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LIFSHITZ TAILS FOR ALLOY TYPE MODELS IN A
CONSTANT MAGNETIC FIELD

FREDERIC KLOPP

Dedicated to the memory of Pierre Duclos.

ABSTRACT. In this paper, we study Lifshitz tails for a 2D Landau
Hamiltonian perturbed by a random alloy-type potential constructed
with single site potentials decaying at least at a Gaussian speed. We
prove that, if the Landau level stays preserved as a band edge for the
perturbed Hamiltonian, at the Landau levels, the integrated density of

states has a Lifshitz behavior of the type e~ log? | E—2bq|

RESUME. Dans cette note, nous démontrons qu’en dimension 2, la den-
sité d’états intégrée d’un opérateur de Landau avec un potentiel aléatoire
non négatif de type Anderson dont le potentiel de simple site décroit au
moins aussi vite qu’une fonction gaussienne admet en chaque niveau de
Landau, disons, 2bq, si celui-ci est un bord du spectre, une asymptotique
de Lifshitz du type e~ log? | E—2bg|

0. INTRODUCTION

On C§°(R?), consider the Landau Hamiltonian

Hy = Ho(b) := (—iV — A)> — b

where A = (—MTQ, bel) is the magnetic potential, and b > 0 is the constant

scalar magnetic field. Hy is essentially self-adjoint on C§°(R?). It is well-
known that o(Hp), the spectrum of the operator Hy, consists of the so-
called Landau levels {2bq; ¢ € N = {0,1,2,--- }}; each Landau level is an
eigenvalue of infinite multiplicity of Hy.

Consider now the random Z2-ergodic alloy-type electric potential

Vo(x) := Z wou(r —7), x€R?
~EZ?

where we assume that

e H;: The single-site potential u satisfies, for some C' > 0 and zy € R?,
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1 _ 2 C
51{x6R2;\x—mo\<1/C} < u(x) <Ce =%/0.
e Hy: The coupling constants {ww}veZQ are non-trivial, almost surely
bounded i.i.d. random variables.

These two assumptions guarantee V,, is almost surely bounded. On the
domain of Hy, define the operator H,, := Hy + V,,. The integrated density
of states (IDS) of the operator H, is defined as the non-decreasing left-
continuous function N : R — [0, 00) which, almost surely, satisfies

[ ABINE) = Jim BT (Qagelflng) . Vo € CRR).

. 2 L
Here and in the sequel, Ag := (—%, }—2%) and 1p denotes the characteristic
function of the set O.

By the Pastur-Shubin formula (see e.g. [9, Section 2]), we have

/R S(E)IN(E) = E(Tr (Ly,o(H)1y,)), Ve € C(R),

where E denotes the mathematical expectation with respect to the random
variables (w,),. Moreover, there exists a set ¥ C R such that o(H,) = X
almost surely. Y is the support of the positive measure dN. The aim of
the present article is to study the asymptotic behavior of N near the edges
of ¥. It is well known that, for many random models, this behavior is
characterized by a very fast decay which goes under the name of “Lifshitz
tails”. It was studied extensively (see e.g. [0, 9, 4] and references therein).

In order to fix the picture of the almost sure spectrum o(H,,), we assume:

e Hj3: the common support of the random variables (w-),ez2 consists
of the interval [w_,wy]| where w_ < w; and w_w4 = 0.
e Hy: My — M_ < 2b where

+My :=ess-sup sup (£V,(z)).
w r€R?

Assumptions H; — Hy imply that M_M, = 0. It also implies that the
o0
union U [2bg + M_, 2bq + M ], which contains ¥, is disjoint. Let W be the

q=0
bounded Z2-periodic potential defined by

W(z) = Z u(z —7), =€R>.
v€Z?

On the domain of Hy, define the operators H* := Hy + w4 W. It is easy to
see that

o(H™) CUR[2bg + M_,2bq), o(H™') C UG,[2bq, 2bg + M],
and
oc(H )N [2bg + M_,2bq) # 0, o(HT)N[2bq,2bg + My]#0, VqeN.
Set

E; :=min(0o(H ™ )N[2bg+M_,2bq)), E; :=max(do(H")N[2bq, 2bq+M.]).
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The standard characterization of the almost sure spectrum (see also [0, The-
orem 5.35]) yields

o0
. - +
UE E}], E; <E,

i.e. X is represented as a disjoint union of compact intervals, and each
interval [E, , Ef] contains exactly one Landau level 2bg. Actually, one has
either £, = 2bq or E;‘ = 2bg; more precisely £, = 2bg if w_ = 0 and
Ef =2bq if wy =0.

In Theorem 2.1 of [5], the authors describe the behavior of N (2bg + E) —
N (2bq) when E tends to 0 while in ¥. Under the assumption that u does not
decay as fast as in assumption Hy, they compute the logarithmic asymptotics
of the IDS near 2bg. Under assumption Hy, the authors obtained the optimal
logarithmic upper bound and a lower bound that they deemed not to be
optimal. In our main result, we obtain the optimal lower bound, thus,
proving the logarithmic asymptotics.

Theorem 1. Let b > 0 and assumptions Hy — Hy hold. Assume that, for
some C' >0 and k > 0,

(1) P(lwo| < B) ~ CE*, E L0,
Then, for any q € N, one has
In |l 2 E) - 2

E—0 In|ln E|
Eex

= 2.

Thus, Theorem 1 states that, at the Landau level 2bq, when it is a spectral
edge for Hg, the IDS decays roughly as e~ log” |[E=2bal  Thjig decay is faster
than any power of |E — 2bg|. This explains why we name this behavior also
Lifshitz tails even though it is much slower than the Lifshitz tails obtained
when the magnetic field is absent (see e.g. [0]).

In [5], the upper bound in (2) is proved under less restrictive assumptions;
indeed, Theorem 5.1 of [5] states in particular that, under our assumptions,

In|In (NV(2bg + E) — Np(2bq)|

lim su < 2.
ELO0 P In | In E| B
So it suffices to prove
In|l 2bq + E) — 2b
EL0 In|ln E|

The improvement over the results in [5] is obtained through a different ana-
lysis that borrows ideas and estimates from [1]. The basic idea is to show
that, for energies at a distance at most F from 2bg, the single site potential
u can be replaced by an effective potential that has a support of size ap-
proximately |log E|*/? (see section 2 and Lemma 3 therein). This can then
be used to estimate the probability of the occurrence of such energies.
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1. PERIODIC APPROXIMATION

Assume that hypotheses Hy —H4 hold. For the sake of definiteness, from now
on, we assume that w_ = 0. So, for ¢ € N, we have £, = 2bq. Moreover, (1)
becomes P(0 < wy < FE) ~ CE" for E > 0 small and P(0 > wy > —F) =0
for any £ > 0. Up to obvious modifications, the case wy = 0 is dealt with
in the same way.

We now recall some useful results from [5]. Pick a > 0 such that % e N.
Set L := (2n+1)a/2, n € N, and define the random 2LZ?-periodic potential

4 V@) = V@) = Y (Vala,)(@+7), =R
~ye2L72

For ¢ € N, let II; be the orthogonal projection onto the (¢ + 1)-st Lan-
dau level i.e. the orthogonal projection onto Ker(Hy — 2bg). Consider the
bounded operator II, V7 Il,. It is invariant by the Abelian group of mag-
netic translations generated by 2072 (see section 2 in [5]). Hence, HqVEE"Hq
admits an integrated density of states that we denote by p, 1., (E) (see [5]).
In [5], we have proved

Theorem 2 ([5]). Assume that hypotheses Hy — Hy hold and w_ = 0. Pick
q € N andn > 0. Then, there exist v >0, C > 1 and Ey > 0, such that for
each E € (0, Ey) and L > E~Y, we have

E (pg.1w(E/C)) —e P77 < N(2bg + E) — N (2bq)
< E (pg,L0(CE)) +e "

-n

As pg1w(E) is the IDS of the periodic operator IT,VP'Tl, at energy FE, it
vanishes if and only if o(IT, VP [ Tlg) N (—oo, E] # 0. Moreover, py 1. (E)
is bounded by C'L? where the constant C' is locally uniform in E (see [5]).
Thus, we get that, for some C > 0,

(5)  Elpgre(E) < CLP (a(,VPIT,) 0 (00, CE] #0).
Then, the estimate (3) and, thus, Theorem 1, is a consequence of

Theorem 3. Forn € (0,1), there exists C,, > 0 such that, for E sufficiently
small and L > 1, one has, for almost all w,

\logE|1*"log|logE|| per
(6) e HqVLqu
. _ 1-n
> inf , Z wg | —e |log E|*=1/Cy I1,.
cANor,NZ
TeA2L |8—~|<|log E|(1=m)/2

The proof of Theorem 3 relies on Lemma 3 which shows that, at the expense
of a small error in energy, we can “enlarge” the support of the single site
potential u. Lemma 3 is stated and proved in section 2.

Let us now use Theorem 3 to complete the proof of (3) and, thus, of The-
orem 1. Pick L < E~%, v given by Theorem 2 and fix n € (0,1) arbitrary.
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Thus, by Theorem 2, (5) implies that, for £ > 0 small,
(7) N(2bq + E) — N(2bq)
< CLIP (o (I,VESTL,) (1 (—00, CE] #0) + 727",

Using (6), as the random variables (w),ez2 are ii.d., for £ > 0 small, we
compute

P (o(I1,VP2TL,) 0 (—00, CE] # 0)

<P inf Z ws| — eI E['1/Cy  —|log E|/2
(8) vyeAL, NZ2
|B—7|<|log E|(1=m)/2

cortp| Y wp <o llsEC,
|B|<|log E|(1=m)/2

Recall that, by (1), as w— = 0, one has P(0 < wy < E) ~ CE" and
P(0 > wy > —FE) = 0 for £ > 0 small. Hence, by a classical standard large
deviation result (see e.g. [2]), we obtain that

(5 wzaee) <o,
|B|<|log E|(1=m)/2
Thus, as L < E~7, this, (7) and (8) yield, for £ > 0 small,
N (2bg + E) — N'(2bq) < Cpe~ 1108 B2/
As this bound holds for any n > 0, we obtain (3) and, thus, complete the
proof of Theorem 1. O

2. THE PROOF OF THEOREM 3

Recall that, for ¢ € N, II, is the orthogonal projection on the eigenspace
of Hy corresponding to 2bq, the (¢ + 1)-st Landau level of Hy. We recall

Lemma 1 ([7]). Pickp > 1 and let V € LP(R?) be radially symmetric.
Let (pg 1 (V))ken be the eigenvalues of the compact operator 11,VII, repeated
according to multiplicity.
Then, for k € N, one has
tq (V) = (Vg i, Pg,k)
where

e the functions g ) are given by

q' (b (k—q+1)/2 )
Pq.k(T) == ] <§> (1 + ixg)k_ngk_Q) (b|x|2/2) e~blzl*/4,
k!

for x = (w1, 22) € R,

° L,(kaq) are the generalized Laguerre polynomials given by

q l

l=max{0,g—k} -
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e (-,-) denotes the scalar product in L?(R?).

Finally, for k € N, a normalized eigenfunctions of I1,V1l, corresponding to
the eigenvalue g (V') is equal to g . In particular, the eigenfunctions are
independent of V.

We denote by D(z, R) the disk of radius R > 0, centered at x € R%. We set
Vak(R) = g k(1p,r)) Wwhere 14 is the characteristic function of the set A.

Lemma 2. Fir ¢ € N. Define o = o(R) := bR?/2 and
B—QQ—Q-H-{-k (k — p)Zq—l

Pick B € (0,2). Let f:[1,400) = [1,400) be such that
(10) K2 =208y 4k f7R(R) — 0.
k—+o0

Then, there exists kg > 1 and C > 0 such that, for k > kg,
vgr(R) ka1 k
) < .
<0 (a5 * i

(11) sup
Vo r(R)
This lemma is an extension of Corollary 2 in [1] to a larger range of radii R.

R>0
o(R)<k—f(k)

-1

Proof of Lemma 2. By Lemma 1, passing to polar coordinates (r,6) in the
integral (1p(o,r)%qks Pqk) and changing the variable br?/2 = £, the eigen-
values v, 1 (R) of the operator I1;1p g g1, are written as

vau(R) = Z: / e [Lf9(e)] e e

For ¢ = 0, we have

1 _ e_ggk+1 1 o _
(12) v.k(R) = k:'/ fk £d§_T/O ePtklog(1—t) 71

Now, using a Taylor expansion at 0 and the concavity of t — pt+klog(1—t),

write
1 (k—p) 1
/ ept—f—k log(1—t) dt = / ept-l—klog(l—t)dt +/ ept—f—k 10g(1_t>dt
0 0 (k—p)=h/2

(k—p)=B/2
- / e~ (k=p)t (1 + O(k(k — p)—ﬁ)) dt
0

+0 <e*(k*f’>175/2>
1 k
‘k—p+0<w—pWH>

This and (12) yields (11) when ¢ = 0.
Consider now the case ¢ > 1. For some C; > 0, one has

k Cy
s —s) -1 < =1
" (q—é’)(q ) ‘_ k

-B/2

(13) VE > 1, sup
s€{0,-..,q}
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In order to check (11), we assume that & > ¢. In this case, using (13), we
compute
q
q! l+m1<k>< k >/Q£k+m+l
Ve k(R) = — -1 — e sgh d¢
(14) ok () k!l;O( ) mil\g—1)\g—m/ J
= V(k,q) + R(k,q)

where
Vi(k,q) = € i (—1)+m 4 (1) p2a-1-m /ge—ﬁgk—q-i-m-l—ldg
’ klq! l)\m 0
(15) 1,m=0
— L Qe—égk—q (k — S)Qq d¢
klq! Jo )
and
C 1 d q q o
R(k < Z4___ qu—l—m/ —Egh—q+m+l g
rikal < S S (9)(2) [ cegummiige
(16) I,m=0
c, 1 4
< 4 - —£ck—q 29 g¢.
S Twg ), €8 TR OT
For p < k — f(k), using (10), one computes
[R(k, q)| k241
17 0.
( ) V(k,Q) o f2q(k) k—>—-i>-oo

On the other hand, as in the case ¢ = 0, we have

J A S e (R R 0
0

where

1 2q
Hhop) = [ - (1+,<%ps> de.

The function t — pt + (k — q) log(1 —t) + 2qlog <1 + %t) is concave on
—p
[0,1] and its derivative at 0 is

p—Fk+a+2ap/(k—p)=(p—k) (1+Ok(k—p)?).
Hence, as in the case ¢ = 0, we obtain that

1 k
1) = 25 +0 (o)

Plugging this into (15), using (17) and (16), and replacing in (14), we ob-
tain (11) for ¢ > 1.
This completes the proof of Lemma 2. O

We will now use Lemma 2 to derive the “enlargement of obstacles” lemma
for the Landau-Anderson model; we prove

Lemma 3. Let ¢ € N and fit b > 0. Fix e > 0. There exists Cy > 0 and
Ry > 1 such that, for each R > Ry,

— 2 _p2
(18) Mylpelly > e P8R <Hq1D(o,R)Hq —e " /COquD(O,ZR)HQ> :
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This lemma is basically Lemma 2 in [1] except that we want to control the
behavior of the constants coming up in the inequality in terms of R.

Proof of Lemma 3. We fix § € (0,1). Recall Lemma 2, in particular (11)
and (9). Pick C > 2b and set kg = ko(R) := CR2. Let f satisfy (10).
Hence, there exists Ry > 0 such that, for R > Ry and k > ko = ko(R), one
has k — f(k) > p(R). Thus, Lemma 2 implies that, for R € [R/2,2R)], one
has

e R (R (k= p(R)P

(w)(1_® 7’ 8 S
e R g(R)F—0+1 (k — p(R))%~!
< (1+9) J i .
We show that, if R > Ry, then, the operator inequality
(20) 41001y > C1 (1o, p) 1Ty — Colly1 p(o 2m)y)
holds with the following constants:
[}
(21) C = : V‘]yk(e) > ief2CR2 logR;

= min
ke{0,...ko} Vg p(R) — Co

the lower bound holds for sufficiently large R and, as kg = CR?, is
a consequence of (9) and (11) written for vy ,(e);
[ ]

1+9 C N\ atko—qtl).—o(R)+o2R) — .—R2/C
(22) CEM:———< ) g-2(ko—a+1) —e(R)+e(2R) < ,~F2/Co,
T 1 s\

the upper bound holds for sufficiently large R and follows from kg >
p(2R).
By Lemma 1, the operators II;1p o)1y, IIg1p(o,r) g, and I;1p(02r) 1Ly,
are reducible in the same basis {¢,;}ren. Hence, in order to prove (20),

it suffices to check that, for each k € N, the following numerical inequality
holds

(23) Vg k(e) 2 C1 (Vg h(R) = Coq v k(2R))
If k < ko, then (23) holds as v, x(g) > Civgk(R) by (21). As ko < CR? for
C > 2band p = bR%/2, or k > kg, one has C(k— p(QR)) (C=2b)(k—p(R)).
Thus, by (19) and (22), we have
—2Wo(R)~T (k — p(R)* " o(R)"

q! k!

(1 + 6 (kO*qul)e*Q(R)JrQ(?R) ( C(k’ — p(QR)) >2q1
5 (€ =2b)(k — p(R))

e p(2R) o+ (k — p<R>>2q—1@<2R>k>

Ver(R) = Coqug1n(2R) < (1 +6)°

x(1—9) J o

. 5)6*953) (k — p(l?))zqkllg(QR)'qurl 92(q1) <2—2k B 2—2k0> .
q !
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Hence, we find that vy ,(R) — Covg 1 (2R) < 0 if £ > ko, which again implies
(23). This completes the proof of Lemma 3. O

We now prove Theorem 3.
The magnetic translations for the constant magnetic field problem in two-
dimensions are defined as follows (see e.g. [8]). For any field strength b € R,
any vector o € R?, the magnetic translation by «, say, U, 3 is defined as

UL f(z) i= eZ (102020 oz £ a) | € CF°(R?).
The invariance of Hy with respect to the group of magnetic translations
(U2) ez implies that, for v € Z2, one has

(24) USquD(O,E)HqUE«/ = quD(%e)Hq-
Hypothesis H; on the single-site potential u guarantees that there exists
e € (0,1/2) so that V, > Z Wy1p(y,e)- Plugging this into (4), we get

v€Z?

(25) VES> D Y wilbgase)
"/GQLZQ BeNy,NZ2

Fix n € (0,1) and pick R =< |log E|(*~"/2, Lemma 3 and (24) imply that
Oy R? _R?
Hglpeelly > e Cofttlos <Hq1D(%R)Hq —e " /COHQID(%QR)HQ) :

Hence, as the random variables (w,),ecz2 are bounded, this and (25) imply
that
CoR2%log R CoR%log R
cPRIERIT VPOTT, > @R os RN N T 1 piys 0T,
~E2LZ? BeNar NZ2

2 Z Z WﬁﬂqlD(wﬁ,R)Hq
’Y€2LZQ BeEAy,NZ2

—R2/C
= Ce /N Y Mlppper)]
~E2LZ? BeNar, NZ2

_ 2
= Z Z we Z 1, y<1y2dly — Ce R /CORQHq
~E2LZ2 BENo L, NZ2 lv—y—B|<R/2

. 2 —R?/C
> “/GAI?LfﬂW Z wg | —CR% /Co 11,
[B—~I<R/2

Taking into account R =< |log E](lfn)/ 2 this completes the proof of Theo-
rem 3.
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