
MIT Programming Contest Problems

Feb. 26, 2005

1

This page was intentionally left blank.

2

1 Requirements

An undergraduate student, realizing that he needs to do research to improve his chances
of being accepted to graduate school, decided that it is now time to do some independent
research. Of course, he has decided to do research in the most important domain: the require-
ments he must fulfill to graduate from his undergraduate university. First, he discovered (to
his surprise) that he has to fulfill 5 distinct requirements: the general institute requirement,
the writing requirement, the science requirement, the foreign-language requirement, and the
field-of-specialization requirement. Formally, a requirement is a fixed number of classes that
he has to take during his undergraduate years. Thus, for example, the foreign language
requirement specifies that the student has to take 4 classes to fulfill this requirement: French
I, French II, French III, and French IV. Having analyzed the immense multitude of the
classes that need to be taken to fulfill the different requirements, our student became a little
depressed about his undergraduate university: there are so many classes to take...

Dejected, the student began studying the requirements of other universities that he might
have chosen after high school. He found that, in fact, other universities had exactly the same
5 requirements as his own university. The only difference was that different universities had
different number of classes to be satisfied in each of the five requirement.

Still, it appeared that universities have pretty similar requirements (all of them require
a lot of classes), so he hypothesized that no two universities are very dissimilar in their
requirements. He defined the dissimilarity of two universities X and Y as |x1 − y1| + |x2 −
y2|+|x3−y3|+|x4−y4|+|x5−y5|, where an xi (yi) is the number of classes in the requirement
i of university X (Y) multiplied by an appropriate factor that measures hardness of the
corresponding requirement at the corresponding university.

Your task is to verify the hypothesis by finding the two universities that have the highest
dissimilarity.

Input

The first line of the input file contains an integer n (1 ≤ N ≤ 100000), the number of
considered universities. The following N lines each describe the requirements of a university.
A university X is described by the five non-negative real numbers x1 x2 x3 x4 x5.

Output

On a single line, print the dissimilarity value of the two most dissimilar universities. Your
answer should be rounded to exactly two decimal places.

3

Example

Sample Input

3

2 5 6 2 1.5

1.2 3 2 5 4

7 5 3 2 5

Sample Output

12.80

4

2 Constructing Roads

In the days of yore, Han was a prosperous kingdom. But at the turn of the century, hard
times fell upon the kingdom. A plague swept through the land, and barbarians galloped in
from the north, burning farms, destroying roads, and pillaging villages. All that remained
were a few isolated strongholds scattered throughout the land. It has now been nearly a
decade since the last wave of barbarians stormed through, and the land breathes a sigh of
relief. People are becoming revitalized with the hope that they can once again transform
the kingdom back into its former glory.

Since all the roads were destroyed, the strongholds were left in isolation, so the first order
of business was to build a network of roads connecting all the strongholds. Each stronghold
thought it would be a reasonable plan to start by building a road to the closest stronghold
near it. If there were two strongholds of equal distance, the stronghold whose name comes
before the other in the dictionary would be chosen. Each stronghold builds at its own rate,
measured in feet/hour. Because they wished to finish as soon as possible, construction
happened 24 hours a day, continuously advancing the construction site (the end of the road)
towards the destination. Of course, construction on a road would stop if the road ran into
another road or a city. At the beginning of the New Year, there was a big celebration, and
all the strongholds began construction at the same time.

Little did the people of Han know that the barbarians had again infiltrated their kingdom
and were carefully observing the progress of the roads. The barbarians were curious about
the progress of the roads. In particular, they wanted answers to two type of questions.

1. After exactly t hours since construction began on the New Year, what is the absolute
minimum length of additional roads that still need to be built in order to connect all
cities? These additional roads are allowed to join two cities, two construction sites, or
a city and a construction site.

2. What is the fewest number of hours that must elapse since the New Year before the
minimum length of additional roads that still need to be built is at most l?

Write a program to answer these questions given Han’s construction plan.

Input

There will be several test cases, each representing a possible scenario for Han. The first
line of each test case will contain a positive integer number N , the number of strongholds
(1 ≤ N ≤ 2000). Each of the subsequent N lines will contain a description of a stronghold:
a name consisting of letters ‘a’...‘z’, the x and y coordinates of the position of the stronghold
(in feet), and the construction rate (in feet/hour). The next lines will contain questions.
The first integer on the line is either 1 or 2, representing the type of question. For type 1
questions, the next number is t, the time (in hours) in question. For type 2 questions, the
next number is l, the length (in feet) in question. The questions will be terminated by a line
with 0.

The input data is terminated by a line that contains one zero, and should not be processed.

5

Output

For each test case, output the answers to each question, formatted as in the sample output.
If for question 2, at no point in time will there be only l feet of construction left, then
print NEVER. All numeric answers should be printed to as many decimal places as you feel
necessary. To get credit for the problem, however, your answer must be within 0.01 of our
answer.

Example

Sample Input

4

portland 0 0 3

seattle 0 10 2

newyork 20 6 1

boston 20 0 1

1 0

1 2.0

1 3.0

2 29

2 1.0

0

2

bree -10 -10 1

buckland 10 10 2

1 5

0

0

Sample Output

Kingdom 1

36.000 feet left at time 0.000

22.000 feet left at time 2.000

20.000 feet left at time 3.000

1.000 hours before 29.000 feet left

NEVER

Kingdom 2

13.284 feet left at time 5.000

End

6

3 A City of Skyscrapers

Modern cities often contain densely packed skyscrapers arranged neatly on a rectangular
grid of streets and avenues. Skytown is no exception. The city has grown tremendously in
the past few years. New skyscrapers, ever taller than previous skyscrapers, are constantly
being erected with great haste. The skyscrapers have all been constructed identically, of
course with the exception that some skyscrapers are taller than others. According to city
regulations, each floor of a skyscraper has some minimum and maximum capacity, c and
C, respectively. At least c people are required to live on a floor to ensure that the floor is
utilized to its full potential. At most C people are permitted to live on a floor to prevent
overcrowding.

Because Skytown has grown so fast, the mayor wanted to boast about the city’s soaring
population. The only problem is that he hasn’t the faintest clue how many people live in
Skytown. He has put you in charge of estimating the city’s population. Of course, being a
programmer, you seek a programming solution and do not want to go around the entire city
asking how many people live on each floor. You come up with the following simple strategy:
you will record the skyline as viewed from from both the south and the west. The skyline
from the south is computed as follows: for each line of skyscrapers running north-south, the
highest one in that line is recorded.

Given this data, compute the minimum and maximum number of people that could be
living Skytown.

Input

The first line contains four integers, M (1 ≤ M ≤ 100, 000), N (1 ≤ N ≤ 100, 000), c

(0 ≤ c ≤ 500), and C (c ≤ C ≤ 500), where M is the dimension of the grid in the north-
south direction, N is the dimension of the grid in the east-west direction, c and C are the
minimum and maximum number of people allowed per floor.

Each of the next M lines contains exactly one integer in [0, 20000]. Together, they specify
the western skyline. After this, the next N lines specify the southern skyline in the same
way.

Output

The output contains the minimum and maximum number of people that could be living in
Skytown. Both numbers are guaranteed to fit in a 32-bit signed integer. If the two skylines
specified in the input are consistent, that is, cannot possibly describe a possible configuration
of skyscrapers, print “Impossible” on a single line.

7

Example

Sample Input

5 10 10 20

2

4

6

8

10

1

2

3

4

5

6

7

8

9

10

Sample Output

Minimum: 550, maximum: 4100

8

4 The Traveling Salesman

For thousands of years, salesmen have faced the problem of touring sites for potential cus-
tomers, visiting each site exactly once, and minimizing the total cost of this tour. In the
old days, these sites were towns spread out throughout the country, and the salesman had
to travel the rickety, crooked roads that connected the towns. But now, in 2030, cities and
have modernized and grown, so a salesman typically stays within the same city. Further-
more, modern cities are laid out in a grid-like pattern of tall skyscrapers, with sky bridges
joining some pairs of adjacent skyscrapers on all floors.

The salesman has determined which floor of each skyscraper contains the most potential
customers and will only visit the best floor of each skyscraper. Now the salesman must
plan his course. Starting on the ground floor (floor 0) of the skyscraper in the northwest
corner of the grid, the salesman must visit the specified best floor of each skyscraper before
returning to the ground floor of either of the skyscrapers at the southwest, southeast, or
northeast corners. In order to travel between floor 10 of one skyscraper and floor 6 of an
adjacent skyscraper, the salesman first takes the sky bridge across to floor 10 of the adjacent
skyscraper and then takes an elevator down 4 floors. Of course, because the salesman’s time
is precious, he wants to minimize the total number of floors he must travel by elevator. For
example, if his tour involves traveling from floor 3 to 8 to 5 to 10, the number of floors
traveled by elevator is (8 − 3) + (8 − 5) + (10 − 5) = 13.

To make the salesman’s life (and yours) more difficult, some sky bridges do not exist
between two adjacent skyscrapers, and in that case, obviously the salesman cannot fly across
the gap.

Because modern cities are much larger than the small towns that salesmen dealt with
generations ago, our salesman needs a plan so that he does not lose his bearings and visit
a skyscraper more than once (in which case he will get beaten by the people for pestering
them so much) or less than once (in which case he might have lost profit). To that end, the
salesman has decided to only consider tours similar to the one in the figure. The salesman
starts at the northwest corner, and either goes south or east for any distance (as long as
all sky bridges exist along that path). Then, he turns towards away from the edge of the
city and travels to the adjacent skyscraper, and turns again, heading back opposite the
initial direction. After any amount of zig-zagging, the salesman can choose to switch over
to zig-zagging in the other orientation.

Given the floors of each skyscraper in the city that the salesman wishes to visit and which
sky bridges do not exist, compute the minimum number of floors that the salesman must
travel on a tour that meets the above criteria. Also, print out the number of possible tours
achieving that minimum.

Input

The first line contains two numbers M (1 ≤ M ≤ 1000) and N (1 ≤ N ≤ 1000), the
dimensions of the city. Each of the next M lines contains N integers in the range [0, 100].
Each integer is the floor that the salesman must visit. Optionally following each integer

9

might be a token specifying that some sky bridges do not exist. Suppose you just read the
floor for location (x, y) (note that (0, 0) is the northwest corner, (N − 1, 0) is the northeast
corner, (0, M −1) is the southwest corner, and (N −1, M −1) is the southeast). If the token
is x, no sky bridges exist between (x, y) and (x+1, y). If the token is y, no sky bridges exist
between (x, y) and (x, y + 1). All tokens and integers are separated by a single space.

start

end

Output

If there is no tour, print No solution. Otherwise, print out the number of tours and the
minimum number of floors travelled.

Example

Sample Input

2 4

0 y 10 20 30

5 8 25 28

Sample Output

1 tours, traveling a minimum of 60 total floors

10

5 Dialing Dice

In a certain gambling town, dice have become so popular that they are even used to dial
phone numbers. Each face of a six-faced die has a single digit printed on it. The dialing
process works as follows. Given a phone number, which is simply a string of digits, one dials
the first digit of the number by placing the die on the dialing board. The digit on the bottom
face of the die is automatically dialed. To dial the next digit, the die is turned over so that
one of the adjacent sides is now on the bottom. Again the digit on the new bottom face is
dialed. The procedure continues until all the digits of the target phone number are dialed.

Unfortunately, as you might imagine, there are quite a few problems with this dialing
method. First, the standard dice (with faces labeled 1 through 6) are not capable of dialing
certain crucial numbers such as 911. To remedy this situation, people were allowed to
“program” their dice by choosing any digits to place on the faces (two faces may contain the
same digit).

As it turns out, this remedy still does not fully solve the problem, since no die can dial
1234567 (there are 7 digits, but only 6 sides on a die). When this was discovered, the people
threw up their hands along with their dice and went back to their gambling. A few days of
mulling over the problem lead to a new solution: people would be only required to dial a
number that has small discrepancy with respect to the number that they really want to dial.
The discrepancy between the two numbers is the minimum number of additions, deletions,
or substitutions of digits required to transform one number into the other. For example, the
discrepancy between 91 and 911 is 1, between 12399 and 1499 is 2, etc.

People often wondered about the optimal way to program their dice. Your task is to
write a program to help them out. Given a target number N , program a die so that the die
can be used to dial some number N ′, where the discrepancy between N and N ′ is minimized.
Note that the die can be programed with any digits, regardless of the target phone number.

(You might notice other difficulties with this dialing system, but those are to be solved
in a future task.)

Input

Each line of the input contains exactly one phone number of length 1 ≤ N ≤ 100. While
the number may contain any digits from 0 to 9, a given number contains at most 7 distinct
digits.

Output

For each number, output the minimum discrepancy that can be obtained by any die and
the 6 digits on the die that achieves that discrepancy. Sort the digits in ascending order. If
there are ties, print out the sequence of digits that is lexicographically smallest.

11

Example

Sample Input

000

000112222

1233456

Sample Output

Dice 1: discrepancy is 0, digits used: 0 0 0 0 0 0

Dice 2: discrepancy is 0, digits used: 0 0 1 1 2 2

Dice 3: discrepancy is 1, digits used: 1 2 3 3 4 5

12

6 Procrastination

Once upon a time, there were two graduate students that were best friends. During their
short breaks from research (usually, not longer than several hours), the two students liked
to play the game of Procrastination.

The game of Procrastination is for two players (black and white), who take turns moving.
The game involves removing cubes from towers. Each cube is either black or white. At the
start of the game, these cubes are arranged into 4 towers: each tower is a stack of several
cubes. On a player’s turn, he can remove any cube that matches his color (the white player
removes only white cubes, and the black player only removes black cubes). All the cubes
above the chosen cube are also removed from the tower, irrespective of color. For example,
suppose a tower is composed of the following cubes (from bottom to top): black, white,
black, white. Then, if black removes the bottom-most black cube, he removes the entire
tower; black can also take the 3rd cube, removing the 4th cube with it. If white removes
the 2nd cube, then only one black cube will remain; white can also take the 4th cube. If a
player cannot remove any cubes, he loses.

Having already been trained in the intricacies of the game during their undergraduate
years, the two students learned to play the game perfectly, i.e., if a player had a winning
strategy, then that player would win the game. However, at some time, they discovered that,
for most starting configurations, one of the players has the winning strategy irrespective of
which player moves first. They called a configuration a W-configuration if white has a winning
strategy irrespective of who moves first, and a B-configuration if black has a winning strategy
irrespective of who moves first.

Moreover, the friends noted that some partial configurations are at least as favorable
for one player as other configurations. A partial configuration C is defined as a set of 3
towers; note that a partial configuration C together with a 4th tower T forms a complete
game configuration, which we denote as (C, T). A formal definition of the notion “at least
as favorable” is as follows. A partial configuration C1 (composed of 3 towers) is at least as

favorable for white as another partial configuration C2 (also composed of 3 towers) if and only
if for any 4th tower T , if (C2, T) is a W-configuration then (C1, T) is also a W-configuration.
In other words, there does not exist a 4th tower T such that (C1, T) is not a W-configuration
and (C2, T) is a W-configuration.

Given two partial configurations C1 and C2, you are to check whether C1 is at least as
favorable for white as the partial configuration C2.

Input

The first line of the input contains an integer, the number of test cases. A test case includes
one line with Test N, where N is the current test case number followed by eight lines, speci-
fying the two partial configurations C1 and C2 in this order. Each configuration is specified
by four lines.

The first line of the partial configuration contains three numbers: n1, n2, n3 denoting the
heights of the three towers of the partial configuration (0 ≤ n1, n2, n3 ≤ 50). The second

13

line contains n1 letters (B or W) separated by spaces describing the first tower. The third line
contains n2 letters separated by spaces describing the second tower. The fourth line contains
n3 letters separated by spaces describing the third tower. A letter W denotes a white cube
and the letter B denotes a black cube. Each tower is described in the bottom-to-top order.

Output

For each test case, print on a separate line the test case number and Yes if C1 is at least as
favorable for white as the partial configuration C2, and No otherwise.

Example

Sample Input

2

Test 1

3 3 1

W B B

W B W

B

3 3 3

B W W

B W W

W B B

Test 2

3 3 2

W B B

W B W

B B

3 3 3

B W W

B W W

W B B

Sample Output

Test 1: Yes

Test 2: No

14

7 Coneology

A student named Round Square loved to play with cones. He would arrange cones with
different base radii arbitrarily on the floor and would admire the intrinsic beauty of the
arrangement. The student even began theorizing about how some cones dominate other
cones: a cone A dominates another cone B when cone B is completely within the cone
A. Furthermore, he noted that there are some cones that not only dominate others, but
are themselves dominated, thus creating complex domination relations. After studying the
intricate relations of the cones in more depth, the student reached an important conclusion:
there exist some cones, all-powerful cones, that have unique properties: an all-powerful cone
is not dominated by any other cone. The student became so impressed by the mightiness of
the all-powerful cones that he decided to worship these all-powerful cones.

Unfortunately, after having arranged a huge number of cones and having worked hard
on developing this grandiose cone theory, the student become quite confused with all these
cones, and he now fears that he might worship the wrong cones (what if there is an evil cone
that tries to trick the student into worshiping it?). You need to help this student by finding
the cones he should worship.

Input

The input file specifies an arrangement of the cones. There are in total N cones (1 ≤ N ≤
40000). Cone i has radius and height equal to Ri, i = 1 . . . n. Each cone is hollow on the
inside and has no base, so it can be placed over another cone with smaller radius. No two
cones touch.

The first line of the input contains the integer N . The next N lines each contain three
real numbers Ri, xi, yi separated by spaces, where (xi, yi) are the coordinates of the center
of the base of cone i.

Output

The first line of the output file should contain the number of cones that the student should
worship. The second line contains the indices of the cones that the student should worship
in increasing order. Two consecutive numbers should be separated by a single space.

15

Example

Sample Input

5

1 0 -2

3 0 3

10 0 0

1 0 1.5

10 50 50

Sample Output

2

3 5

16

8 Explaining the Stock Market

Mark Stockle has taken interest in analyzing the stock market. Recently, he has focused on
a particular company’s stock. He observes the price of this stock over a period of N days.
Then, he stares at these numbers for a long time and tries to identify the patterns and trends
in the price. For example, he might notice that near the beginning of the N days, the price
was decreasing, but then it steadily rising later. Or he might notice that generally the price
was going up with the occasional daily dip. However, he was unable to come up with any
rigorous or general approach for analyzing the stock.

One day, his friend suggested the following strategy: he ought to break up the problem
of explaining N days of prices into smaller manageable subproblems. In particular, he would
divide up the N days into K sets, and explain each set using a single hypothesis. Note that
the days in a set do not have to be contiguous.

In his machine learning class, Mark learned the power of Occam’s Razor, which was that
simple hypotheses that explain the data tend to generalize better on future data. It was so
important for him to have simple hypotheses that he only allowed two types of hypotheses:
that the prices of the stock on the days in a set would not increase or not decrease over time.
Of course, there must be at least two days per set, since it does not make sense to explain
the stock price of one day by itself. Lastly, the most important method to impose simplicity
was to have as few hypotheses as possible, i.e. minimize K.

Input

The first line contains N (1 ≤ N ≤ 30), the number of days for which Mark has collected
stock prices. The next N lines contain N integers in the range [0, 100], one on each line.
These integers represent the stock prices over N days.

Output

On a single line, output K, the minimum number of hypotheses needed to explain the stock
data. If it is impossible to explain the data using K hypotheses as described above, simply
output 0.

17

Example

Sample Input

8

1

6

3

5

4

2

7

0

Sample Output

2

18

