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EXTREMAL DOMAINS OF BIG VOLUME FOR THE FIRST EIGENVALUE OF THE LAPLACE-BELTRAMI OPERATOR IN A COMPACT MANIFOLD

We prove the existence of new extremal domains for the first eigenvalue of the Laplace-Beltrami operator in some compact Riemannian manifolds of dimension n ≥ 2. The volume of such domains is close to the volume of the manifold. If the first eigenfunction φ 0 of the Laplace-Beltrami operator over the manifold is a nonconstant function, these domains are close to the complement of geodesic balls centered at a nondegenerate critical point of φ 0 . If φ 0 is a constant function and n ≥ 4, these domains are close to the complement of geodesic balls centered at a nondegenerate critical point of the scalar curvature.

Introduction and statement of the main result

Let (M, g) be an n-dimensional Riemannian manifold, Ω a (connected and open) domain in M with smooth boundary, and λ Ω the first eigenvalue of -∆ g (the Laplace-Beltrami operator) in Ω with 0 Dirichlet boundary condition. The domain Ω 0 ⊂ M is said to be extremal if Ω -→ λ Ω is critical at Ω 0 with respect to variations of the domain Ω 0 which preserve its volume. P. R. Garabedian and M. Schiffer proved in [START_REF] Garadedian | Variational problems in the theory of elliptic partial differetial equations[END_REF] that a domain Ω 0 is extremal in the Euclidean space R n if and only if its first eigenfunction of the Laplacian with 0 Dirichlet boundary condition has a constant Neumann data at the boundary. In the Euclidean space, extremal domains are then characterized as the domains for which the over-determined system (1)

         ∆ u + λ u = 0 in Ω u = 0 on ∂Ω ∂u ∂ν = constant on ∂Ω
has a positive solution (here ν is the outward unit normal vector field along ∂Ω). By a classical result due to J. Serrin the only domains for which the system (1) has a positive solution are round balls, see [START_REF] Serrin | A Symmetry Theorem in Potential Theory[END_REF]. In the Euclidean space, round balls are in fact not only extremal domains, but also minimizers for the first eigenvalue of the Laplacian with 0 Dirichlet boundary condition. This follows from the Faber-Krahn inequality,

(2)

λ Ω ≥ λ B n (Ω)
where B n (Ω) is a round ball of R n with the same volume as Ω, because equality holds in [START_REF] Aubin | Nonlinear analysis on manifolds. Monge-Ampre equations[END_REF] if and only if Ω = B n (Ω), see [START_REF] Faber | dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt[END_REF] and [START_REF] Krahn | Über eine von Raleigh formulierte Minimaleigenschaft der Kreise[END_REF]. The result of J. Serrin, based on the moving plane argument introduced by A. D. Alexandrof in [START_REF] Alexandrov | Uniqueness theorems for surfaces in the large, I. (Russian)[END_REF], use strongly the symmetry of the Euclidean space, and naturally it fails in other geometries. The classification of extremal domains is then achieved in the Euclidean space R n , but it is completely open in a general Riemannian manifold.

Some new examples of extremal domains for the first eigenvalue of the Laplace-Beltrami operator in some Riemannian manifolds have been obtained in [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF] by F. Pacard and P. Sicbaldi. Such new domains have small volume and are close to geodesic balls centered at a nondegenerate critical point of the scalar curvature of the manifold (the existence of at least a nondegenerate critical point of the scalar curvature is required in order to build such domains). Such result has been generalized to a general compact Riemannian manifold by E. Delay and P. Sicbaldi [START_REF] Delay | Extremal domains for the first eigenvalue in a general compact Riemannian manifold[END_REF], by eliminating the assumption of the existence of a nondegenerate critical point of the scalar curvature of the manifold. In fact, it was quite natural to expect that a small domain close to a geodesic ball could be an extremal domain in a Riemannian manifold, because a Riemannian metric is locally close to the Euclidean one. The real difficulty was to find the point of the manifold where such small topological ball had to be centered in order to be an extremal domain, and this point is a nondegenerate critical point of the scalar curvature if it exists (see [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF]) or the critical point of an other special function depending on curvatures (see [START_REF] Delay | Extremal domains for the first eigenvalue in a general compact Riemannian manifold[END_REF]).

The previous results have been inspired by some parallel results on the isoperimetric problem. The solutions of the isoperimetric problem

I κ := min Ω⊂M : Vol Ω=κ
Vol ∂Ω are (where they are smooth enough) constant mean curvature hypersurfaces. O. Druet proved in [START_REF] Druet | Sharp local isoperimetric inequalities involving the scalar curvature[END_REF] that for small volumes (i.e. κ > 0 small), the solutions of the isoperimetric problem are close to geodesic spheres of small radius centered at a point where the scalar curvature is maximal. Independently, R. Ye built in [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF] constant mean curvature topological spheres which are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature, and F. Pacard and X. Xu generalized such a construction in compact manifolds that do not have any nondegenerate critical point of the scalar curvature, see [START_REF] Pacard | Constant mean curvature sphere in riemannian manifolds[END_REF]. Now, it is well known (see [START_REF] Faber | dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt[END_REF], [START_REF] Krahn | Über eine von Raleigh formulierte Minimaleigenschaft der Kreise[END_REF] and [START_REF] Krahn | Uber Minimaleigenschaften der Kugel in drei und mehr dimensionen[END_REF]) that the determination of the isoperimetric profile I κ is related to Faber-Krahn minimizers, where one looks for the least value of the first eigenvalue of the Laplace-Beltrami operator amongst domains with prescribed volume

F K κ := min Ω⊂M : Vol Ω=κ λ Ω
Observe that a solution to this minimizing problem (when it is smooth) is an extremal domain.

The result of F. Pacard and P. Sicbaldi can be considered the parallel of the result of R. Ye in the context of extremal domains, as the result of E. Delay and P Sicbaldi is in some sense the parallel of the result of F. Pacard and X. Xu. Moreover, paralleling his result about the isoperimetric problem, O. Druet obtained in [START_REF] Druet | Asymptotic expansion of the FaberKrahn profile of a compact Riemannian manifold[END_REF] that for small volumes (i.e. κ > 0 small), the Faber-Krahn minimizers are close to geodesic balls of small radius centered at a point where the scalar curvature is maximal.

For arbitrary volume, the situation is much more complex and very few results are known (see for example the proof of the existence of new nontrivial extremal domains in flat tori in [START_REF] Sicbaldi | New extremal domains for the Laplacian in flat tori[END_REF], the study of the shape of such domains in [START_REF] Schlenk | Bifurcating extremal domains for the first eigenvalue of the Laplacian[END_REF], and the concavity condition for extremal domains in flat tori obtained in [START_REF] Ros | Geometry and topology of some overdetermined elliptic problems[END_REF]). In this paper we give an existence result for extremal domains of big volume in a compact Riemannian manifold. We build new examples of extremal domains, that cannot be topological balls because of the condition on the volume. In fact, the examples of extremal domains we build are the complement of small topological balls. In particular, the novelty is that the geometry and the topology of such domains can be arbitrary.

We will present now the main result of this paper. The manifold M is supposed to be compact and can be a manifold with or without boundary. If ∂M = ∅, then ∂M is supposed to be an (n -1)-dimensional Riemannian manifold with the induced metric. Let Ω 0 be a domain in the interior M of M and let us consider the domain M \Ω 0 , where Ω 0 denotes the closure of Ω 0 . Definition 1.1. We say that {M \Ω t } t∈(-t0,t0) , Ω t ⊆ M , is a deformation of M \Ω 0 if there exists a vector field Ξ (such that Ξ(∂M ) ⊆ T (∂M ), where T (∂M ) is the tangent bundle of ∂M ) for which M \Ω t = ξ(t, M \Ω 0 ) where ξ(t, •) is the flow associated to Ξ, namely dξ dt (t, p) = Ξ(ξ(t, p)) and ξ(0, p) = p .

The deformation is said to be volume preserving if the volume of M \Ω t does not depend on t.

Let us denote by λ t the first eigenvalue of -∆ g on M \Ω t with 0 Dirichlet boundary condition on ∂Ω t . If ∂M = ∅, we ask also one of the following boundary conditions:

(1) 0 Dirichlet boundary condition on ∂M , or (2) 0 Neumann boundary condition on ∂M .

We will suppose the regularity of ∂M . Observe that both t → λ t and the associated eigenfunction t → u t (normalized to have L 2 (M \Ω t ) norm equal to 1) are continuously differentiable, and we can give the following: Definition 1.2. The domain M \Ω 0 is an extremal domain for the first eigenvalue of -∆ g if for any volume preserving deformation {M \Ω t } t∈(-t0,t0) of M \Ω 0 , we have

dλ t dt | t=0 = 0 .
Let φ 0 be the first eigenfunction of the Laplace-Beltrami operator over the manifold M , i.e. the positive solution in M of ∆ g φ 0 + λ 0 φ 0 = 0 for a nonnegative constant λ 0 , normalized to have L 2 -norm equal to 1. If ∂M = ∅, then we take the same boundary condition on ∂M considered in the definition of extremal domains. Here λ 0 is the first eigenvalue of -∆ g on M under the boundary condition that has been chosen. If the volume of Ω is very small, it is natural to expect that the first eigenfunction of the Laplace-Beltrami operator over M \ Ω is close to φ 0 . We remark that we have to distinguish two cases of behaviour of φ 0 (and then also of the first eigenfunction over M \Ω), according with the condition at the boundary:

• CASE 1. If ∂M = ∅ and φ 0 satisfies the 0 Dirichlet condition on ∂M then φ 0 is a positive nonconstant function. Moreover λ 0 > 0.

• CASE 2. If ∂M = ∅, or if ∂M = ∅ and φ 0 satisfies the 0 Neumann condition on ∂M , then φ 0 is a constant function

φ 0 = 1 Vol g (M )
and λ 0 = 0. As we said previously, for the first eigenfunction of the Laplace-Beltrami operator over M \ Ω, where Ω ⊂ M , we take the same boundary condition of φ 0 at ∂M , and we will distinguish the two cases above, CASE 1 and CASE 2.

For all > 0 small enough, we denote by B (p) ⊂ M the geodesic ball of center p ∈ M and radius . We denote by B ⊂ R n the Euclidean ball of radius centered at the origin.

We can state the main result of our paper: Theorem 1.3. In the CASE 1 assume that p 0 is a nondegenerate critical point of the first eigenfunction φ 0 of the Laplace-Beltrami operator over M , and in the CASE 2 assume that p 0 is a nondegenerate critical point of Scal, the scalar curvature function of (M, g). In the CASE 2 we assume also n ≥ 4. Then, for all > 0 small enough, say ∈ (0, 0 ), there exists a smooth domain Ω ⊂ M such that:

(i) The volume of Ω is equal to the Euclidean volume of B .

(ii) The domain M \Ω is extremal in the sense of definition 1.2. Moreover there exists a constant c > 0 and for all ∈ (0, 0 ) there exists a point p ∈ M such that the boundary of Ω is a normal graph over ∂B (p ) for some function w , with

dist(p , p 0 ) ≤ c and w C 2,α (∂B (p )) ≤ c 2 in the CASE 1 and n ≥ 3 w C 2,α (∂B (p )) ≤ c 2 log in the CASE 1 and n = 2 w C 2,α (∂B (p )) ≤ c 3 in the CASE 2 and n ≥ 5 w C 2,α (∂B (p )) ≤ c 3 log in the CASE 2 and n = 4
Let us digress slightly. Firstly, with respect to the result of F. Pacard and P. Sicbaldi in [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF], a new phenomena appears: there are two types of extremal domains, those that are the complement of a small perturbed geodesic ball centered at a nondegenerate critical point of the function φ 0 and those that are the complement of a small perturbed geodesic ball centered at a nondegenerate critical point of the scalar curvature. It is important to remark that the construction of the first type of domains depends on a global condition (the existence of a nondegenerate critical point of φ 0 ) while the construction of the second type of domains depends on a local condition (the existence of a nondegenerate critical point of the scalar curvature of the manifold). Although the statement of the result in the CASE 2 appears very similar to the result of F. Pacard and P. Sicbaldi in [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF], it is quite surprising the fact that the global geometry of the manifold does not have a rôle in the construction of such last domains. Moreover, for the CASE 2 the construction of extremal domains is different with respect to that of [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF] and technically much more difficult. The technique used in [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF] is based on the fact that the first eigenfunction of the Laplace-Beltrami operator on the perturbation of a small geodesic ball is a perturbation of the first eigenfunction of the Euclidean Laplacian on a small ball, and such a function is very well known. But these facts fail when the domain is the complement of a small ball in a Riemannian manifold, and an other approach is needed. We remark also that the construction of the second type of domains requires the existence of the nondegenerate critical point of the scalar curvature function. For example, our result in CASE 2 cannot be applied when the manifold M is a bounded region of R n . For this last case, the global geometry of the domain appears.

To complete this section, we present two open problems, linked to the previous result. Open problem 1. Theorem 1.3 does not give any information in the CASE 2 for the dimensions 2 and 3. In fact, in order to prove the main theorem for the CASE 2, we need some local estimations of a Green function on the manifold M . When the dimension of M is at least 4, we are able to compute the first coefficients of the local expansion of such Green function, but for the dimensions 2 and 3, other terms (depending on the global geometry of the manifold) appear (see section 6). It will be interesting to adapt the proof of Theorem 1.3 to the CASE 2 for the dimensions 2 and 3, and we suspect that the global geometry of the manifold plays an important rôle in such cases.

Open problem 2. It will be interesting to know if the obtained extremal domains are or not Faber-Krahn minimizers, in the class of domains with the same volume. We recall that the existence of minimizers for the first eigenvalue of the Laplace-Beltrami operator was proved by G. Buttazzo and G. Dal Maso in [START_REF] Buttazzo | An existence result for a class of Shape Optimization Problems[END_REF] when the manifold is a bounded domain of the Euclidean space R n , and the proof of this result should be working also for a compact Riemannian manifold.
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Characterization of the problem

In order to prove our theorem we need the following result that caracterizes extremal domains of the form M \Ω, where Ω is a bounded domain in a Riemannian manifold M . The following result gives a formula for the first variation of the first eigenvalue for some mixed problems under variations of the domain. A similar result is obtained in [START_REF] Soufi | Domain deformations and eigenvalues of the Dirichlet Laplacian in Riemannian manifold[END_REF]. Our proof is based on some arguments of D. Z. Zanger contained in [START_REF] Zanger | Eigenvalue variation for the Neumann problem[END_REF].

Keeping in mind the notation of the previous section, we have the: Proposition 2.1. The derivative of t -→ λ t at t = 0 is given by

dλ t dt | t=0 = - ∂Ω0 (g(∇u 0 , ν 0 )) 2 g(Ξ, ν 0 ) dvol g ,
where dvol g is the volume element on ∂Ω 0 for the metric induced by g and ν 0 is the normal vector field about ∂Ω 0 .

Proof : We denote by ξ the flow associated to Ξ. By definition, we have

(3) u t (ξ(t, p)) = 0
for all p ∈ ∂Ω 0 . Moreover, if we take a 0 Dirichlet boundary condition on ∂M , then equation (3) holds also on ∂M . On the other hand, if we take a 0 Neumann condition on ∂M , then we have (4) g(∇u t (ξ(t, p)), ν t ) = 0 for all p ∈ ∂M , where ν t is the unit normal vector about ∂M .

Differentiating (3) with respect to t and evaluating the result at t = 0 we obtain

∂ t u 0 = -g(∇u 0 , Ξ)
on ∂Ω 0 . Now, u 0 ≡ 0 on ∂Ω 0 , and hence only the normal component of Ξ plays a rôle in this formula. Therefore, we have (5) ∂ t u 0 = -g(∇u 0 , ν 0 ) g(Ξ, ν 0 ) on ∂Ω 0 . The same reasoning holds on ∂M if we take a 0 Dirichlet boundary condition on ∂M . In this case, by the fact that Ξ(∂M ) ⊆ T (∂M ), we have (6) ∂ t u 0 = 0 on ∂M . On the other hand, if we take a 0 Neumann condition on ∂M , then it is possible to choose a system of coordinates x = (x 1 , ..., xn) such that ν t = -∂ x 1 on ∂M and differentiating (4) with respect to t and evaluating the result at t = 0 we obtain

(7) 0 = -∂ x 1 ∂ t u 0 -g(∇∂ x 1 u 0 , Ξ) = -∂ x 1 ∂ t u 0 = g(∇∂ t u 0 , ν 0 )
on ∂M , where we used the fact that ν t does not depend on t on ∂M together with the facts that ∂ x 1 u 0 = 0 on ∂M and that g(Ξ, ν 0 ) = 0 on ∂M because Ξ(∂M ) ⊆ T (∂M ). Now, we differentiate with respect to t the identity (8) ∆ g u t + λ t u t = 0 and we evaluate the result at t = 0. We obtain

(9) ∆ g ∂ t u 0 + λ 0 ∂ t u 0 = -∂ t λ 0 u 0
in Ω 0 . We multiply (9) by u 0 , and ( 8), evaluated at t = 0, by ∂ t u 0 , subtract the results and integrate it over Ω 0 to get:

∂ t λ 0 Ω0 u 2 0 dvol g = M \Ω0 (∂ t u 0 ∆ g u 0 -u 0 ∆ g ∂ t u 0 ) dvol g = ∂M ∪∂Ω0 (∂ t u 0 g(∇u 0 , ν 0 ) -u 0 g(∇∂ t u 0 , ν 0 )) dvol g = ∂Ω0 (∂ t u 0 g(∇u 0 , ν 0 ) -u 0 g(∇∂ t u 0 , ν 0 )) dvol g + ∂M (∂ t u 0 g(∇u 0 , ν 0 ) -u 0 g(∇∂ t u 0 , ν 0 )) dvol g = - ∂Ω0 (g(∇u 0 , ν 0 )) 2 g(Ξ, ν 0 ) dvol g ,
where we have used ( 5), ( 6) or [START_REF] Soufi | Domain deformations and eigenvalues of the Dirichlet Laplacian in Riemannian manifold[END_REF], the fact that u 0 = 0 on ∂Ω 0 , and the the fact that u 0 = 0 or g(∇u 0 , ν 0 ) = 0 on ∂M . The result follows at once from the fact that u 0 is normalized to have L 2 (Ω 0 ) norm equal to 1. Observe that in the previous argument ∂M can be empty.

This result allows us to characterize extremal domains for the first eigenvalue of the Laplace-Beltrami operator under our particular 0 mixed boundary conditions, and states the problem of finding extremal domains into the solvability of an over-determined elliptic problem. The proof of the following proposition is a direct consequence of the previous result and we do not report it (see also Proposition 2.2 in [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF]). Proposition 2.2. Given a smooth domain Ω 0 contained in the interior of M , the domain M \Ω 0 is extremal if and only if there exists a constant λ 0 and a positive function u 0 (if ∂M = ∅ we take a 0 Dirichlet (CASE 1) or a 0 Neumann (CASE 2) boundary condition on ∂M ) such that

(10)          ∆ g u 0 + λ 0 u 0 = 0 in M \Ω 0 u 0 = 0 on ∂Ω 0 g(∇u 0 , ν 0 ) = constant on ∂Ω 0 ,
where ν 0 is the normal vector field about ∂Ω 0 pointing into Ω 0 .

Therefore, in order to find extremal domains, it is enough to find a domain M \Ω 0 (regular enough) for which the over-determined problem [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften[END_REF] has a nontrivial positive solution. In this paper we will solve this problem to find domains M \Ω 0 whose volume is close to the volume of the compact manifold M .

Rephrasing the problem

Given a point p ∈ M we denote by E 1 , . . . , E n an orthonormal basis of the tangent plane to M at p. Geodesic normal coordinates x := (x 1 , . . . , x n ) ∈ R n at p are defined by

X(x) := Exp g p   n j=1 x j E j  
We recall the Taylor expansion of the coefficients g ij of the metric X * g in these coordinates. Proposition 3.1. At the point of coordinate x, the following expansion holds:

(11) g ij = δ ij + 1 3 k, R ikj x k x + 1 6 k, ,m R ikjl,m x k x x m + O(|x| 4 )
Here R is the curvature tensor of g and

R ikj = g R(E i , E k ) E j , E R ikj ,m = g ∇ Em R(E i , E k ) E j , E
are evaluated at the point p.

The proof of this proposition can be found in [START_REF] Willmore | Riemannian Geometry[END_REF] or also in [START_REF] Schoen | Lectures on Differential Geometry[END_REF].

It will be convenient to identify R n with T p M (the tangent space at p) and S n-1 with the unit sphere in T p M . If x := (x 1 , . . . , x n ) ∈ R n , we set

Θ(x) := n i=1 x i E i ∈ T p M .
Given a continuous function f : S n-1 -→ (0, ∞) whose L ∞ norm is small (say less than the cut locus of p) we define

B g f (p) := Exp p (Θ(x)) : x ∈ R n 0 ≤ |x| ≤ f (x/|x|) .
The superscript g is meant to remind the reader that this definition depends on the metric.

Our aim is to show that, for all > 0 small enough, we can find a point p ∈ M and a function v :

S n-1 -→ R such that Vol B g (1+v) (p) = n
Vol B1 where B1 is the unit (closed) Euclidean ball, and the over-determined problem

(12)          ∆ g φ + λ φ = 0 in M \ B g (1+v) (p) φ = 0 on ∂B g (1+v) (p) g(∇φ, ν) = constant on ∂B g (1+v) (p) with 0 Dirichlet (CASE 1) or 0 Neumann (CASE 2) boundary condition on ∂M if ∂M = ∅, has a positive solution, where ν is the normal vector about ∂B g (1+v) (p) pointing into B g (1+v) (p).
Observe that, considering the dilated metric ḡ := -2 g, the above problem is equivalent to finding a point p ∈ M and a function v : S n-1 -→ R such that Vol B ḡ 1+v (p) = Vol B1 and for which the over-determined problem

         ∆ ḡ φ + λ φ = 0 in M \B ḡ 1+v (p) φ = 0 on ∂B ḡ 1+v (p) ḡ(∇ φ, ν) = constant on ∂B ḡ 1+v (p) with 0 Dirichlet (CASE 1) or 0 Neumann (CASE 2) boundary condition on ∂M if ∂M = ∅,
has a positive solution, where ν is the normal vector field about ∂B ḡ 1+v (p) in the metric ḡ. We can simply consider φ = φ (naturally it will not have the norm equal to 1, but depending on ) and

λ = -2 λ .
In what it follows we will consider sometimes the metric g and sometimes the metric ḡ, in order to simplify the computations we will meet.

The first eigenfunction outside a small ball

The positive solution of the problem (13)

∆ g φ + λ φ = 0 in M \ B g (p) φ = 0 on ∂B g (p) with 0 Dirichlet (CASE 1) or 0 Neumann (CASE 2) condition on ∂M if ∂M = ∅, normalized to have L 2 (M \ B g (p)
)-norm equal to 1, a priori is not known.

Let p ∈ M , let c n be a constant, and let Γ p be a Green function over M with respect to the point p defined by ( 14)

-∆ g + λ 0 Γ p = c n δ p -φ 0 (p) φ 0 in M
with 0 Dirichlet boundary condition (for the CASE 1) or 0 Neumann boundary condition (for the CASE 2) at ∂M if ∂M = ∅, and normalization

M Γ p φ 0 dvol g = 0,
where δ p is the Dirac distribution for the manifold M with metric g at the point p. We remark that Γ p exists because

M [δ p -φ 0 (p) φ 0 ] φ 0 dvol g = 0.
It is easy to check that for each dimension n of the manifold it is possible to choose the constant c n in order to have the following expansions of Γ p in a neighborhood of the point p in the geodesic normal coordinates x:

(15) for n = 2 : Γ p (x) = log |x| + o(log |x|) for n ≥ 3 : Γ p (x) = |x| 2-n + o(|x| 2-n )
For our problem it will be very useful to consider weighted Hölder spaces

C k,α δ (M \ {p}), δ ∈ R, defined as the spaces of functions in C k,α (M \ {p}) such that, in the normal geodesic coordinates x around p, u C k,α δ (M \{p}) := sup BR 0 |x| -δ |u| + sup BR 0 |x| 1-δ |∇u| + sup BR 0 |x| 2-δ |∇ 2 u| + • • • + + sup BR 0 |x| k-δ |∇ k u| + sup 0<R≤R0 sup x,y∈ BR \ BR/2 R k+α-δ ∇ k u(x) -∇ k u(y) |x -y| α < ∞.
where R 0 is a small positive constant chosen in order to have the existence of the local coordinates in B g R0 (p). For a clear exposition of the basic facts and properties of such weighted Hölder spaces and the theory of elliptic operator between weighted Hölder spaces we remind to the chapter 2 of [START_REF] Pacard | Linear and nonlinear aspects of vortices: the Ginzburg Landau model[END_REF] (see also [START_REF] Pacard | Lectures on Connected sum constructions in geometry and nonlinear analysis[END_REF], [START_REF] Mazzeo | Constant scalar curvature metrics with isolated singularities[END_REF] and [START_REF] Pacard | Attaching handles to constant mean curvature one surfaces in hyperbolic 3-space[END_REF]).

Let us consider ϕ ∈ C 2,α m (S n-1 ), where m is meant to point out that functions have 0 (Euclidean) average over S n-1 , and let H ϕ be a bounded harmonic extension of ϕ to R n \ B1 :

(16)    ∆ g H ϕ = 0 in R n \ B1 H ϕ = ϕ on ∂ B1
where g is the Euclidean metric and we identified ∂ B1 with S n-1 . We have the: Lemma 4.1. The following estimate holds:

H ϕ (x) C 2,α 1-n (R n \ B1) ≤ c ϕ C 2,α (S n-1
) for some positive constant c. In particular

lim |x|→+∞ H ϕ (x) = 0. Proof. Let us consider ϕ = ∞ j=1 ϕ j the eigenfunction decomposition of ϕ, i.e. ( 17 
) ∆ S n-1 ϕ j = -j(n -2 + j) ϕ j
It is easy to check that

H ϕ (x) = ∞ j=1 |x| 2-n-j ϕ j (x/|x|)
is the solution of ( 16). Let us fix |x|. We have

(18) |H ϕ (x)| ≤ ∞ j=1 |x| 2-n-j |ϕ j (x/|x|)| = |x| 1-n |ϕ 1 (x/|x|)| + ∞ j=2 |x| 2-n-j |ϕ j (x/|x|)| Now, we estimate ϕ j L ∞ (S n-1 )
. From [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF] we have

ϕ j W 2k,2 (S n-1 ) ≤ c j k (n -2 + j) k ϕ j L 2 (S n-1 )
and by the Sobolev Embedding Theorem we have that W 2k,2 (S n-1 ) ⊆ L ∞ (S n-1 ) when 4k > n-1.

We conclude that there exists a positive number P (n) depending only on the dimension n such that

ϕ j L ∞ (S n-1 ) ≤ c j P (n) ϕ j L 2 (S n-1 ) Moreover ϕ j 2 L 2 (S n-1 ) ≤ ϕ 2 L 2 (S n-1 ) ≤ Vol g (S n-1 ) ϕ 2 L ∞ (S n-1 )
and we can conclude that there exists a constant c such that

ϕ j L ∞ (S n-1 ) ≤ c j P (n) ϕ L ∞ (S n-1 )
From ( 18) we get

|H ϕ (x)| ≤ c |x| 1-n ϕ L ∞ (S n-1 )   1 + ∞ j=2 |x| 1-j j P (n)   It is easy to check that for |x| ≥ 2 ∞ j=2 |x| 1-j j P (n) < ∞
and this allows us to conclude that for |x| ≥ 2 there exists a constant c such that

(19) |H ϕ (x)| ≤ c |x| 1-n ϕ L ∞ (S n-1 )
By the maximum principle this inequality is valid also for 1 ≤ |x| ≤ 2. Standard elliptic estimates apply to give also

(20) |∇H ϕ (x)| ≤ c |x| -n ϕ L ∞ (S n-1 )
Finally, [START_REF] Ros | Geometry and topology of some overdetermined elliptic problems[END_REF] and [START_REF] Schoen | Lectures on Differential Geometry[END_REF] give the following estimate

H ϕ (x) C 2,α 1-n (R n \ B1) ≤ c ϕ C 2,α (S n-1 ) for some constant c. From (19) it is clear that lim |x|→+∞ H ϕ (x) = 0.
This completes the proof of the Lemma.

Let us define a continuous extension of H ϕ to R n in this way :

Hϕ (x) =          0 for |x| ≤ 1 2 (2|x| -1) H ϕ x |x| for 1 2 ≤ |x| ≤ 1 H ϕ (x) for R n \ B1
and let us denote

H ϕ, (x) = H ϕ x and Hϕ, (x) = Hϕ x .
Let χ be a cutoff function defined in M , identically equal to 1 for |x| ≤ R 0 (where x are the normal geodesic coordinates at p) and identically equal to 0 in M \ B g 2R0 (p). The main result of this section is the following:

Proposition 4.2. Let n ≥ 3 and δ ∈ (2 -n, min{4 -n, 0}
). For all small enough there exists (Λ , ϕ , w ) in a neighborhood of (0, 0, 0) in R×C 2,α m (S n-1 )×C 2,α δ (M \{p})) such that the function

(21) φ = φ 0 -n-2 (φ 0 (p) + Λ ) Γ p + w + χ Hϕ , (considered in M \ B g (p)
), is a positive solution of ( 13) where

(22) λ = λ 0 + c n φ 0 (p) 2 n-2 + O( n-1 ).
Moreover the following estimations hold:

• If φ 0 is not a constant function (CASE 1) then there exists a positive constant c such that

|Λ | + ϕ L ∞ (S n-1 ) ≤ c and w C 2,α δ (M \{p}) ≤ c ( 2n-4 + n + 3-δ ) • If φ 0 is a constant function (CASE 2
) then there exists a positive constant c such that

|Λ | + ϕ L ∞ (S n-1 ) ≤ c if n = 3 |Λ | + ϕ L ∞ (S n-1 ) ≤ c β ∀β < 2 if n = 4 |Λ | + ϕ L ∞ (S n-1 ) ≤ c 2 if n ≥ 5 and w C 2,α δ (M \{p}) ≤ c 2 if n = 3 w C 2,α δ (M \{p}) ≤ c 4 if n = 4 w C 2,α δ (M \{p}) ≤ c 1+n + 4-δ if n ≥ 5
Proof. First we prove that

(23) λ -λ 0 = O( n-2 ).
By definition

(24) λ = min u∈H 1 0 (M \B g (p)) M \B g (p) |∇ g u| 2 dvol g M \B g (p) u 2 dvol g
Let us consider a sequence of functions u j ∈ H 1 0 (M \ B g (p)) converging to the function

u * (x) =    |x| -1 φ 0 2 x |x| in B g 2 (p) \ B g (p) φ 0 in M \ B g 2 (p) It is easy to check that M \B g (p) u 2 * dvol g = M φ 2 0 dvol g + O( n ) while M \B g (p) |∇u * | 2 dvol g = M |∇φ 0 | 2 dvol g + O( n-2 ).
From the last two relations and [START_REF] Willmore | Riemannian Geometry[END_REF] we have

(25) λ = λ 0 + n-2 µ
where µ = O(1), and then [START_REF] Sicbaldi | New extremal domains for the Laplacian in flat tori[END_REF].

Define φ = φ 0 -n-2 (φ 0 (p) + Λ) Γ p + w + χ Hϕ, for some (Λ, ϕ, w) ∈ R × C 2,α m (S n-1 ) × C 2,α (M \ {p}).
Then φ satisfies the first equation of ( 13) in M \ B g (p), with λ as in [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF], if and only if:

(26) ∆ g + λ 0 + n-2 µ w + n-2 µ -c n φ 0 (p) (φ 0 (p) + Λ) φ 0 + H ϕ, ∆ g χ + +χ ∆ g H ϕ, + 2 ∇ g H ϕ, ∇ g χ -2n-4 µ (φ 0 (p) + Λ) Γ p + (λ 0 + n-2 µ) χ H ϕ, = 0 in M \ B g (p)
. This equation can be considered in M \ {p} if we replace H ϕ, by Hϕ, , and ∆ g H ϕ, by a continuous extension ∆ g H ϕ, of ∆ g H ϕ, (such continuous extension can be defined in the same way of Hϕ, as a continuous extension of the function H ϕ, ). Remark that the term ∇ g H ϕ, ∇ g χ is 0 in a neighborhood of ∂B g (p), then it can be extended to 0 in B g (p).

We need the following:

Lemma 4.3. Let n ≥ 3.
The operator

∆ g + λ 0 + n-2 µ : C 2,α δ,⊥,0 (M \ {p}) -→ C 0,α δ-2,⊥ (M \ {p}),
where the subscript ⊥ is meant to point out that functions are L 2 -orthogonal to φ 0 and the subscript 0 is meant to point out that functions satisfy the 0 Dirichlet (in the CASE 1) or 0 Neumann (in the CASE 2) boundary condition on ∂M if ∂M = ∅, is an isomorphism for δ ∈ (2 -n, 0) and small enough.

Proof. Let δ ∈ (2 -n, 0) and n ≥ 3. For all f ∈ C 0,α δ-2 ( B1 \ {0}) there exists one and only one

solution u ∈ C 2,α δ ( B1 \ {0}) of (27)    ∆ g u = f in B1 \ {0} u = 0 on ∂ B1
.

The proof of this fact can be found in [START_REF] Pacard | Linear and nonlinear aspects of vortices: the Ginzburg Landau model[END_REF] or in [START_REF] Pacard | Lectures on Connected sum constructions in geometry and nonlinear analysis[END_REF]. Take the normal geodesic coordinates in B g R0 (p) (keep in mind that R 0 is small), and let f ∈ C 0,α δ-2 (M \ {p}). Considering the dilated metric R -2 0 g, the parameterization of B g R0 (p) given by

Y (y) := Exp g p R 0 i y i E i
and the ball B1 endowed with the metric ǧ = Y * (R -2 0 g), the existence and the unicity of a solution of the problem

(∆ g + λ 0 ) u = f in B g R0 \ {p} u = 0 on ∂B g R0
are equivalent to the existence and the unicity of a solution of the problem

   (∆ ǧ + R 2 0 λ 0 ) u = Y * f in B1 \ {0} u = 0 on ∂ B1 .
Considering that the difference between the coefficients of the metric ǧ and the metric g can be estimated by a constant times R 2 0 (see Proposition 3.1), the operator ∆ ǧ + R 2 0 λ 0 is a small perturbation of the operator ∆ g when R 0 is small. We conclude that there exists a positive R 0 (small enough) such that, when δ ∈ (2 -n, 0) and n ≥ 3, for all

f ∈ C 0,α δ-2 (M \ {p}) there exists a unique solution u ∈ C 2,α δ (B g R0 \ {p}) of (∆ g + λ 0 ) u = f in B g R0 \ {p} u = 0 on ∂B g R0 Now, consider the solution of (28) (∆ g + λ 0 ) v = f -(∆ g + λ 0 ) ( χ u)
with 0 Dirichlet boundary condition at ∂M , where χ is a cut-off function equal to 1 for |x| ≤ R 0 /2 and equal to 0 for |x| ≥ R 0 . We remark that this equation is well defined in M , because f and (∆ g + λ 0 ) ( χ u) have the same singularity at p. Moreover, if f is L 2 -orthogonal to φ 0 , then

f -(∆ g + λ 0 ) ( χ u) is L 2 -orthogonal to φ 0 .
Hence, there exists a unique solution v ∈ C 2,α ⊥,0 (M ) to (28), and we have

(∆ g + λ 0 ) ( χ u + v) = f in M \ {p}, with 0 Dirichlet condition at ∂M . Obviously w = χ u + v ∈ C 2,α δ,⊥ (M \ {p}). We conclude that for δ ∈ (2 -n, 0) and n ≥ 3 and for all f ∈ C 0,α δ-2,⊥ (M \ {p}) there exists a unique solution w ∈ C 2,α δ,⊥ (M \ {p}) of (∆ g + λ 0 ) w = f
in M \ {p} with 0 Dirichlet condition at ∂M . This result is still true for the operator ∆ g + λ 0 + n-2 µ when is small enough. The proof does not change if we consider the 0 Neumann boundary condition on ∂M instead of the 0 Dirichlet boundary condition. This completes the proof of the Lemma.

In order to semplify the notation we define

A := n-2 µ -c n φ 0 (p) (φ 0 (p) + Λ) φ 0 B := Hϕ, ∆ g χ + χ ∆ g H ϕ, + 2 ∇ g H ϕ, ∇ g χ C := -2n-4 µ (φ 0 (p) + Λ) Γ p D := (λ 0 + n-2 µ) χ Hϕ, We remark that Γ p ∈ C 0,α δ-2 (M \ {p}) if δ < 4 -n. Equation (26), extended to M \{p}, becomes (∆ g + λ 0 + n-2 µ) w = -(A + B + C + D)
By Lemma 4.3, if we choose µ in order to verify (29)

M (A + B + C + D) φ 0 = 0 , there exists a solution w( , Λ, ϕ) ∈ C 2,α δ,⊥,0 (M \ {p}) to equation (26) with δ ∈ (2 -n, min{0, 4 -n}) , for all Λ ∈ R, for all ϕ ∈ C 2,α m (S n-1
), and for all small enough, and then (30)

φ = φ 0 + n-2 (φ 0 (p) + Λ) Γ p + w( , Λ, ϕ) + χ H ϕ,
satisfies the first equation of ( 13) in M \B g (p). From (29) we get

µ = n-2 c n φ 0 (p) (φ 0 (p) + Λ) - M B φ 0 -λ 0 M χ Hϕ, φ 0 n-2 1 + M χ Hϕ, φ 0 It is easy to check that M B φ 0 ≤ c n-1 ϕ L ∞ (S n-1 )
and

M χ Hϕ, φ 0 ≤ c n-1 ϕ L ∞ (S n-1 )
from which it follows that

(31) µ = c n φ 0 (p) (φ 0 (p) + Λ) + O( ) ϕ L ∞ (S n-1 ) .
Then, using Lemma 4.1, we have the following estimations:

• A C 0,α δ-2 (M \{p}) ≤ c n-1 ϕ L ∞ (S n-1 ) • B C 0,α δ-2 (M \{p}) ≤ c ( n-1 + 2-δ ) ϕ L ∞ (S n-1 ) • C C 0,α δ-2 (M \{p}) ≤ c 2n-4 • D C 0,α δ-2 (M \{p}) ≤ c 2-δ + n-1 ϕ L ∞ (S n-1 )
In particular we get

A + B + C + D C 0,α δ-2 (M \{p}) ≤ c 2n-4 + n-1 ϕ L ∞ (S n-1 ) + 2-δ ϕ L ∞ (S n-1 ) and then w C 2,α δ (M \{p}) ≤ c 2n-4 + n-1 ϕ L ∞ (S n-1 ) + 2-δ ϕ L ∞ (S n-1 ) .
We have proved the following:

First intermediate result. Let δ ∈ (2 -n, 4 -n). For all Λ ∈ R, for all ϕ ∈ C 2,α m (S n-1
), for all small enough, there exists a function w( , Λ, ϕ) ∈ C 2,α δ,⊥,0 (M \ {p}) such that φ defined in (30) is a positive solution of the first equation of [START_REF] Mazzeo | Constant scalar curvature metrics with isolated singularities[END_REF]. Moreover there exists a positive constant c such that

(32) w C 2,α δ (M \{p}) ≤ c 2n-4 + n-1 ϕ L ∞ (S n-1 ) + 2-δ ϕ L ∞ (S n-1 )
.

We consider now the second equation of [START_REF] Mazzeo | Constant scalar curvature metrics with isolated singularities[END_REF]. Define

N ( , Λ, ϕ) := φ 0 ( y) -n-2 (φ 0 (p) + Λ) Γ( y) + w( , Λ, ϕ) ( y) + ϕ(y) y∈S n-1
We remark that N represents the boundary value of φ , is well defined in a neighborhood of (0, 0, 0) in [0, +∞) × R × C 2,α m (S n-1 ), and takes its values in C 2,α (S n-1 ). It is easy to compute the differential of N with respect to Λ and ϕ at (0, 0, 0):

∂ Λ N (0, 0, 0) ( Λ) = -Λ ∂ ϕ N (0, 0, 0) ( φ) = φ.
From the estimation of the function w it follows that

w L ∞ (∂B g (p)) ≤ δ w C 2,α δ (M \{p}) ≤ c 2n-4+δ + n-1+δ ϕ L ∞ (S n-1 ) + 2 ϕ L ∞ (S n-1 ) .
Then we can estimate N ( , 0, 0):

N ( , 0, 0) L ∞ (S n-1 ) ≤ φ 0 ( x) -n-2 φ 0 (p) Γ( x) L ∞ (S n-1 ) + w( , 0, 0) ( x) L ∞ (S n-1 )
Here we have again to distinguish two cases, according to the behaviour of the function φ 0 . If φ 0 is not a constant function (CASE 1) we have (using the expansion (15) of Γ p )

N ( , 0, 0) L ∞ (S n-1 ) ≤ c .
The same estimate is obtained if φ 0 is a constant function (CASE 2) and n = 3. In the CASE 2 and n = 4 we get N ( , 0, 0) L ∞ (S n-1 ) ≤ c β ∀β < 2 and when n ≥ 5:

N ( , 0, 0) L ∞ (S n-1 ) ≤ c 2
The implicit function theorem applies to give the:

Second intermediate result. Let δ ∈ (2 -n, min{4 -n, 0}
), and be small enough. Then there exists (Λ , ϕ ) in a neighborhood of (0, 0) in R × C 2,α m (S n-1 ) such that N ( , Λ , ϕ ) = 0 (i.e. φ defined in (30), with Λ = Λ and ϕ = ϕ , is a positive solution of ( 13)). Moreover the following estimations hold:

• If φ 0 is not a constant function (CASE 1) then

|Λ | + ϕ L ∞ (S n-1 ) ≤ c • If φ 0 is a constant function (CASE 2) then |Λ | + ϕ L ∞ (S n-1 ) ≤ c if n = 3 |Λ | + ϕ L ∞ (S n-1 ) ≤ c β ∀β < 2 if n = 4 |Λ | + ϕ L ∞ (S n-1 ) ≤ c 2 if n ≥ 5
From the first and second intermediate results, we get the following existence result: for all small enough there exists (Λ , ϕ , w ) in a neighborhood of (0, 0, 0 [START_REF] Serrin | A Symmetry Theorem in Potential Theory[END_REF], considered in M \ B g (p), is a positive solution of [START_REF] Mazzeo | Constant scalar curvature metrics with isolated singularities[END_REF]. Expansion [START_REF] Schlenk | Bifurcating extremal domains for the first eigenvalue of the Laplacian[END_REF] follows from [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF] and (31). Moreover:

) in R × C 2,α m (S n-1 ) × C 2,α δ (M \ {p})) such that
• If φ 0 is not a constant function (CASE 1) then there exists a positive constant c such that

|Λ | + ϕ L ∞ (S n-1 ) ≤ c
and from (32)

w C 2,α δ (M \{p})) ≤ c 2n-4 + n + 3-δ • If φ 0 is a constant function (CASE 2
) then there exists a positive constant c such that

|Λ | + ϕ L ∞ (S n-1 ) ≤ c if n = 3 |Λ | + ϕ L ∞ (S n-1 ) ≤ c β ∀β < 2 if n = 4 |Λ | + ϕ L ∞ (S n-1 ) ≤ c 2 if n ≥ 5
and from (32)

w C 2,α δ (M \{p}) ≤ c 2 if n = 3 w C 2,α δ (M \{p}) ≤ c 4 if n = 4 w C 2,α δ (M \{p}) ≤ c 1+n + 4-δ if n ≥ 5
This completes the proof of the result.

For the case n = 2 we can adapt the proof of the previuos proposition, obtaining the: Proposition 4.4. Let n = 2 and δ ∈ (0, 1). For all small enough there exists (Λ , ϕ , w ) in a neighborhood of (0, 0, 0

) in R × C 2,α m (S n-1 ) × χ R ⊕ C 2,α δ (M \ {p})
, where χ is some cut-off funtion equal to 1 in a neighborhood of the point p, such that the function

(33) φ = φ 0 -(log ) -1 (φ 0 (p) + Λ ) Γ p + w + χ Hϕ , considered in M \ B g (p)
, is a positive solution of ( 13) where

(34) λ = λ 0 + c n φ 0 (p) 2 (log ) -1 + o((log ) -1 ).
Moreover the following estimations hold: there exists a positive constant c such that

|Λ | + ϕ L ∞ (S n-1 ) ≤ c (log ) -1 and w χ R ⊕ C 2,α δ (M \{p}) ≤ c (log ) -2
Proof. We will follow the proof of the previous proposition, adapting it to the case of dimension 2. Take a sequence of functions u j ∈ H 1 0 (M \ B g (p)) converging to the function

u * (x) =      log 1 √ -1 log |x| • φ 0 √ x |x| in B g √ (p) \ B g (p) φ 0 (x) in M \ B g √ (p)
It is easy to check that

M \B g (p) u 2 * dvol g = M φ 2 0 dvol g + O( ) while M \B g (p) |∇u * | 2 dvol g = M |∇φ 0 | 2 dvol g + O((log ) -1 ).
Using [START_REF] Willmore | Riemannian Geometry[END_REF] we have

λ -λ 0 = O((log ) -1 ). Define φ = φ 0 -(log ) -1 (φ 0 (p) + Λ) Γ p + w + χ Hϕ, for some (Λ, ϕ, w) ∈ R × C 2,α m (S n-1 ) × C 2,α (M \ {p}).
Then φ satisfies the first equation of ( 13), with λ = λ 0 + (log ) -1 µ, if and only if (35)

∆ g + λ 0 + (log ) -1 µ w + (log ) -1 µ -c n φ 0 (p) (φ 0 (p) + Λ) φ 0 + Hϕ, ∆ g χ+ +χ ∆ g Hϕ, + 2 ∇ g Hϕ, ∇ g χ -(log ) -2 µ (φ 0 (p) + Λ) Γ p + (λ 0 + (log ) -1 µ) χ Hϕ, = 0 in M \ B g (p)
. This equation can be considered, after extension of functions as in equation ( 26), over M \ {p}.

Let χ be some cut-off funtion on the manifold M identically equal to 1 in B g R0 (p) and identically equal to 0 in M \B g R0 (p), and δ ∈ (0, 1). The operator

∆ g + λ 0 : R χ ⊕ C 2,α δ,⊥,0 (M \ {p}) -→ C 0,α δ-2,⊥ (M \ {p}),
where the subscript ⊥ is meant to point out that functions are L 2 -orthogonal to φ 0 and the subscript 0 is meant to point out that functions satisfy the 0 Dirichlet (in the CASE 1) or 0 Neumann (in the CASE 2) boundary condition on ∂M if ∂M = ∅, is an isomorphism. The same result holds for the operator

∆ g + λ 0 + (log ) -1 µ : R χ ⊕ C 2,α δ,⊥,0 (M \ {p}) -→ C 0,α δ-2,⊥ (M \ {p})
if is small enough. The proof of these facts is very similar to the proof of Lemma 4.3 (for other details see [START_REF] Pacard | Linear and nonlinear aspects of vortices: the Ginzburg Landau model[END_REF]).

In order to semplify the notation we define

A := (log ) -1 µ -c n φ 0 (p) (φ 0 (p) + Λ) φ 0 B := Hϕ, ∆ g χ + χ ∆ g Hϕ, + 2 ∇ g Hϕ, ∇ g χ C := -(log ) -2 µ (φ 0 (p) + Λ) Γ p D := (λ 0 + (log ) -1 µ) χ Hϕ,
We remark that Γ p ∈ C 0,α δ-2 (M \ {p}) when δ ∈ (0, 1). Equation ( 35) becomes

(∆ g + λ 0 + (log ) -1 µ) w = -(A + B + C + D)
If we choose µ in order to verify (36)

M (A + B + C + D) φ 0 = 0 there exists a solution w( , Λ, ϕ) = w (1) + w (2) ∈ χ R ⊕ C 2,α δ,⊥,0 (M \ {p}) of equation (35) for δ ∈ (0, 1), for all Λ ∈ R, for all ϕ ∈ C 2,α m (S n-1
), and for all small enough, and then (37)

φ = φ 0 -(log ) -1 (φ 0 (p) + Λ) Γ p + w( , Λ, ϕ) + χ H ϕ,
satisfies the first equation of [START_REF] Mazzeo | Constant scalar curvature metrics with isolated singularities[END_REF]. From (36) we get

µ = (log ) -1 c n φ 0 (p) (φ 0 (p) + Λ) - M B φ 0 -λ 0 M χ Hϕ, φ 0 (log ) -1 1 + M χ Hϕ, φ 0 It is easy to check that M B φ 0 ≤ c ϕ L ∞ (S n-1 )
and

M χ Hϕ, φ 0 ≤ c ϕ L ∞ (S n-1 ) Hence (38) µ = c n φ 0 (p) (φ 0 (p) + Λ) + O( log ) ϕ L ∞ (S n-1
) .

We want now to give some estimations on the function w. By the previous facts and Lemma 4.1 we have the following estimations:

• A C 0,α δ-2 (M \{p}) ≤ c ϕ L ∞ (S n-1 ) • B C 0,α δ-2 (M \{p}) ≤ c ϕ L ∞ (S n-1 ) • C C 0,α δ-2 (M \{p}) ≤ c (log ) -2 • D C 0,α δ-2 (M \{p}) ≤ c ϕ L ∞ (S n-1 )

In particular we get

A + B + C + D C 0,α δ-2 (M \{p}) ≤ c (log ) -2 + ϕ L ∞ (S n-1 )
where we used the fact that for small enough and δ ∈ (0, 1) we have 2-δ < . This gives us an estimation on the function w:

|w (1) | + w (2) C 2,α δ (M \{p}) ≤ c (log ) -2 + ϕ L ∞ (S n-1 ) .
We proved the following: First intermediate result. Let n = 2 and δ ∈ (0, 1). For all Λ ∈ R, for all ϕ ∈ C 2,α m (S n-1 ), for all small enough, there exists a function w( , Λ, ϕ) = w (1) + w (2) ∈ χ R ⊕ C 2,α δ,⊥,0 (M \ {p}) such that (37) is a positive solution of the first equation of [START_REF] Mazzeo | Constant scalar curvature metrics with isolated singularities[END_REF]. Moreover there exists a positive constant c such that

|w (1) | + w (2) C 2,α δ (M \{p}) ≤ c (log ) -2 + ϕ L ∞ (S n-1 )
Now, consider to the second equation of (13), i.e. the boundary condition. Define

N ( , Λ, ϕ) := φ 0 ( y) -(log ) -1 (φ 0 (p) + Λ) Γ( y) + w( , Λ, ϕ) ( y) + ϕ(y) y∈S n-1
We remark that N represents the boundary value of φ , it is well defined in a heighborhood of (0, 0, 0) in [0, +∞) × R × C 2,α m (S n-1 ), and takes its values in C 2,α (S n-1 ). The differential of N with respect to Λ and ϕ at (0, 0, 0) is:

∂ Λ N (0, 0, 0) ( Λ) = -Λ ∂ ϕ N (0, 0, 0) ( φ) = φ.
The previous estimations give us

w L ∞ (∂B g (p)) ≤ c (log ) -2 + ϕ L ∞ (S n-1 )
For N ( , 0, 0) we have:

N ( , 0, 0) L ∞ (S n-1 ) ≤ φ 0 ( y) -(log ) -1 φ 0 (p) Γ( y) L ∞ (S n-1 ) + w( , 0, 0) ( y) L ∞ (S n-1 )
and then

N ( , 0, 0) L ∞ (S n-1 ) ≤ c (log ) -1
The implicit function theorem applies to give the: Second intermediate result. Let n = 2, δ ∈ (0, 1) and be small enough. Then there exists

(Λ , ϕ ) in a neighborhood of (0, 0) is R × C 2,α m (S n-1
) such that N ( , Λ , ϕ ) = 0. Moreover the following estimation holds:

|Λ | + ϕ L ∞ (S n-1 ) ≤ c (log ) -1
The statement of the Proposition follows immediately from the two intermediate results and (38).

In order to simplify the next computations, in dimension 2 we will consider the following function as our positive solution of ( 13):

φ = log φ 0 -(log ) -1 (φ 0 (p) + Λ ) Γ p + w + χ H ϕ ,
Remark that this function, considered in the coordinates y = x, converges near p, in a sense to be made precise, to the function -φ 0 (p) log |y| when tends to 0.

Perturbing the complement of a ball

The following result follows from the implicit function theorem. Proposition 5.1. Given a point p ∈ M , there exists 0 > 0 and for all ∈ (0, 0 ) and all function v ∈ C 2,α (S n-1 ) satisfying v C 2,α (S n-1 ) ≤ 0 , and

S n-1 v dvol g = 0 , there exists a unique positive function φ = φ( , p, v) ∈ C 2,α (M \B g (1+v) (p)), a constant λ = λ( , p, v) ∈ R and a constant v 0 = v 0 ( , p, v) ∈ R such that Vol g (B g (1+v) (p)) = Vol g ( B ) where v := v 0 + v and φ is a solution of the problem (39)    ∆ g φ + λ φ = 0 in M \ B g (1+v) (p) φ = 0 on ∂B g (1+v) (p) which is normalized by setting (40) M \B g (1+v) (p)
φ 2 dvol g = 1.

In addition φ, λ and v 0 depend smoothly on the function v and the parameter .

Proof : We begin by proving that given a point p ∈ M , there exists 0 > 0 and for all ∈ (0, 0 ) and all function v ∈ C 2,α (S n-1 ) satisfying v C 2,α (S n-1 ) ≤ 0 , and

S n-1 v dvol g = 0 ,
there exists a unique constant

v 0 = v 0 ( , p, v) ∈ R such that (41) Vol g (B g (1+v) (p)) = Vol g ( B ) = n Vol g ( B1 )
where v := v 0 + v. Define the dilated metric ḡ = -2 g. Instead of working on a domain depending on the function v = v 0 + v, it will be more convenient to work on a fixed domain B1 := {y ∈ R n : |y| < 1}, endowed with a metric depending on the function v. This can be achieved by considering the parameterization of

B g (1+v) (p) = B ḡ (1+v) (p) given by Y (y) := Exp ḡ p 1 + v 0 + χ(y) v y |y| i y i E i
where χ is a cutoff function identically equal to 0 when |y| ≤ 1/2 and identically equal to 1 when |y| ≥ 3/4.

Hence (using the result of Proposition 3.1) the coordinates we consider from now on are y ∈ B1 and in these coordinates the metric ĝ := Y * ḡ can be written as

ĝ = (1 + v 0 ) 2   g + i,j C ij dy i dy j   ,
where the coefficients C ij ∈ C 1,α ( B ) are functions of y depending on , v = v 0 + v and the first partial derivatives of v. Moreover, C ij ≡ 0 when = 0 and v = 0. Observe that

( , v 0 , v) -→ C ij ( , v)
are smooth maps. Condition (41), when is small enough and not zero, is equivalent to

Vol ĝ ( B1 ) = Vol g ( B1 )
that makes sense also for = 0. When = 0 and v ≡ 0, the metric ĝ = (1 + v 0 ) 2 g is nothing but the Euclidean metric. We define

N ( , v, v 0 ) := Vol ĝ ( B1 ) -Vol g ( B1 )
Observe that N depends on the choice of the point p ∈ M . We have N (0, 0, 0) = 0.

It should be clear that the mapping N is a smooth map from a neighborhood of (0, 0, 0) in [0, ∞) × C 2,α m (S n-1 ) × R into a neighborhood of 0 in R.

We claim that the partial differential of N with respect to v 0 , computed at (0, 0, 0, 0), is given by ∂ v0 N (0, 0, 0) = n Vol g ( B1 ) Indeed, this time we have ĝ = (1 + v 0 ) 2 g since v ≡ 0 and = 0 and hence

N (0, 0, v 0 ) = ((1 + v 0 ) n -1) Vol g ( B1 )
So we get ∂ v0 N (0, 0, 0) = n Vol g ( B1 ) and the claim follows at once. Hence the partial differential of N with respect to v 0 , computed at (0, 0, 0) is precisely invertible from R into R and the implicit function theorem ensures, for all ( , v) in a neighborhood of (0, 0) in [0, ∞) × C 2,α m (S n-1 ), the existence of a (unique

) v 0 ∈ R such that N ( , v, v 0 ) = 0. When v 0 = 0, we can estimate ĝij = δ ij + O( 2 ) , hence N ( , 0, 0) = O( 2 )
. The implicit function theorem immediately implies that the solution of N ( , 0, v 0 ) = 0 satisfies |v 0 ( , p, 0)| ≤ c 2 . The fact that v 0 depends smoothly on the parameter and the function v is standard.

We have now, for all 0 < < 0 and all function v of mean 0, a function v = v( , p, v) ∈ C 2,α (S n-1 ) such that Vol g (B g (1+v) (p)) = Vol g ( B1 ) Then it is easy to find a solution (φ, λ) to the problem (39) and to multiply it by a constant in order to verify (40). The fact that φ and λ depend smoothly on the parameter and the function v is standard.

We will denote the function φ = φ( , p, v) as φ ,v , without noting the dependence on the point p. The same for eigenvalues: λ = λ ,v , and λ = λ ,v = 2 λ ,v . When n = 2, we take

φ ,v = log • φ( , p, v). Denote φ = φ ,v = Y * φ ,v
in a neighborhood of ∂B g (p). We will use such a notation through all the paper: for a general f considered in a neighborhood of ∂B g (p) we denote

f = Y * f
We define the operator F :

F (p, , v) = ĝ(∇ φ, ν)| ∂ B1 - 1 Vol ĝ (∂ B1 ) ∂ B1 ĝ(∇ φ, ν) dvol ĝ ,
where ν denotes the unit normal vector field about ∂ B1 with respect to the metric ĝ, and (φ, v 0 ) is the solution of (39) provided by Proposition 5.1.

Recall that v = v 0 + v. It is clear that F is well defined from a neighborhood of M × (0, 0) in M × (0, ∞) × C 2,α m (S n-1 ) into C 1,α m (S n-1
). But F can be defined also for = 0. In fact, from Propositions 4.2 and 4.4 we have that the first eigenfunction φ ,0 over M \ B g (1+v0) (p) is given by

φ ,0 = φ 0 -n-2 (1 + v 0 ) n-2 (φ 0 (p) + Λ ) Γ p + w + χ H ϕ , if n ≥ 3 φ ,0 = log( (1 + v 0 )) φ 0 -(log( (1 + v 0 ))) -1 (φ 0 (p) + Λ ) Γ p + w + χ H ϕ , if n = 2 where v 0 = v 0 (p, , 0) = O( 2 ), for some (Λ , w , ϕ ) ∈ R × C 2,α (M \ B ḡ 1+v0 (p)) × C 2,α m (S n-1
), where the estimations of Propositions 4.2 and 4.4 hold because v 0 = O( 2). If we consider these expressions only in a neighborhood of ∂B g (1+v0) (p) and the parameterization Y given in the proof of the Proposition 5.1 with coordinates y in a neighborhood of ∂ B1 , it is easy to see that the function φ0 = Y * φ 0 is equal to the constant function φ0 = φ 0 (p) when = 0 and then, by the expansion of the function Γ p and the estimations on (Λ , w , ϕ ), we have that when = 0 the function φ ,0 (y) is equal to

φ 1 (y) = φ 0 (p) (1 -|y| 2-n ) if n ≥ 3 φ 0 (p) log |y| if n = 2
In a neighborhood of ∂ B1 the metric ĝ converge, for = 0, to the Euclidean metric, and then F (p, 0, 0) is the normal derivative of φ 1 at ∂ B1 minus its Euclidean mean, hence equal to 0. Similarly, we can define F (p, 0, v). When v is small enough, φ ,v is close to φ ,0 , and if we consider it only in a neighborhood of ∂B g (1+v) (p) and the parameterization Y given in the proof of Proposition 5.1 with coordinates y in a neighborhood of ∂ B1 , when = 0 the function φ ,v (y) converges to the harmonic function on R n \ B1+v which has 0 boundary condition on ∂ B1+v and is asymptotic to φ 0 (p) at infinity for n ≥ 3 and to φ 0 (p) log |y| for n = 2. The fact that F depends smoothly on the function v is standard.

In summary, F is well defined from a neighborhood of M × (0, 0

) in M × [0, ∞) × C 2,α m (S n-1 ) into C 1,α m (S n-1
), and can be differentiated with respect to v. Moreover F (p, 0, 0) = 0. Our aim is to find (p, , v) such that F (p, , v) = 0. Observe that in this case φ will be the solution of problem (12).

Some estimates

Let us consider the normal geodesic coordinates x around p. Using the result of Proposition 3.1 it is easy to show that (42)

g ij = δ ij - 1 3 R ikj x k x - 1 6 R ikj ,m x k x x m + O(|x| 4 ) log |g| = 1 3 R k x k x + 1 6 R k ,m x k x x m + O(|x| 4 )
where

R k = n i=1 R iki and R k ,m = n i=1 R iki ,m
A straightforward calculation allows us to obtain the expansion of Γ p . Recall that

(43) ∆ g := i,j g ij ∂ xi ∂ xj + i,j ∂ xi g ij ∂ xj + 1 2 i,j g ij ∂ xi log |g| ∂ xj
The function Γ p is defined by [START_REF] Pacard | Lectures on Connected sum constructions in geometry and nonlinear analysis[END_REF]. Then locally Γ p = G 1 + G 2 where G 1 is locally a solution of

-∆ g + λ 0 G 1 = c n δ p and G 2 is locally a solution of -∆ g + λ 0 G 2 = -c n φ 0 (p) φ 0
Clearly, in the normal geodesic coordinates near p we have that

G 2 = a n + b n • x + O(|x| 2 )
where a n is a constant and b n is a n-dimensional vector. For the function G 1 it is possible to obtain an expansion near p starting from the solution G of

-∆ g G = -2 π δ 0 for n = 2 -∆ g G = (n -2) ω n-1 δ 0 for n ≥ 3
where ω n-1 is the Euclidean volume of S n-1 , and recall that g is the Euclidean metric. It is well known that G(x) = |x| 2-n for n ≥ 3 and G(x) = ln |x| for n = 2. Considering formulas [START_REF] Krahn | Über eine von Raleigh formulierte Minimaleigenschaft der Kreise[END_REF], ( 42) and (43), we obtain for n ≥ 5:

(44)

Γ p (x) = |x| 2-n + + 2 -n 18 R ikj x i x k x j x |x| -n - 1 12 R j x j x |x| 2-n + Scal(p) -6 λ 0 12(4 -n) |x| 4-n + + 2 -n 48 R ikj ,t x i x k x j x x t |x| -n + 1 36 R •kj ,• x k x j x |x| 2-n + - 1 24 R j ,t x j x x t |x| 2-n + Scal ,t 24(4 -n) x t |x| 4-n + a n + + O(|x| 6-n ).
When n = 4 we have (45)

Γ p (x) = |x| -2 + + - 1 9 R ikj x i x k x j x |x| -4 - 1 12 R j x j x |x| -2 + Scal(p) -6 λ 0 12 log |x| + + - 1 24 R ikj ,t x i x k x j x x t |x| -4 + 1 36 R •kj ,• x k x j x |x| -2 + - 1 24 R j ,t x j x x t |x| -2 + Scal ,t 24 
x t log |x| + + a 4 + b 4 • x + O(|x| α ),
for all α < 2. In the above expressions we used the notation

R •kj ,• := n i=1 R ikj ,i
To obtain such formulas, we used the symmetries of the Riemann tensor (-R kij = R ikj = R j ik , for every i, k, j, ), the facts that 44). As we will see, such a constant can be neglected in ours computations. If n = 4 the regular part of the Green function Γ p also is not completely included in the neglected term O(|x| α ), α < 2, but the only terms of such regular part not included are terms of order 0 and 1, i.e. a 4 + b 4 • x, see formula (45). As we will see, also in this case such terms can be neglected in ours computations. The fact that in our next computations the regular part of the Green function Γ p can be neglected for n ≥ 4 is a crucial ingredient, and by this fact we will obtain that in the CASE 2 only the local geometry of the manifold plays a rôle.

R iijl = 0, R iijl,t = 0, R i = R i , R ikji,t = R ikij,t (
For n = 2 and n = 3 we are not able to state a result in the CASE 2 exactly because, following our approach, in such dimensions the regular part of the Green function Γ p cannot be neglected. This is the reason for which in this section we do not give the expansion of Γ p for the dimensions 2 and 3 (it would be completely unuseful).

The main result of this section is the: Proposition 6.2. In the CASE 1 (i.e. when φ 0 is not constant) there exists a constant c > 0 such that, for all p ∈ M and all ≥ 0 small enough we have

F (p, , 0) C 1,α ≤ c if n ≥ 3 F (p, , 0) C 1,α ≤ c log if n = 2
Moreover there exists a constant C n (depending only on n), such that for all a ∈ R n the following estimates hold

S n-1 g(a, •) F (p, , 0) dvol g -C n g(∇φ 0 (p), Θ(a)) ≤ c 2 a if n ≥ 3 S n-1 g(a, •) F (p, , 0) dvol g -C n log g(∇φ 0 (p), Θ(a)) ≤ c 2 log a if n = 2
In the CASE 2 (i.e. when φ 0 is a constant function) there exists a constant c > 0 such that, for all p ∈ M and all ≥ 0 small enough we have

F (p, , 0) C 1,α ≤ c 2 if n ≥ 5 F (p, , 0) C 1,α ≤ c 2 log if n = 4
Moreover there exists a constant C n (depending only on n), such that for all a ∈ R n the following estimates hold:

S n-1 g(a, •) F (p, , 0) dvol g -C n 3 g(∇ Scal(p), Θ(a)) ≤ c 4 a if n ≥ 5 S n-1 g(a, •) F (p, , 0) dvol g -C n 3 log g(∇ Scal(p), Θ(a)) ≤ c 3 a if n = 4
Proof : Let be small enough, and v = 0. We know that v 0 = O( 2 ), then from Proposition 4.2 it follows that for all small enough there exists (Λ , ϕ , w ) in a neighborhood of (0, 0, 0) in

R × C 2,α m (S n-1 ) × C 2,α (M \ B g (p)
) such that the first eigenfunction of -∆ g over the complement of B g (1+v0) (p) with 0 Dirichlet condition at ∂B g (1+v0) (p) is given by

φ ,0 = φ 0 -n-2 (1 + v 0 ) n-2 (φ 0 (p) + Λ ) Γ p + w + χ H ϕ ,
if n ≥ 3, and by From the expression of φ ,0 it follows that in the CASE 1 we have

φ ,0 = log( (1 + v 0 )) φ 0 -(log (1 + v 0 )) -1 (φ 0 (p) + Λ ) Γ p + w + χ H ϕ , if n = 2,
S n-1 g(a, •) ĝ(∇ φ ,0 , ν)| ∂ B1 dvol g = (1 + O( )) S n-1 g(a, •) ∂ φ ,0 ∂|y| ∂ B1 dvol g = (1 + O( )) S n-1 g(a, •) ∂φ ,0 ∂|x| ∂ B dvol g = (1 + O( )) S n-1 g(a, •) ∂φ 0 ∂|x| ∂ B dvol g + O( ) = C n g(∇φ 0 (p), Θ(a)) + O( 2 )
for n ≥ 3, and

S n-1 g(a, •) ĝ(∇ φ ,0 , ν)| ∂ B1 dvol g = C 2 log g(∇φ 0 (p), Θ(a)) + O( 2 log )
for n = 2, where

C n = S n-1 (x 1 ) 2 dvol g = 1 n
Vol g (S n-1 ) .

All the estimates for the CASE 1 follow at once from this computation together with the fact that, when v ≡ 0, the unit normal vector ν about the boundary is given by (1

+ v 0 ) |y| (1 + O( ))
because the metric ĝ near p is the Euclidean metric multiplied by (1 + v 0 ) 2 and perturbed by some O( 2 ) terms.

For the CASE 2 the situation is much more complex. In fact, if φ 0 is constant we have

S n-1 g(a, •) ĝ(∇ φ0 , ν)| ∂ B1 dvol g = 0.
Let us compute now

n-2 (1 + v 0 ) n-2 (φ 0 (p) + Λ ) S n-1 g(a, •) ĝ(∇ Γp , ν)| ∂ B1 dvol g
We remark that the previous term is equal to

(1 + O( )) n-2 φ 0 (p) S n-1 g(•, a) ∂ Γp ∂r dvol
g For this reason we will compute n-2 φ 0 (p)

S n-1 g(•, a) ∂ Γp ∂r dvol g Recall that Γp (y) = Γ p ( (1 + v 0 ) y)
in a neighborhood of ∂ B1 , then from (44) and (45) (keeping in mind that v 0 = O( 2 )) we obtain easily the expression of Γp (y) in power of . Observe that, in the expansion of Γp , terms which contain an even number of coordinates, such as y i y j y k y or y j y etc. do not contribute to the result since, once derived with respect to r they still contain an even number of coordinates, and multiplied then by g(y, a), their average over S n-1 is 0. Then, considering only terms which contain an odd number of coordinates we have for n ≥ 5:

n-2 S n-1 g(y, a) ∂ Γp ∂r dvol g = = 3 a σ S n-1 y σ • y τ |y| • ∂ ∂y τ 2 -n 48 R ikj ,t y i y k y j y y t |y| -n + 1 36 R •kj ,• y k y j y |y| 2-n + Scal ,t 64(4 -n) y t |y| 4-n - 1 24 R j ,t y j y y t |y| 2-n dvol g + O( 4 ) = 3 (5 -n) a σ S n-1 y σ 2 -n 48 R ikj ,t y i y k y j y y t + 1 36 R •kj ,• y k y j y + Scal ,t 24(4 -n) y t - 1 24 R j ,t y j y y t dvol g + O( 4 )
We make use of the identities in the Appendix to conclude that there exists a constant C

(1) n such that (46) n-2 φ 0 (p)

S n-1 g(y, a) ∂ Γp ∂r (y) = C (1) n 3 g ∇ Scal(p), Θ(a) + O( 4 ).
where we have

C (1) n = 5 -n 4n Vol g (S n-1 ) - 1 3(n + 2) + 1 6(4 -n) φ 0 (p)
For n = 4 we have

(47) n-2 S n-1 g(y, a) ∂ Γp ∂r dvol g = = 3 log a σ S 3 y σ • y τ |y| • ∂ ∂y τ Scal ,t 24 
y t log |y| dvol g + O( 3 ) = 1 96 Vol g (S 3 ) 3 log g ∇ Scal(p), Θ(a) + O( 3 )
and then we set C

= 1 96 Vol g (S 3 (1) 4 
).

The last term we have to compute is

S n-1 g(a, •) ĝ(∇( ŵ + Ĥϕ , ), ν)| ∂ B1 dvol g
As before we have

S n-1 g(a, •) ĝ(∇( ŵ + Ĥϕ , ), ν)| ∂ B1 dvol g = = (1 + O( )) S n-1 g(a, •) ∂( ŵ + Ĥϕ , ) ∂r | ∂ B1 dvol g
In the Proposition 4.2 we proved that in the CASE 2

w C 2,α δ (M \{p}) ≤ c 4
for n = 4 and

w C 2,α δ (M \{p}) ≤ c 1+n + 4-δ for n ≥ 5. Hence ∇ ŵ L ∞ (∂ B1) ≤ c 4+δ
for n = 4 and

∇ ŵ L ∞ (∂ B1) ≤ c ( 1+n+δ + 4 )
for n ≥ 5 (keep in mind that we are estimating the gradient of the dilated function ŵ ). Remember that δ ∈ (2 -n, 4 -n) because n ≥ 4. It follows that we can choose δ in order to have

S n-1 g(a, •) ∂ ŵ ∂r | ∂ B1 dvol g = O( β )
with β = 4 for n ≥ 5 and β = 3 for n = 4. Let us consider now Ĥϕ , . We do not know the expression of Ĥϕ , in a neighborhood of ∂ B1 , but we can know its value on ∂ B1 . From the equality φ = 0 on ∂ B1 , using the the estimate on the function ŵ , we have that 

Ĥϕ, = -φ 0 (p) + (1 + v 0 ) n-2 (φ 0 (p) + Λ ) 2 2 -n 18 R ikj y i y k y j y - 1 12 R j y j y + + Scal(p) -6λ 0 12 (4 -n) + 3 2 -n 48 R ikj ,
   ∆ g G a = 0 in R n \ B1 G a = g(y, a) on ∂ B1 It is easy to check that G a (y) = |y| -n g(y, a)
We observe that functions G a and Ĥϕ , converge by Lemma 4.1 to 0 when |y| → +∞. Then

S n-1 g(a, •) ∂ Ĥϕ , ∂r | ∂ B1 dvol g = S n-1 Ĥϕ , ∂G a ∂r | ∂ B1 dvol g = = (1 -n) S n-1
Ĥϕ , g(y, a) dvol g Using the expansion of the value of Ĥϕ , on ∂ B1 , and the identities in the Appendix, we conclude that there exists a constant C where

C (2) n = 1 4n Vol g (S n-1 ) - 1 3(n + 2) + 1 6(4 -n) φ 0 (p)
for n ≥ 5, and for n = 4

(49)

S n-1 g(y, a) Ĥϕ , dvol g = C (2) 4 3 log g ∇ Scal(p), Θ(a) + O( 3 ). with C (2) 4 = 1 96 Vol g (S 3
).

Summarizing, we conclude that in the CASE 2

F (p, , 0) C 1,α = O( 2 )
and from (46), (47), ( 48) and (49) we have that there exists a constant C n depending only on n, such that for all a ∈ R n the following estimates hold: for n ≥ 5

S n-1 g(a, •) F (p, , 0) dvol g -C n 3 g(∇ Scal(p), Θ(a)) ≤ c 4 a
where

C n = 6 -2n n Vol g (S n-1 ) - 1 3(n + 2) + 1 6(4 -n) φ 0 (p)
and for n = 4

S n-1 g(a, •) F (p, , 0) dvol g -C 4 3 log g(∇ Scal(p), Θ(a)) ≤ c 3 a .
where

C 4 = - 1 48 Vol g (S 3 ) φ 0 (p)
Remark that C n = 0 for all n ≥ 4. This completes the proof of the result. 

Linearizing the operator F

Our next task will be to understand the structure of L 0 , the operator obtained by linearizing F with respect to v at = 0 and v = 0. We will see that this operator is a first order elliptic operator which does not depend on the point p.

Recall the definition of φ

1 in R n \ {0} φ 1 (y) = φ 0 (p) (1 -|y| 2-n ) if n ≥ 3 φ 0 (p) log |y| if n = 2
For all v ∈ C 2,α m (S n-1 ) let ψ be the (unique) bounded solution of (50)

   ∆ g ψ = 0 in R n \ B1 ψ = -∂ r φ 1 v on ∂ B1
where r = |y|. By the Lemma 4.1, |ψ(y)| -→ 0 when |y| → ∞. We define

(51) H(v) := ∂ r ψ + ∂ 2 r φ 1 v | ∂ B1
We will need the following result:

Proposition 7.1. The operator

H : C 2,α m (S n-1 ) -→ C 1,α m (S n-1 )
defined in (51) is a self adjoint, first order elliptic operator. The kernel of H is given by V 1 , the eigenspace of -∆ S n-1 associated to the eigenvalue n -1. Moreover there exists c > 0 such that

w C 2,α (S n-1 ) ≤ c H(w) C 1,α (S n-1 ) , provided w is L 2 (S n-1 )-orthogonal to V 0 ⊕ V 1
, where V 0 is the eigenspace associated to constant functions.

Proof : The fact that H is a first order elliptic operator is standard since it is the sum of the Dirichlet-to-Neumann operator for ∆ g and a constant times the identity. In particular, elliptic estimates yield

H(w) C 1,α (S n-1 ) ≤ c w C 2,α (S n-1 )
The fact that the operator H is (formally) self-adjoint is easy. Let ψ 1 (resp. ψ 2 ) the solution of (50) corresponding to the function w 1 (resp. w 2 ). We compute

∂ r φ 1 (1) ∂ B1 (H(w 1 ) w 2 -w 1 H(w 2 )) dvol g = ∂ r φ 1 (1) ∂ B1 (∂ r ψ 1 w 2 -∂ r ψ 2 w 1 ) dvol g = ∂ B1 (ψ 1 ∂ r ψ 2 -ψ 2 ∂ r ψ 1 ) dvol g = lim R→∞ BR \ B1 (ψ 1 ∆ g ψ 2 -ψ 2 ∆ g ψ 1 ) dvol g + - ∂ BR (ψ 1 ∂ r ψ 2 -ψ 2 ∂ r ψ 1 ) dvol g = 0.
Let us consider w = j≥1 w j the eigenfunction decomposition of w, as in [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF]. Namely w j ∈ V j , the eigenspace associate to the eigenvalue j(n -2 + j). Let ψ j be the bounded solution of (52)

   ∆ g ψ j = 0 in R n \ B1 ψ j = -∂ r φ 1 w j on ∂ B1 i.e. ψ j (y) = -|y| 2-n-j w j (y/|y|) ∂ r φ 1 | ∂ B1 Then H(w) = j ∂ r ψ j + ∂ 2 r φ 1 | ∂ B1 w = j -(2 -n -j) ∂ r φ 1 | ∂ B1 + ∂ 2 r φ 1 | ∂ B1 w j
With this alternative formula, it is clear that H preserves the eigenspaces V j and in particular, H maps into the space of functions whose mean over S n-1 is 0. Moreover, it is easy to see that V 1 is the only kernel of the operator. In fact,

∂ r φ 1 | ∂ B1 = -(2 -n) φ 0 (p) if n ≥ 3 φ 0 (p) if n = 2
and

∂ 2 r φ 1 | ∂ B1 = -(2 -n)(1 -n) φ 0 (p) if n ≥ 3 -φ 0 (p) if n = 2
and then H(w j ) = 0 if and only if j = 1. This completes the proof of the result.

The main result of this section is the following: Proposition 7.2. The operator L 0 is equal to H. Proof : By definition, the operator L 0 is the linear operator obtained by linearizing F with respect to v at = 0 and v = 0. In other words, we have

L 0 ( w) = lim s→0 F (p, 0, s w) -F (p, 0, 0) s .
We know that F (p, 0, 0) = 0. Our next step is to compute F (p, 0, s w), and for this we have to study F (p, , s w). Writing v = s w, we can consider a parameterization Y of B g 2 (p) given by the following expression:

Y (y) := Exp ḡ p 1 + χ 1 (y) v 0 + s χ 2 (y) w y |y| i y i E i
where ḡ is the dilated metric -2 g, y belongs to the Euclidean ball B2 of radius 2 centered at 0, χ 1 is a cutoff function identically equal to 1 when 0 < |y| ≤ 4/3 and identically equal to 0 when 5/3 ≤ |y| ≤ 2, χ 2 is a cutoff function identically equal to 1 when 3/4 ≤ |y| ≤ 4/3 and identically equal to 0 when 0 < |y| ≤ 1/2 and 5/3 ≤ |y| ≤ 2, and v 0 = v 0 (p, , s w). We set ĝ := Y * ḡ. over B2 . Remark that ĝ is an extension of the metric ĝ defined on B1 in section 5. We remark that φ ,0 := Y * φ ,0 is a solution on B2 \ B1 of 

∆ ĝ φ ,0 + λ ,0 φ ,0 = 0 where λ ,0 = λ ,0 = 2 λ ,0 . If we set φ ,0 (y) = φ ,0 ( 
   (∆ ḡ + λ ,0 ) ψ + τ ψ + τ φ ,0 = 0 in M \ B ḡ 1+v (p) ψ = -φ ,0 on ∂B ḡ 1+v (p) 
where we can normalize as (55)

M \B ḡ 1+v (p) (φ ,0 + ψ) 2 dvol ḡ = M \B ḡ 1+v 0 (p) φ 2 
,0 dvol ḡ (the v 0 in the second integral is evaluated at v = 0) and we have the condition on the volume of the domain

(56) Vol ĝ ( B1 ) = Vol g ( B1 )
Obviously ψ, τ and v 0 are smooth functions of s. When s = 0, we have φ = φ ,0 , λ = λ ,0 and v 0 = O( 2 ). Therefore, ψ and τ vanish when s = 0. We set

ψ = ∂ s ψ| s=0 , τ = ∂ s τ | s=0 , and v0 = ∂ s v 0 | s=0
Differentiating (54) with respect to s and evaluating the result at s = 0, we obtain (57)

   (∆ ḡ + λ ,0 ) ψ + τ φ ,0 = 0 in M \ B ḡ 1+v0 (p) ψ = -ḡ(∇φ ,0 , ν) ( v0 + w) on ∂B ḡ 1+v0 (p 
) where v 0 is evaluated at s = 0. Observe that the second equation of (57) follows from (53).

Differentiating (55) with respect to s and evaluating the result at s = 0, we obtain that ψ is L 2 -orthogonal to φ ,0 on M \B ḡ 1+v0 (p). Hence

φ = φ ,0 + s ψ + O(s 2 )
where ψ is the solution of (57) L 2 -orthogonal to φ ,0 . Differentiating (56) with respect to s and evaluating the result at s = 0, we obtain

S n-1 ( v0 + w) dvol ĝ = 0
where the metric ĝ is evaluated at s = 0. Since the discrepancy between the metric ĝ and the Euclidean metric g at ∂ B1 can be estimated by a constant times 2 when s = 0, and the Euclidean average of w is 0, we get that v0 = O( 2 ).

Moreover we know that for s = 0 we have v 0 = O( 2 ). From the expansion of v 0 with respect to s we get

v 0 = O( 2 ) + O(s 2 ) Now, in B4/3 \ B1 , we have φ(y) = φ ,0 1 + v 0 + s w(y/|y|) y + s ψ(y) + O(s 2 ) = φ ,0 ((1 + v 0 (0)) y) + s ĝ ∇ φ ,0 ((1 + v 0 (0)) y), ( v0 + w(y/|y|)) y + ψ + O(s 2 )
where we denoted v 0 (p, , 0) = v 0 | s=0 = v 0 (0). To complete the proof of the result, it suffices to compute the normal derivative of the function φ when the normal is computed with respect to the metric ĝ. We use polar coordinates y = r z where r > 0 and z ∈ S n-1 . Then the metric ĝ can be expanded in B4/3 \ B3/4 as

ĝ = (1 + v 0 + s w) 2 dr 2 + 2 s (1 + v 0 + s w) r d w dr + r 2 (1 + v 0 + s w) 2 h + s 2 r 2 d w2 + O( 2 )
where h is the metric on S n-1 induced by the Euclidean metric. It follows from this expression, together with the estimation of v 0 , that the unit normal vector field to ∂ B1 for the metric ĝ is given by ν

= (1 + s w) -1 + O(s 2 ) ∂ r + O(s) ∂ zj + O( 2 ) Using this, we conclude that (58) ĝ(∇ φ, ν) = ∂ r φ ,0 (y) + O(s) ∂ zj φ ,0 (y) + s w ∂ 2 r φ ,0 (y) + ∂ r ψ + O(s 2 ) + O( 2 )
on ∂ B1 . When = 0 we have φ ,0 (y) = φ 1 (y). It follows that F (p, 0, s w), up to terms of order O(s 2 ), is given by

∂ r φ 1 | ∂ B1 + s w ∂ 2 r φ 1 ∂ B1 + s lim →0 ∂ r ψ ∂ B1
minus its Euclidean mean. We need now the following:

Lemma 7.3. Evaluate v 0 at s = 0. Let δ ∈ (2 -n, 0) if n ≥ 3 and δ ∈ (0, 1) if n = 2.
Let H ϕ be the function defined in section 4. For all small enough there exists a constant τ and (K , ϕ , η ) in a neighborhood of (0, 0, 0

) in R × C 2,α m (S n-1 ) × C 2,α δ (M \ {p}) such that the function (59) ψ = K + χ (ψ + H ϕ ) + η defined in M \B ḡ 1+v0 ( 
p), is the solution of (57) L 2 -orthogonal to φ ,0 , where χ is a cut-off function equal to 1 in B ḡ R0/ (p) and equal to 0 out of B ḡ 2R0/ (p) and ψ is defined by (50). Moreover the following estimations hold:

|K | ≤ c 2 + n-1 , ϕ L ∞ (S n-1 ) ≤ c 2 + n-1 and η C 2,α δ (M \{p}) ≤ c 2 + n-1 Proof. Define (60) ψ = K + χ (ψ + H ϕ ) + η for some (K, ϕ, η) ∈ R × C 2,α m (S n-1 ) × C 2,α (M \ {p})
, where χ is a cut-off function equal to 1 in B ḡ R0/ (p) and equal to 0 out of B ḡ 2R0/ (p). Then ψ satisfies the first equation of (57), if and only if:

(61) ∆ ḡ + λ ,0 η = -ψ ∆ ḡ χ -χ ∆ ḡ ψ -2 ∇ ḡ ψ ∇ ḡ χ -H ϕ ∆ ḡ χ -χ ∆ ḡ H ϕ -2 ∇ ḡ H ϕ ∇ ḡ χ -λ ,0 χ (ψ + H ϕ ) -λ ,0 K -τ φ ,0 We say that f ∈ C 2,α δ (M \ B ḡ 1+v0 (p)) if f is the restriction to M \ B ḡ 1+v0 (p) of a function in C 2,α δ (M \ {p}). For n ≥ 3 and δ ∈ (2 -n, 0), the operator ∆ ḡ + λ ,0 : C 2,α δ,⊥,0 (M \ B ḡ 1+v0 (p)) -→ C 0,α δ-2,⊥ (M \ B ḡ 1+v0 (p))
, where the subscript ⊥ is meant to point out that functions are L 2 -orthogonal to φ ,0 , and the subscript 0 is meant to point out that functions satisfy the 0 Dirichlet (CASE 1) or 0 Neumann (CASE 2) condition on ∂M and the 0 Dirichlet condition on ∂B ḡ 1+v0 (p), is an isomorphism. For n = 2 and δ ∈ (0, 1) the same result holds for the operator

∆ ḡ + λ ,0 : χ R ⊕ C 2,α δ,⊥,0 (M \ B ḡ 1+v0 (p)) -→ C 0,α δ-2,⊥ (M \ B ḡ 1+v0 (p)).
where χ is a cutoff function equal to 1 in a neighborhood of the origin. See section 4, or [START_REF] Pacard | Linear and nonlinear aspects of vortices: the Ginzburg Landau model[END_REF], for more details.

To semplify the notation define

A := -ψ ∆ ḡ χ -2 ∇ ḡ ψ ∇ ḡ χ -H ϕ ∆ ḡ χ -2 ∇ ḡ H ϕ ∇ ḡ χ B := -χ ∆ ḡ ψ -λ ,0 χ (ψ + H ϕ ) -χ ∆ ḡ H ϕ -λ ,0 K C := -τ φ ,0 Equation (61) becomes (∆ ḡ + λ ,0 ) η = A + B + C
By the last result, if we chose τ in order to verify (62) 61) for all small enough, for all constant K and all function ϕ, and then ψ = K + χ (ψ + H ϕ ) + η satisfies the first equation of (57).

M \B ḡ 1+v 0 (p) (A + B + C) φ ,0 = 0 there exists a solution η = η( , K, ϕ) ∈ C 2,α δ,⊥,0 (M \ B ḡ 1+v0 (p)) (or χ R ⊕ C 2,α δ,⊥,0 (M \ B ḡ 1+v0 (p)) if n = 2) of equation (
We want now to give some estimations on the function η. By Lemma 4.1 we have the following estimations:

• A C 0,α δ-2 (M \B ḡ 1+v 0 (p)) ≤ c n-1 1 + ϕ L ∞ (S n-1 ) • B C 0,α δ-2 (M \B ḡ 1+v 0 (p)) ≤ c 2 1 + ϕ L ∞ (S n-1 )
In particular we get that τ ≤ c 2 + n-1 1 + ϕ L ∞ (S n-1 )

and then Summarizing, we have proved the following: for all ϕ ∈ C 2,α m (S n-1 ), for all constant K, for all small enough, there exists a function η = η( , K, ϕ) ∈ C We remark that Z, that represents the boundary value of (60) with η = η( , K, ϕ), is well defined in a neighborhood of (0, 0, 0) in [0, +∞) × R × C 2,α m (S n-1 ), and takes its values in C 2,α (S n-1 ). It is easy to compute the differential of Z with respect to K and ϕ at (0, 0, 0):

A + B + C C 0,
∂ ϕ Z(0, 0, 0) ( K) = K.
∂ ϕ Z(0, 0, 0) ( φ) = φ. We can estimate Z( , 0, 0): Z( , 0, 0) + ∂ r φ 1 w L ∞ (S n-1 ) ≤ c 2 + n-1 and then Z( , 0, 0) + ḡ(∇φ ,0 , ν) ( v0 + w) L ∞ (S n-1 ) ≤ c 2 + n-1

The implicit function theorem applies to give the following result: if is small enough, there exists (K , ϕ ) in a neighborhood of (0, 0) in R × C 2,α m (S n-1 ) such that (60) is a positive solution of (57). Moreover the following estimations hold:

|K | ≤ c 2 + n-1
and ϕ L ∞ (S n-1 ) ≤ c 2 + n-1

Summarizing, we get the following existence result: for all small enough there exists a constant τ and (K , ϕ , η ) in a neighborhood of (0, 0, 0) in R × C F (p, , s w) is given by (58) minus its mean, in the metric ĝ. F (p, , 0), up to terms of order O( 2), is given by ∂ r φ ,0 (y) at ∂ B1 minus its the mean, in the metric ĝ evaluated at s = 0. The proof of the Lemma follows at once from Proposition 6.2 and Lemma 7.3.

Proof of the main result

We shall now prove that, for > 0 small enough, it is possible to solve the equation

F (p, , v) = 0
Unfortunately, we will not be able to solve this equation at once. Instead, we first prove the: Proposition 8.1. There exists 0 > 0 such that, for all ∈ [0, 0 ] and for all p ∈ M , there exists a unique function v = v(p, ) and a vector a = a(p, ) ∈ R n such that F (p, , v) + g(a, •) = 0

The function v and the vector a depend smoothly on p and and we have It is easy to check that F is a smooth map from a neighborhood of (p, 0, 0, 0) in M × [0, ∞) × C 2,α m (S n-1 ) × R n into a neighborhood of 0 in C 1,α (S n-1 ). Moreover F (p, 0, 0, 0) = 0 and the differential of F with respect to v, computed at (p, 0, 0, 0) is given by H. Finally the image of the linear map a -→ g(a, •) is just the vector space V 1 . By Proposition 7.1, the implicit function theorem applies to get the existence of v and a, smoothly depending on p and such that F (p, , v, a) = 0. The estimates for v and a follow at once from Proposition 6.2.

Proof of Theorem 1.3. In view of the result of the previous proposition, it is enough to show that, provided that is small enough, it is possible to choose a good point p ∈ M such that a(p, ) = 0. We claim that there exists a constant Cn > 0 (only depending on n) such that 

Remark 6 . 1 .

 61 because for geodesic normal coordinates the Christoffel symbols vanish at the origin), the definition of the scalar curvature i R ii = Scal(p) and the second Bianchi identity j If n ≥ 6, the regular part of the Green function Γ p is completely included in the neglected term O(|x| 6-n ), see formula (44). At order 2 -n the function looks like the standard Green function. From order 3 -n to 5 -n, terms depend only on the local geometry of the manifold near p, and global geometry appears only at terms of order 6 -n or bigger, and we will see in the following sections that such terms can be neglected in ours computations. If n = 5, the situation is a little bit different. In fact the regular part of the Green function Γ p is not completely included in the neglected term O(|x| 6-n ) = O(|x|), but the only term of the regular part of the Green function Γ p not included in the term O(|x|) is a term of order 0, i.e. the constant a 5 , see formula (

  where estimates given in Propositions 4.2 and 4.4 hold because v 0 = O( 2 ).

1 g

 1 (y, a) Ĥϕ , dvol g = C (2) n 3 g ∇ Scal(p), Θ(a) + O( 4 ).

Remark 6 . 3 .

 63 According to Remark 6.1, the regular part of the Green function Γ p does not play a rôle in ours computation. The proof of Proposition 6.2 shows that in the CASE 2 when we compute the normal derivative of the first eigenfunction of the Laplace-Beltrami operator on the complement of a small ball, the first term of the Green function Γ p playing a rôle is the term of order 5 -n if n ≥ 5 and the term equivalent (up to a constant) to |x| log |x| if n = 4. If n ≥ 6 or n = 4 such term comes totally from the local geometry of the manifold. For n = 5 such term contains the constant a 5 coming from the regular part of the Green function Γ p , but such a constant disappears when we differentiate.

  y) in a neighborhood of ∂ B1 , where x = y are the normal geodesic coordinates around p defined in section 3, we have (53) φ ,0 (y) = φ ,0 ((1 + v 0 + s w(y)) y) on ∂ B1 . Writing the first eigenfunction of -∆ ḡ on M \B ḡ 1+v (p) as φ = φ ,0 + ψ and λ = λ ,0 + τ , we find that (54)

α δ- 2 (M \B ḡ 1+v 0 (

 20 p))) ≤ c 2 + n-1 1 + ϕ L ∞ (S n-1 )This gives an estimation on the function η:) ≤ c 2 + n-1 1 + ϕ L ∞ (S n-1 ) .

  2,α δ,⊥,0 (M \ B ḡ 1+v0 (p)) (or χ R ⊕ C 2,α δ (M \ B ḡ 1+v0 (p)) if n = 2) such that (60) is a positive solution of the first equation of (57). Moreover there exists a positive constant c such thatη C 2,α δ (M \B ḡ 1+v 0 (p)) ≤ c 2 + n-1 1 + ϕ L ∞ (S n-1 ) .Now, consider the second equation of (57). Let us define Z( , K, ϕ) := K + χ(y) (ψ(y) + H ϕ (y)) + η( , ϕ)(y) y∈S n-1

1 and η C 2 ≤ c 2 + n- 1 Lemma 7 . 4 .F

 122174 2,α m (S n-1 ) × C 2,α δ (M \ B ḡ 1+v0 (p)) (or R × C 2,α m (S n-1 ) × χ R ⊕ C 2,α δ (M \ B ḡ 1+v0 (p)) if n = 2) such that the function ψ = K + χ (ψ + H ϕ ) + η defined in M \ B ḡ 1+v0(p), is solution of (57). Moreover:|K | ≤ c 2 + n-1 , ϕ L ∞ (S n-1 ) ≤ c 2 + n-The last norm is that of χ R ⊕ C 2,α δ (M \ B ḡ 1+v0 (p)) if n = 2.This completes the proof of the lemma.Using the previous lemma, we have that for small enough∂ r ψ ∂ B1 = ∂ r ψ| ∂ B1 + O( 2 )for n ≥ 3, and ∂ r ψ∂ B1 = ∂ r ψ| ∂ B1 + O( )for n = 2. The statement of Proposition 7.2 follows at once from the fact that ∂ r φ 1 is constant while the term w ∂ 2 r φ 1 + ∂ r ψ has mean 0 on the boundary ∂ B1 . Denote by L the linearization of F with respect to v, computed at the point (p, , 0). It is easy to check the: There exists a constant c > 0 such that, for all > 0 small enough we have the estimates(L -L 0 ) v C 1,α ≤ c v C 2,α in the CASE 1 and n ≥ 3 (L -L 0 ) v C 1,α ≤ c log v C 2,α in the CASE 1 and n = 2 (L -L 0 ) v C 1,α ≤ c 2 v C 2,αin the CASE 2 and n ≥ 5(L -L 0 ) v C 1,α ≤ c 2 log v C 2,α in the CASE 2 and n =4Proof : L and L 0 are first order differential operators. We already know the expression of L 0 . We have L ( w) = lim s→0 (p, , s w) -F (p, , 0) s .

|a| + v C 2 4 Proof:

 24 ,α (S n-1 ) ≤ c in the CASE 1 and n ≥ 3|a| + v C 2,α (S n-1 ) ≤ c log in the CASE 1 and n = 2 |a| + v C 2,α (S n-1 ) ≤ c 2 in the CASE 2 and n ≥ 5 |a| + v C 2,α (S n-1 ) ≤ c2 log in the CASE 2 and n = We fix p ∈ M and define F (p, , v, a) := F (p, , v) + g(a, •)

S n- 1 FS n- 1 (-S n- 1 (-S n- 1 (S n- 1 L

 11111 Θ(a(p, )) = -Cn ∇ g φ 0 (p) + O( 2 )in the CASE 1 and n ≥ 3Θ(a(p, )) = -log Cn ∇ g φ 0 (p) + O( ) in the CASE 1 and n = 2 Θ(a(p, )) = -3 Cn ∇ g Scal(p) + O( 4 ) in the CASE 2 and n ≥ 5 Θ(a(p, )) = -3 log Cn ∇ g Scal(p) + O( 3 ) in the CASE 2 and n = 4For all b ∈ R n we computeS n-1 g(a, •)g(b, •) dvol g = -(p, , v)g(b, •) dvol g = -F (p, , 0) + L 0 v)g(b, •) dvol g F (p, , v) -F (p, , 0) -L v)g(b, •) dvol g L -L 0 )v g(b, •) dvol gNow, we use the fact that v is L 2 (S n-1 )-orthogonal to linear functions and hence so isL 0 v. Therefore, 0 v g(b, •) dvol g =0 Using the fact that v = O( ) in the CASE 1 and n ≥ 3 v = O( log ) in the CASE 1 and n = 2 v = O( 2 ) in the CASE 2 and n ≥ 5 v = O( 2 log ) in the CASE 2 and n = 4

  t y i y k y j y y t + 1 36 R •kj ,• y k y j y +

	on ∂ B1 , for n ≥ 5. For n = 4 we have						
	Ĥϕ, = -φ 0 (p) + (1 + v 0 ) n-2 (φ 0 (p) + Λ ) 2 log	Scal(p) -6λ 0 12	+
	2	-	1 9	R ikj y i y k y j y -	1 12	R j y j y	+ 3 log	Scal ,t 24	y t	+ O( 3 ).
	on ∂ B1 . Let us define an harmonic extension of g(y, a) to R n \ B1 :	
		-	1 24	R j ,t y j y y t +	Scal ,t 24(4 -n)	y t	+ O( 4 ).	

we get

in the CASE 1 and n ≥ 3

2 ) in the CASE 1 and n = 2

in the CASE 2 and n ≥ 5

2 ) in the CASE 2 and n = 4 Similarly, from Proposition 7.4 we have

in the CASE 1 and n ≥ 3

The claim then follows from Proposition 6.2 and the fact that It should be clear that G depends smoothly on ∈ [0, 0 ) and p ∈ M . Moreover we have

in the CASE 2. Hence, under the hypothesis on p 0 , we have G(0, p 0 ) = 0 in both cases. By assumption the differential of G with respect to p, computed at p 0 is invertible. Therefore, for all small enough there exists p close to p 0 such that Θ(a(p , )) = 0

In addition we have dist(p 0 , p ) ≤ c

This completes the proof of Theorem 1.3.

Appendix

We recall here some geometrical formulas, used in section 6, and its proofs.

Lemma 9.1. For all σ = 1, . . . , n, we have the following equalities

2)

Proof : For the proof of the first three equalities, see [START_REF] Pacard | Extremal domains for the first eigenvalue of the Laplace-Beltrami operator[END_REF]. Let us prove the forth. We have that

Scal ,t x t x σ dvol g = 0 unless the indices t and σ are equal. Then

Scal ,t x t x σ dvol g = Scal ,σ S n-1 (x σ ) 2 dvol g = 1 n Vol g (S n-1 ) Scal ,σ