projective unitary
representation of R2 on L2(R2). We note that for any magnetic field strength
b, For γ ∈ Z

2, the invariance of HL(b) with respect to group of magnetic
translations gives

U b
γΠqχD(0,ε)ΠqU

b
−γ = ΠqχD(γ,ε)Πq.

Hypothesis (H1) on the single-site potential u guarantees that there exists

ǫ ∈ (0, 1/2) so that Vω ≥
∑

γ∈Z2

ωγχD(γ,ε). Plugging this into (4), we get

V per
L,ω ≥

∑

γ∈2LZ2

∑

β∈Λ2L

ωβχD(γ+β,ε).

Fix η ∈ (0, 1) and pick R ≍ | logE|(1−η)/2. Using Lemma 3, we get that

ΠqχD(γ,ε)Πq ≥ e−C0R2 logR
(

ΠqχD(γ,R)Πq − e−R2/C0ΠqχD(γ,2R)Πq

)

.
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Hence, as the random variables are bounded

eC0R2 logRΠqV
per
L,ωΠq ≥ eC0R2 logR

∑

γ∈2LZ2

∑

β∈Λ2L

ωβΠqχD(γ+β,ε)Πq

≥
∑

γ∈2LZ2

∑

β∈Λ2L

ωβΠqχD(γ+β,R)Πq

− Ce−R2/C0
∑

γ∈2LZ2

∑

β∈Λ2L

ΠqχD(γ+β,2R)Πq

≥ Πq

∑

γ∈2LZ2

∑

β∈Λ2L

ωβ

∑

|ν−γ−β|≤R/2

χ|x−ν|≤1/2Πq − Ce−R2/C0R2Πq

≥



 inf
γ∈Λ2L





∑

|β−γ|≤R/2

ωβ



− CR2e−R2/C0



Πq

Taking into account R ≍ | logE|(1−η)/2, this completes the proof of Theo-
rem 4.
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