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LIFSHITZ TAILS FOR ALLOY TYPE MODELS IN A

CONSTANT MAGNETIC FIELD

FRÉDÉRIC KLOPP

Dedicated to the memory of Pierre Duclos.

Abstract. In this paper, we study Lifshitz tails for a 2D Landau
Hamiltonian perturbed by a random alloy-type potential constructed
with single site potentials decaying at least at a Gaussian speed. We
prove that, if the Landau level stays preserved as a band edge for the
perturbed Hamiltonian, at the Landau levels, the integrated density of

states has a Lifshitz behavior of the type e− log2 |E−2bq|.

Résumé. Dans cette note, nous démontrons qu’en dimension 2, la den-
sité d’états intégrée d’un opérateur de Landau avec un potentiel aléatoire
non négatif de type Anderson dont le potentiel de simple site décrôıt au
moins aussi vite qu’une fonction gaussienne admet en chaque niveau de
Landau, disons, 2bq, si celui-ci est un bord du spectre, une asymptotique

de Lifshitz du type e− log2 |E−2bq|.

0. Introduction

On C∞
0 (R2), consider the Landau Hamiltonian

H0 = H0(b) := (−i∇−A)2 − b

where A = (− bx2
2 , bx1

2 ) is the magnetic potential, and b > 0 is the constant

scalar magnetic field. H0 is essentially self-adjoint on C∞
0 (R2). It is well-

known that σ(H0), the spectrum of the operator H0, consists of the so-
called Landau levels {2bq; q ∈ N = {0, 1, 2, · · · }}; each Landau level is an
eigenvalue of infinite multiplicity of H0.
Consider now the random Z

2-ergodic alloy-type electric potential

Vω(x) :=
∑

γ∈Z2

ωγu(x− γ), x ∈ R
2

where we assume that

• H1: The single-site potential u satisfies, for some C > 0 and x0 ∈ R
2,
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1

C
1{x∈R2 ; |x−x0|<1/C} ≤ u(x) ≤ Ce−|x|2/C .

• H2: The coupling constants {ωγ}γ∈Z2 are non-trivial, almost surely

bounded i.i.d. random variables.

These two assumptions guarantee Vω is almost surely bounded. On the
domain of H0, define the operator Hω := H0 + Vω. The integrated density
of states (IDS) of the operator Hω is defined as the non-decreasing left-
continuous function N : R → [0,∞) which, almost surely, satisfies

∫

R

ϕ(E)dN (E) = lim
R→∞

R−2 Tr (1ΛR
ϕ(H)1ΛR

) , ∀ϕ ∈ C∞
0 (R).

Here and in the sequel, ΛR :=
(

−R
2 ,

R
2

)2
and 1O denotes the characteristic

function of the set O.
By the Pastur-Shubin formula (see e.g. [9, Section 2]), we have

∫

R

ϕ(E)dN (E) = E (Tr (1Λ1ϕ(H)1Λ1)) , ∀ϕ ∈ C∞
0 (R),

where E denotes the mathematical expectation with respect to the random
variables (ωγ)γ . Moreover, there exists a set Σ ⊂ R such that σ(Hω) = Σ
almost surely. Σ is the support of the positive measure dN . The aim of
the present article is to study the asymptotic behavior of N near the edges
of Σ. It is well known that, for many random models, this behavior is
characterized by a very fast decay which goes under the name of “Lifshitz
tails”. It was studied extensively (see e.g. [6, 9, 4] and references therein).

In order to fix the picture of the almost sure spectrum σ(Hω), we assume:

• H3: the common support of the random variables (ωγ)γ∈Z2 consists
of the interval [ω−, ω+] where ω− < ω+ and ω−ω+ = 0.

• H4: M+ −M− < 2b where

±M± := ess-sup
ω

sup
x∈R2

(±Vω(x)).

Assumptions H1 – H4 imply that M−M+ = 0. It also implies that the

union

∞
⋃

q=0

[2bq+M−, 2bq+M+], which contains Σ, is disjoint. Let W be the

bounded Z
2-periodic potential defined by

W (x) :=
∑

γ∈Z2

u(x− γ), x ∈ R
2.

On the domain of H0, define the operators H± := H0 + ω±W . It is easy to
see that

σ(H−) ⊆ ∪∞
q=0[2bq +M−, 2bq], σ(H+) ⊆ ∪∞

q=0[2bq, 2bq +M+],

and

σ(H−) ∩ [2bq +M−, 2bq] 6= ∅, σ(H+) ∩ [2bq, 2bq +M+] 6= ∅, ∀q ∈ N.

Set

E−
q := min(∂σ(H−)∩[2bq+M−, 2bq]), E+

q := max(∂σ(H+)∩[2bq, 2bq+M+]).



LIFSHITZ TAILS IN A CONSTANT MAGNETIC FIELD 3

The standard characterization of the almost sure spectrum (see also [6, The-
orem 5.35]) yields

Σ =

∞
⋃

q=0

[E−
q , E

+
q ], E−

q < E+
q

i.e. Σ is represented as a disjoint union of compact intervals, and each
interval [E−

q , E
+
q ] contains exactly one Landau level 2bq. Actually, one has

either E−
q = 2bq or E+

q = 2bq; more precisely E−
q = 2bq if ω− = 0 and

E+
q = 2bq if ω+ = 0.

In Theorem 2.1 of [5], the authors describe the behavior of N (2bq + E) −
N (2bq) when E tends to 0 while in Σ. Under the assumption that u does not
decay as fast as in assumptionH1, they compute the logarithmic asymptotics
of the IDS near 2bq. Under assumptionH1, the authors obtained the optimal
logarithmic upper bound and a lower bound that they deemed not to be
optimal. In our main result, we obtain the optimal lower bound, thus,
proving the logarithmic asymptotics.

Theorem 1. Let b > 0 and assumptions H1 – H4 hold. Assume that, for

some C > 0 and κ > 0,

(1) P(|ω0| ≤ E) ∼ CEκ, E ↓ 0.

Then, for any q ∈ N, one has

(2) lim
E→0
E∈Σ

ln | ln (N (2bq + E)−Nb(2bq)|

ln | lnE|
= 2.

Thus, Theorem 1 states that, at the Landau level 2bq, when it is a spectral

edge for H0, the IDS decays roughly as e− log2 |E−2bq|. This decay is faster
than any power of |E − 2bq|. This explains why we name this behavior also
Lifshitz tails even though it is much slower than the Lifshitz tails obtained
when the magnetic field is absent (see e.g. [6]).
In [5], the upper bound in (2) is proved under less restrictive assumptions;
indeed, Theorem 5.1 of [5] states in particular that, under our assumptions,

lim sup
E↓0

ln | ln (N (2bq + E)−Nb(2bq)|

ln | lnE|
≤ 2.

So it suffices to prove

(3) lim inf
E↓0

ln | ln (N (2bq + E)−Nb(2bq)|

ln | lnE|
≥ 2.

The improvement over the results in [5] is obtained through a different ana-
lysis that borrows ideas and estimates from [1]. The basic idea is to show
that, for energies at a distance at most E from 2bq, the single site potential
u can be replaced by an effective potential that has a support of size ap-
proximately | logE|1/2 (see section 2 and Lemma 3 therein). This can then
be used to estimate the probability of the occurrence of such energies.
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1. Periodic approximation

Assume that hypothesesH1−H4 hold. For the sake of definiteness, from now
on, we assume that ω− = 0. So, for q ∈ N, we have E−

q = 2bq. Moreover, (1)
becomes P(0 ≤ ω0 ≤ E) ∼ CEκ for E > 0 small and P(0 ≥ ω0 ≥ −E) = 0
for any E > 0. Up to obvious modifications, the case ω+ = 0 is dealt with
in the same way.

We now recall some useful results from [5]. Pick a > 0 such that ba2

2π ∈ N.

Set L := (2n+1)a/2, n ∈ N, and define the random 2LZ2-periodic potential

(4) V per
L,ω (x) = V per

L,ω (x) :=
∑

γ∈2LZ2

(Vω1Λ2L
) (x+ γ), x ∈ R

2.

For q ∈ N, let Πq be the orthogonal projection onto the (q + 1)-st Lan-
dau level i.e. the orthogonal projection onto Ker(H0 − 2bq). Consider the
bounded operator ΠqV

per
L,ωΠq. It is invariant by the Abelian group of mag-

netic translations generated by 2LZ2 (see section 2 in [5]). Hence, ΠqV
per
L,ωΠq

admits an integrated density of states that we denote by ρq,L,ω(E) (see [5]).
In [5], we have proved

Theorem 2 ([5]). Assume that hypotheses H1−H4 hold and ω− = 0. Pick

q ∈ N and η > 0. Then, there exist ν > 0, C > 1 and E0 > 0, such that for

each E ∈ (0, E0) and L ≥ E−ν , we have

E (ρq,L,ω(E/C))− e−E−η
≤ N (2bq + E)−N (2bq)

≤ E (ρq,L,ω(CE)) + e−E−η
.

As ρq,L,ω(E) is the IDS of the periodic operator ΠqV
per
L,ωΠq at energy E, it

vanishes if and only if σ(ΠqV
per
L,ωΠq) ∩ (−∞, E] 6= ∅. Moreover, ρq,L,ω(E)

is bounded by CLd where the constant C is locally uniform in E (see [5]).
Thus, we get that, for some C > 0,

(5) E (ρq,L,ω(E)) ≤ C Ld
P

(

σ(ΠqV
per
L,ωΠq) ∩ (−∞, CE] 6= ∅

)

.

Then, the estimate (3) and, thus, Theorem 1, is a consequence of

Theorem 3. For η ∈ (0, 1), there exists Cη > 0 such that, for E sufficiently

small and L ≥ 1, one has, for almost all ω,

(6) e| logE|1−η log | logE‖ΠqV
per
L,ωΠq

≥



 inf
γ∈Λ2L∩Z2





∑

|β−γ|≤| logE|(1−η)/2

ωβ



− e−| logE|1−η/Cη



Πq.

The proof of Theorem 3 relies on Lemma 3 which shows that, at the expense
of a small error in energy, we can “enlarge” the support of the single site
potential u. Lemma 3 is stated and proved in section 2.
Let us now use Theorem 3 to complete the proof of (3) and, thus, of The-
orem 1. Pick L ≍ E−ν , ν given by Theorem 2 and fix η ∈ (0, 1) arbitrary.
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Thus, by Theorem 2, (5) implies that, for E > 0 small,

(7) N (2bq + E)−N (2bq)

≤ CLd
P

(

σ(ΠqV
per
L,ωΠq) ∩ (−∞, CE] 6= ∅

)

+ e−E−η
.

Using (6), as the random variables (ωγ)γ∈Z2 are i.i.d., for E > 0 small, we
compute

P

(

σ(ΠqV
per
L,ωΠq) ∩ (−∞, CE] 6= ∅

)

≤ P



 inf
γ∈Λ2L∩Z2





∑

|β−γ|≤| logE|(1−η)/2

ωβ



− e−| logE|1−η/Cη ≤ e−| logE|/2





≤ C Ld
P





∑

|β|≤| logE|(1−η)/2

ωβ ≤ 2e−| logE|1−η/Cη



 .

(8)

Recall that, by (1), as ω− = 0, one has P(0 ≤ ω0 ≤ E) ∼ CEκ and
P(0 ≥ ω0 ≥ −E) = 0 for E > 0 small. Hence, by a classical standard large
deviation result (see e.g. [2]), we obtain that

P





∑

|β|≤| logE|(1−η)/2

ωβ ≤ 2e−| logE|1−η/Cη



 ≤ Cηe
−| logE|2−2η/Cη .

Thus, as L ≍ E−ν , this, (7) and (8) yield, for E > 0 small,

N (2bq + E)−N (2bq) ≤ Cηe
−| logE|2−2η/Cη .

As this bound holds for any η > 0, we obtain (3) and, thus, complete the
proof of Theorem 1. �

2. The proof of Theorem 3

Recall that, for q ∈ N, Πq is the orthogonal projection on the eigenspace
of H0 corresponding to 2bq, the (q + 1)-st Landau level of H0. We recall

Lemma 1 ([7]). Pick p > 1 and let V ∈ Lp(R2) be radially symmetric.

Let (µq,k(V ))k∈N be the eigenvalues of the compact operator ΠqVΠq repeated

according to multiplicity.

Then, for k ∈ N, one has

µq,k(V ) = 〈V ϕq,k, ϕq,k〉

where

• the functions ϕq,k are given by

ϕq,k(x) :=

√

q!

π k!

(

b

2

)(k−q+1)/2

(x1 + ix2)
k−qL(k−q)

q

(

b|x|2/2
)

e−b|x|2/4,

for x = (x1, x2) ∈ R
2,

• L
(k−q)
q are the generalized Laguerre polynomials given by

L(k−q)
q (ξ) :=

q
∑

l=max{0,q−k}

(

k

q − l

)

(−ξ)l

l!
, ξ ≥ 0, q ∈ N, k ∈ N,
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• 〈·, ·〉 denotes the scalar product in L2(R2).

Finally, for k ∈ N, a normalized eigenfunctions of ΠqVΠq corresponding to

the eigenvalue µq,k(V ) is equal to ϕq,k. In particular, the eigenfunctions are

independent of V .

We denote by D(x,R) the disk of radius R > 0, centered at x ∈ R
2. We set

νq,k(R) := µq,k(1D(0,R)) where 1A is the characteristic function of the set A.

Lemma 2. Fix q ∈ N. Define ̺ = ̺(R) := bR2/2 and

(9) ν0q,k(R) =
e−̺̺−q+1+k

q!

(k − ρ)2q−1

k!
.

Pick β ∈ (0, 2). Let f : [1,+∞) → [1,+∞) be such that

(10) k2q−1f−2q(k) + k f−β(k) →
k→+∞

0.

Then, there exists k0 ≥ 1 and C > 0 such that, for k ≥ k0,

(11) sup
R>0

̺(R)≤k−f(k)

∣

∣

∣

∣

∣

νq,k(R)

ν0q,k(R)
− 1

∣

∣

∣

∣

∣

≤ C

(

k2q−1

f2q(k)
+

k

fβ+1(k)

)

.

This lemma is an extension of Corollary 2 in [1] to a larger range of radii R.

Proof of Lemma 2. By Lemma 1, passing to polar coordinates (r, θ) in the
integral 〈1D(0,R)ϕq,k, ϕq,k〉 and changing the variable br2/2 = ξ, the eigen-
values νq,k(R) of the operator Πq1D(0,R)Πq are written as

νq,k(R) =
q!

k!

∫ ̺

0
ξk
[

L(k−q)
q (ξ)

]2
e−ξ dξ.

For q = 0, we have

(12) ν0,k(R) =
1

k!

∫ ̺

0
ξk e−ξ dξ =

e−̺̺k+1

k!

∫ 1

0
eρt+k log(1−t) dt.

Now, using a Taylor expansion at 0 and the concavity of t 7→ ρt+k log(1−t),
write
∫ 1

0
eρt+k log(1−t) dt =

∫ (k−ρ)−β/2

0
eρt+k log(1−t)dt+

∫ 1

(k−ρ)−β/2

eρt+k log(1−t)dt

=

∫ (k−ρ)−β/2

0
e−(k−ρ)t

(

1 +O(k(k − ρ)−β)
)

dt

+O
(

e−(k−ρ)1−β/2
)

=
1

k − ρ
+O

(

k

(k − ρ)β+1

)

This and (12) yields (11) when q = 0.
Consider now the case q ≥ 1. For some Cq > 0, one has

(13) ∀k ≥ 1, sup
s∈{0,...,q}

∣

∣

∣

∣

ks−q

(

k

q − s

)

(q − s)!− 1

∣

∣

∣

∣

≤
Cq

k
.
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In order to check (11), we assume that k ≥ q. In this case, using (13), we
compute

νq,k(R) =
q!

k!

q
∑

l,m=0

(−1)l+m 1

m!l!

(

k

q − l

)(

k

q −m

)
∫ ̺

0
e−ξξk−q+m+ldξ

= V (k, q) +R(k, q)

(14)

where

V (k, q) =
1

k!q!

q
∑

l,m=0

(−1)l+m

(

q

l

)(

q

m

)

k2q−l−m

∫ ̺

0
e−ξξk−q+m+ldξ

=
1

k!q!

∫ ̺

0
e−ξξk−q (k − ξ)2q dξ,

(15)

and

|R(k, q)| ≤
Cq

k

1

k!q!

q
∑

l,m=0

(

q

l

)(

q

m

)

k2q−l−m

∫ ̺

0
e−ξξk−q+m+ldξ

≤
Cq

k

1

k!q!

∫ ̺

0
e−ξξk−q (k + ξ)2q dξ.

(16)

For ρ ≤ k − f(k), using (10), one computes

(17)

∣

∣

∣

∣

|R(k, q)|

V (k, q)

∣

∣

∣

∣

≤ C
k2q−1

f2q(k)
→

k→+∞
0.

On the other hand, as in the case q = 0, we have
∫ ̺

0
e−ξξk−q (k − ξ)2q dξ = e−ρρk−q+1(k − ρ)2qI(k, ρ)

where

I(k, ρ) =

∫ 1

0
eρξ (1− ξ)k−q

(

1 +
ρ

k − ρ
ξ

)2q

dξ.

The function t 7→ ρt+ (k− q) log(1− t) + 2q log

(

1 +
ρ

k − ρ
t

)

is concave on

[0, 1] and its derivative at 0 is

ρ− k + q + 2qρ/(k − ρ) = (ρ− k)
(

1 +O(k(k − ρ)−2)
)

.

Hence, as in the case q = 0, we obtain that

I(k, ρ) =
1

k − ρ
+O

(

k

(k − ρ)β+1

)

.

Plugging this into (15), using (17) and (16), and replacing in (14), we ob-
tain (11) for q ≥ 1.
This completes the proof of Lemma 2. �

We will now use Lemma 2 to derive the “enlargement of obstacles” lemma
for the Landau-Anderson model; we prove

Lemma 3. Let q ∈ N and fix b > 0. Fix ε > 0. There exists C0 > 0 and

R0 > 1 such that, for each R ≥ R0,

(18) Πq1D(0,ε)Πq ≥ e−C0R2 logR
(

Πq1D(0,R)Πq − e−R2/C0Πq1D(0,2R)Πq

)

.
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This lemma is basically Lemma 2 in [1] except that we want to control the
behavior of the constants coming up in the inequality in terms of R.

Proof of Lemma 3. We fix δ ∈ (0, 1). Recall Lemma 2, in particular (11)
and (9). Pick C > 2b and set k0 = k0(R) := CR2. Let f satisfy (10).
Hence, there exists R0 > 0 such that, for R ≥ R0 and k ≥ k0 = k0(R), one

has k − f(k) ≥ ρ(R). Thus, Lemma 2 implies that, for R̃ ∈ [R/2, 2R], one
has

(1− δ)
e−̺(R̃)̺(R̃)k−q+1

q!

(k − ρ(R̃))2q−1

k!
≤ νq,k(R̃)

≤ (1 + δ)
e−̺(R̃)̺(R̃)k−q+1

q!

(k − ρ(R̃))2q−1

k!
.

(19)

We show that, if R ≥ R0, then, the operator inequality

(20) Πq1D(0,ε)Πq ≥ C1

(

Πq1D(0,R)Πq − C2Πq1D(0,2R)Πq

)

holds with the following constants:

•

(21) C1 := min
k∈{0,...,k0}

νq,k(ε)

νq,k(R)
≥

1

C0
e−2CR2 logR ;

the lower bound holds for sufficiently large R and, as k0 = CR2, is
a consequence of (9) and (11) written for νq,k(ε);

•

(22) C2,q :=
1 + δ

1− δ

(

C

C − 2b

)2q−1

2−2(k0−q+1)e−̺(R)+̺(2R) ≤ e−R2/C0 ;

the upper bound holds for sufficiently large R and follows from k0 ≥
ρ(2R).

By Lemma 1, the operators Πq1D(0,ε)Πq, Πq1D(0,R)Πq, and Πq1D(0,2R)Πq,
are reducible in the same basis {ϕq,k}k∈N. Hence, in order to prove (20),
it suffices to check that, for each k ∈ N, the following numerical inequality
holds

(23) νq,k(ε) ≥ C1 (νq,k(R)− C2,q νq,k(2R)) .

If k ≤ k0, then (23) holds as νq,k(ε) ≥ C1νq,k(R) by (21). As k0 ≤ CR2 for
C > 2b and ρ = bR2/2, or k ≥ k0, one has C(k−ρ(2R)) ≥ (C−2b)(k−ρ(R)).
Thus, by (19) and (22), we have

νq,k(R)− C2,qνq,k(2R) ≤ (1 + δ)
e−̺(R)̺(R)−q+1

q!

(k − ρ(R))2q−1̺(R)k

k!

−

(

1 + δ

1− δ
2−2(k0−q+1)e−̺(R)+̺(2R)

(

C(k − ρ(2R))

(C − 2b)(k − ρ(R))

)2q−1

×(1− δ)
e−̺(2R)̺(2R)−q+1

q!

(k − ρ(R))2q−1̺(2R)k

k!

)

= (1 + δ)
e−̺(R)

q!

(k − ρ(R))2q−1̺(2R)k−q+1

k!
22(q−1)

(

2−2k − 2−2k0
)

.
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Hence, we find that νq,k(R)−C2νq,k(2R) ≤ 0 if k ≥ k0, which again implies
(23). This completes the proof of Lemma 3. �

We now prove Theorem 3.
The magnetic translations for the constant magnetic field problem in two-
dimensions are defined as follows (see e.g. [8]). For any field strength b ∈ R,
any vector α ∈ R

2, the magnetic translation by α, say, U b
α is defined as

U b
αf(x) := e

ib
2
(x1α2−x2α1)f(x+ α) f ∈ C∞

0 (R2).

The invariance of H0 with respect to the group of magnetic translations
(U b

α)α∈Z2 implies that, for γ ∈ Z
2, one has

(24) U b
γΠq1D(0,ε)ΠqU

b
−γ = Πq1D(γ,ε)Πq.

Hypothesis H1 on the single-site potential u guarantees that there exists

ǫ ∈ (0, 1/2) so that Vω ≥
∑

γ∈Z2

ωγ1D(γ,ε). Plugging this into (4), we get

(25) V per
L,ω ≥

∑

γ∈2LZ2

∑

β∈Λ2L∩Z2

ωβ1D(γ+β,ε).

Fix η ∈ (0, 1) and pick R ≍ | logE|(1−η)/2. Lemma 3 and (24) imply that

Πq1D(γ,ε)Πq ≥ e−C0R2 logR
(

Πq1D(γ,R)Πq − e−R2/C0Πq1D(γ,2R)Πq

)

.

Hence, as the random variables (ωγ)γ∈Z2 are bounded, this and (25) imply
that

eC0R2 logRΠqV
per
L,ωΠq ≥ eC0R2 logR

∑

γ∈2LZ2

∑

β∈Λ2L∩Z2

ωβΠq1D(γ+β,ε)Πq

≥
∑

γ∈2LZ2

∑

β∈Λ2L∩Z2

ωβΠq1D(γ+β,R)Πq

− Ce−R2/C0
∑

γ∈2LZ2

∑

β∈Λ2L∩Z2

Πq1D(γ+β,2R)Πq

≥ Πq

∑

γ∈2LZ2

∑

β∈Λ2L∩Z2

ωβ

∑

|ν−γ−β|≤R/2

1|x−ν|≤1/2Πq − Ce−R2/C0R2Πq

≥



 inf
γ∈Λ2L∩Z2





∑

|β−γ|≤R/2

ωβ



− CR2e−R2/C0



Πq

Taking into account R ≍ | logE|(1−η)/2, this completes the proof of Theo-
rem 3.
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