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Hamiltonian dynamics and spectral theory for spin-oscillators

Álvaro Pelayo∗ and San Vũ Ngo.c
†

Abstract

We study the Hamiltonian dynamics and spectral theory of spin-oscillators. Because of their rich
structure, spin-oscillators display fairly general properties of integrable systems with two degrees of free-
dom. Spin-oscillators have infinitely many transversally elliptic singularities, exactly one elliptic-elliptic
singularity and one focus-focus singularity. The most interesting dynamical features of integrable sys-
tems, and in particular of spin-oscillators, are encoded intheir singularities. In the first part of the paper
we study the symplectic dynamics around the focus-focus singularity. In the second part of the paper
we quantize the coupled spin-oscillators systems and studytheir spectral theory. The paper combines
techniques from semiclassical analysis with differentialgeometric methods.

1 Introduction

Coupled spin-oscillators are4-dimensional integrable Hamiltonian systems with two degrees of freedom
constructed by “coupling” the classical spin on the2-sphereS2 (see Figure 3.1) with the classical harmonic
oscillator on the Euclidean planeR2. Coupled spin-oscillators are one of the most fundamental examples
of integrable systems; their dynamical behavior is rich andrepresents some fairly general properties of low
dimensional integrable systems. The goal of this paper is tostudy coupled spin-oscillators from the point of
view of classical and quantum mechanics, using methods fromclassical and semiclassical analysis.

A 4-dimensional integrable system with two degrees of freedomconsists of a connected symplectic
4-manifold equipped with two almost everywhere linearly independent smooth functions which Poisson
commute, i.e. two smooth functions on the manifold such thatone of them is invariant along the flow
of the Hamiltonian vector field generated by of the other. Themost interesting geometric and dynamical
features of integrable systems are encoded in their singularities, i.e the points where Hamiltonian vector
fields generated by the functions are linearly dependent. Around the regular points, the dynamics is simple,
and described by the Arnold-Liouville-Mineur action-angle theorem. As we will see, the dynamics near the
singularities is in general much more complicated and depends heavily on the type of singularity.

Let us explain the construction of coupled spin-oscillators more precisely. LetS2 be the unit sphere in
R
3 with coordinates(x, y, z), and letR2 be equipped with coordinates(u, v). Let λ, ρ > 0 be positive

constants. LetM be the product manifoldS2 ×R
2 equipped with the product symplectic structureλωS2 ⊕

ρω0. LetJ, H : M → R be the smooth maps defined byJ := ρ(u2+ v2)/2+λz andH := 1
2 (ux+ vy). A

coupled spin-oscillatoris a4-dimensional integrable system of the form(M, λωS2 ⊕ ρω0, (J, H)), where
ωS2 is the standard symplectic form on the sphere andω0 is the standard symplectic form onR2.

The singularities of coupled spin-oscillators are non-degenerate and of elliptic-elliptic, transversally-
elliptic (both of these types are usually referred to as “elliptic singularities”) or focus-focus type. They have
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infinitely many transversally-elliptic singularities (along a piecewise smooth curve, as we shall see), one
elliptic-elliptic singularity at(0, 0,−1, 0, 0) and one singularity of focus-focus type at(0, 0, 1, 0, 0). The
J component of this system is the Hamiltonian (or momentum map) of theS1-action that simultaneously
rotates about the vertical axes of the2-sphere, and about the origin ofR2. TheH component is given as
follows. Using the natural embedding ofS2 in R

3, let πz be the orthogonal projection fromS2 ontoR
2

viewed as thez = 0 hyperplane. Let(x, y, z) ∈ S2 and (u, v) ∈ R
2. Under the flow ofJ the points

(x, y, z) and(u, v) are moving along the flows ofz and(u2 + v2)/2, respectively, with the same angular
velocity. Hence the inner product〈πz(x, y, z), (u, v)〉 = ux + vy = 2H is constant and commutes with
J .

BecauseH does not come from anS1-action, coupled spin-oscillators are not toric integrable systems
– they are what now is calledsemitoric integrable systems, or simplysemitoric systems. Semitoric systems
form a rich class of integrable systems, commonly found in simple physical models. For simplicity, through-
out this paper we assume the rescalingλ = ρ = 1. The statements and proofs extend immediately to the
case ofλ, ρ > 0, but we feel that the notation is already sufficiently heavy so we shall avoid carrying these
parameters.

Semitoric integrable systems

Our interest in semitoric integrable systems was motivatedby the remarkable convexity results for Hamilto-
nian torus actions by Atiyah [1], Guillemin-Sternberg [14], and Delzant [6]. Despite important contributions
by Arnold, Duistermaat [8], Eliasson [10], Vũ Ngo.c [23, 25], Zung [29] and many others, the singularity
theory of integrable systems from the point of view of symplectic geometry is far from being completely
understood. As a matter of fact, very few integrable systemsare understood. The singularities of these
systems encode a vast amount of information about the symplectic dynamics and geometry of the system,
much of which is not computable with the current methods.

This singularity theory is interesting not only from the point of view of semiclassical analysis and sym-
plectic geometry, but it also shares many common features with the study of singularities in the context of
symplectic topology [20, 16], algebraic geometry and mirror symmetry (see [13] and the references therein).

The coupled spin-oscillator is perhaps the simplest non-compact example of an integrable system of
semitoric type. Precisely, asemitoric integrable systemonM is an integrable systemJ, H ∈ C∞(M, R)
for which the componentJ is a proper momentum map for a Hamiltonian circle action onM and the map
F := (J, H) : M → R

2 has only non-degenerate singularities in the sense of Williamson [27], without
real-hyperbolic blocks. This means that in addition to the well-known elliptic singularities of toric systems,
semitoric systems may havefocus-focus singularities.

Semitoric integrable systems on4-manifolds have been symplectically classified by the authors in
[18, 19] in terms a collection of five invariants. While conceptually they are more easily describable, some
of these invariants are involved to compute explicitly for aparticular integrable system. The most diffi-
cult invariant to compute is the so called Taylor series invariant, which classifies a neighborhood of the
focus-focus singular fiberof F . This invariant, which was introduced in [23], encodes a large amount of
information about the local and semiglobal behavior of the system. Focus-focus singular fibers are singular
fibers that contain some fixed pointm (i.e. rank(dF ) = 0) which is of focus-focustype, meaning that
there are symplectic coordinates locally nearm in which m = (0, 0, 0, 0), ω = dξ ∧ dx + dη ∧ dy and
F = F (m) + (xξ + yη, xη − yξ) +O((x, ξ, y, η)3).
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Dynamics and singularities of coupled spin-oscillators

The coupled spin-oscillator system has non-degenerate singularities of elliptic-elliptic, transversally-elliptic
and focus-focus type. It has exactly one singularity of focus-focus type. Near the focus-focus singularity,
the behavior of the Hamiltonian vector fields generated by the system is not2π-periodic, as it occurs with
toric systems.

Figure 1.1: Singularity of focus-focus type and vanishing cycle. Topologically a fiber containing a single
focus-focus singularity is a pinched torus.

Loosely speaking, one of the components of the system is indeed2π-periodic, but the other one generates
an arbitrary flow which turns indefinitely around the focus-focus singularity and which, asF tends to the
critical valueF (m), deviates from periodic behavior in a logarithmic fashion,up to a certain error term; this
deviation from being logarithmic is a symplectic invariantand can be made explicit – it is in fact given by
an infinite Taylor series(S)∞ on two variablesX,Y with vanishing constant term. This was proven by the
second author in [23]. The goal of the first part of the presentpaper is compute the linear approximation of
this deviation.

Theorem 1.1. The coupled spin–oscillator is a semitoric integrable system, with one single focus-focus
singularity atm = (0, 0, 1, 0, 0) ∈ S2 × R

2. The semiglobal dynamics aroundm may be described
as follows: the linear deviation from exhibiting logarithmic behavior in a saturated neighborhood ofm is
given by the linear mapL : R2 → R with expressionL(X, Y ) = π

2 X + 5 ln 2Y. In other words, we have
an equality(S(X, Y ))∞ = L(X, Y ) +O(X,Y )2, where(S(X, Y ))∞ denotes the Taylor series invariant
at the focus-focus singularity.

As far as we know, this theorem gives the first rigorous estimate in the literature of the logarithmic
deviation, and hence the first explicit quantization of the symplectic dynamics around the singularity; we
prove it in Section 2. The proof is computational but rather subtle, and it combines a number of theorems
from integrable systems and semiclassical analysis. The method of proof of Theorem 1.1 (given in several
steps) provides a fairly general algorithm to implement in the case of other semitoric integrable systems.
Moreover, it seems plausible to expect that the techniques we introduce generalize to compute higher order
approximations, but not immediately – indeed, the linear approximation relies on various semiclassical
formulas that are not readily available for higher order approximations. In this paper we will also find the
other invariants that characterize the coupled spin-oscillator (Section 3): the polygon and height invariants;
these are easier to find.

3



Spectral theory for quantum coupled spin-oscillators

Sections 4, 5 of this paper are devoted to the spectral theoryof quantum coupled spin-oscillators. The
following theorem describes the quantum spin-oscillator.For any~ > 0 such that2 = ~(n + 1), for some
non-negative integern ∈ N, letH denote the standardn+1-dimensional Hilbert space quantizing the sphere
S2 (see Section 4.1).

Figure 1.2: Semiclassical joint spectrum ofĴ , Ĥ. We will explain this figure in more detail in Section 4.

Theorem 1.2. LetS2 ×R
2 be the coupled spin-oscillator, and (as above) letJ, H : M → R be the Poisson

commuting smooth functions that define it. The unbounded operators Ĵ := Id⊗
(
− ~2

2
d2

du2 +
u2

2

)
+(ẑ⊗Id)

andĤ = 1
2(x̂ ⊗ u + ŷ ⊗ (~i

∂
∂u) on the Hilbert spaceH ⊗L2(R) ⊂ L2(R2) ⊗L2(R) are self-adjoint and

commute. The spectrum ofĴ is discrete and consists of eigenvalues in~(1−n
2 + N).

For a fixed eigenvalueλ of Ĵ , letEλ := ker(Ĵ − λId) be the eigenspace of the operatorĴ overλ. There
exists a basisBλ of Eλ in whichĤ restricted toEλ is given by

MBλ
(Ĥ) =

(
~

2

) 3
2




0 β1 . . . 0
β1 0 β2 0
0 β2 0 β3 0

...
...

. . .
...

...
...
βµ

0 0 . . . βµ 0




,

where0 ≤ k ≤ n, ℓ0 := λ
~
+ n−1

2 , µ :=min(ℓ0, n), βk :=
√

(ℓ0 + 1− k)k(n − k + 1).
The dimension ofEλ is µ+ 1.

Finding out how information from quantum completely integrable systems leads to information about
classical systems is a fascinating “inverse” problem with very few precise results at this time. Section 5
explains how information of the coupled spin-oscillator, including itslinear singularity theory (computed in
Section 2), may be recovered from the quantum semiclassicalspectrum.

The way in which we recover this linear singularity theory relies on a conjecture for Toeplitz operators,
which has been proven for pseudodifferential operators. Weexplain in detail how to do this and formulate
the following conjecture about semitoric integrable systems: that a semitoric system is determined up to
symplectic equivalence by its semiclassical joint spectrum, i.e. the set of points inR2 where on thex-axis
we have the eigenvalues of̂J , and on the vertical axis the eigenvalues ofĤ restricted to theλ-eigenspace
of Ĵ . From any such spectrum one can construct explicitly the associated semitoric system. We give strong
evidence of this conjecture for the coupled spin oscillators.
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(Université Rennes 1) during January 2010, and he thanks them for the warm hospitality. He also thanks
MSRI for hospitality during the Fall of 2009 and Winter 2010 when we has a member, and the University of
Paris-Orsay for their hospitality during the author’s visit on February 2010, during which a portion of this
paper was written.

2 Singularity theory for coupled spin-oscillators

This section considers semiglobal properties. It is independent of Section 3 which concerns global proper-
ties. The main goal of this section is to prove Theorem 1.1.

Let (M, ω, F := (J, H)) be a semitoric integrable system. Recall that asingular point, or asingularity,
is a pointp ∈ M such thatrank(dF )(p) < 2, whereF := (J, H) : M → R

2. A singular fiberof the system
is a fiber ofF : M → R

2 that contains some singular point.
Letm be a focus-focus singular pointm. LetB := F (M). Let c̃ = F (m). The set of regular values of

F is Int(B) \ {c̃}, the boundary ofB consists of all images of elliptic singularities, and the fibers ofF are
connected (see [25]).

We assume that the critical fiberFm := F−1(c̃) contains only one critical pointm, which according to
Zung [28] is a generic condition, and letF denote the associated singular foliation.

By Eliasson’s theorem [10] there exist symplectic coordinates (x1, x2, ξ1, ξ2) in a neighborhoodU
aroundm in which (q1, q2), given by

q1 = x1ξ2 − x2ξ1, q2 = x1ξ1 + x2ξ2, (2.1)

is a momentum map for the foliationF (in the sense that for some local diffeomorphismq = g ◦ F , so
the mapsq andF have the same fibers); here the critical pointm corresponds to coordinates(0, 0, 0, 0).
Because of the uniqueness of theS1-action one may chose Eliasson’s coordinates [22] such thatq1 = J .

2.1 Construction of the singularity invariant at a focus-focus singularity

Fix A′ ∈ Fm ∩ (U \ {m}) and letΣ denote a small 2-dimensional surface transversal toF at the pointA′,
and letΩ be the open neighborhood ofFm which consists of the leaves which intersect the surfaceΣ.

Since the Liouville foliation in a small neighborhood ofΣ is regular for bothF andq = (q1, q2), there is
a local diffeomorphismϕ of R2 such thatq = ϕ◦F , and we can define a global momentum mapΦ = ϕ◦F
for the foliation, which agrees withq onU . Write Φ := (H1, H2) andΛc := Φ−1(c). For simplicity we
write Φ = q. Note thatΛ0 = Fm. It follows from (2.1) that nearm theH1-orbits must be periodic of
primitive period2π.

Suppose thatA ∈ Λc for some regular valuec. Let τ2(c) > 0 be the time it takes the Hamiltonian flow
associated withH2 leaving fromA to meet the Hamiltonian flow associated withH1 which passes through
A, and letτ1(c) ∈ R/2πZ the time that it takes to go from this intersection point backto A, hence closing
the trajectory. We denote byγc the corresponding loop inΛc.

Write c = (c1, c2) = c1 + ic2, and letln z for a fixed determination of the logarithmic function on the
complex plane. Let {

σ1(c) = τ1(c)−ℑ(ln c)
σ2(c) = τ2(c) + ℜ(ln c),
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Figure 2.1: Singular foliation near the leafFm, whereS1(A) denotes theS1-orbit generated byH1 = J .

whereℜ andℑ respectively stand for the real an imaginary parts of a complex number. Vũ Ngo.c proved
in [23, Prop. 3.1] thatσ1 andσ2 extend to smooth and single-valued functions in a neighbourhood of0 and
that the differential 1-form

σ := σ1 dc1 + σ2 dc2

is closed. Notice that if follows from the smoothness ofσ2 that one may choose the lift ofτ2 toR such that
σ2(0) ∈ [0, 2π). This is the convention used throughout. Following [23, Def. 3.1] , letS be the unique
smooth function defined around0 ∈ R

2 such that

dS = σ, S(0) = 0.

The Taylor expansion ofS at (0, 0) is denoted by(S)∞.
The Taylor expansion(S)∞ is a formal power series in two variables with vanishing constant term, and

we say that(S)∞ is theTaylor series invariant of(M, ω, (J, H)) at the focus-focus pointc.

2.2 The coupled spin-oscillators

Let S2 be the unit sphere inR3 with coordinates(x, y, z), and letR2 be equipped with coordinates(u, v).
Recall from the introduction that the coupled-spin oscillator model is the productS2×R

2 equipped with the
product symplectic structureωS2 ⊕ω0 given bydθ∧dz⊕du∧dv, and with the smooth Poisson commuting
mapsJ, H : M → R given byJ := (u2 + v2)/2 + z andH := 1

2 (ux + vy). Sometimes we denote
the coupled spin-oscillator by the triple(S2 × R

2, ωS2 ⊕ ω0, (J, H)). A simple verification leads to the
following observation.

Proposition 2.1. The coupled spin–oscillator(S2 × R
2, ωS2 ⊕ ω0, (J, H)) is a completely integrable

system, meaning that the Poisson bracket{J, H} vanishes everywhere1.
In addition, the mapJ is the momentum map for the Hamiltonian circle action ofS1 onS2 × R2 that

rotates simultaneously horizontally about the vertical axes onS2, and about the origin onR2.
The singularities of the coupled spin–oscillator are non-degenerate and of elliptic-elliptic, transversally-

elliptic or focus-focus type. It has exactly one focus-focus singularity at the “North Pole”((0, 0, 1), (0, 0)) ∈
S2 × R

2 and one elliptic-elliptic singularity at the “South Pole”((0, 0, −1), (0, 0)).

1equivalently the Hamiltonian vector fieldXJ is constant along the flow ofXH
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Corollary 2.2. The coupled spin–oscillator(S2 ×R
2, ωS2 ⊕ ω0, (J, H)) is a semitoric integrable system.

Computing the Taylor series invariant at the focus-focus singularity is rather involved. At this point we
are able to compute the first two termsa1, a2 (for the coupled spin-oscillators). Even in this case one has to
do a delicate coordinate analysis of flows involving Eliasson’s coordinates, and the computation of various
integrals.

Figure 2.2: Spin model with momentum mapz. Here(θ, z) are the angle-height coordinates on the unit
sphereS2.

2.3 Set up for coupled spin-oscillators — Integral formulasfor singularity invariant

Throughout we letM = S2 × R
2 andF = (J, H). In this set up stage we introduce the1-formsκ1,c and

κ2,c in terms of which the Taylor series in defined in [23], and we recall limit integral formulas for the Taylor
series invariant. Then we introduce the limit theorem proved in the semiclassical paper [22, Proposition 6.8],
which will be the key ingredient for the computation .

The formulas that we present here do not correspond to the exact statements in the corresponding papers,
but can be immediately deduced from it assuming the context of the present paper.

The one formsκ1,c and κ2,c. As usual, we denote byXqi the Hamiltonian vector field generated byqi,
i = 1, 2. Let c be a fixed regular value ofF . Let κ1,c ∈ Ω1(Λc), κ1,c ∈ Ω1(Λc) be the smooth1-forms on
the fiberΛc := F−1(c) corresponding to the valuec defined by the conditions

κ1,c(Xq1) := −1, κ1,c(Xq2) := 0, (2.2)

and

κ2,c(Xq1) := 0, κ2,c(Xq2) := −1. (2.3)

Note that the conditions in (2.2) and (2.3) are enough to determineκ1,c andκ2,c on Λc becauseXq1 , Xq2

form a basis of each tangent space.
We will call κ1,0, κ2,0 the corresponding form defined in the same way asκ1,c, κ2,c, but only onΛ0\{m},

wherem = (0, 0, 1, 0, 0) is the singular point of the focus-focus singular fiberΛ0.

Remark 2.3 The formsκ1,c, κ2,c , i = 1, 2 are closed. See also [22, Section 3.2.1]. ⊘
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Limit integral formula for Taylor invariants. The following result will be key for our purposes in the
present paper.

Lemma 2.4. Let (S) ∈ R[[X, Y ]] be the Taylor series invariant of the coupled-spin oscillator. Then the

first terms of the Taylor series are given by the limits of integrals a1 = limc→0

( ∫
γc
κ1,c + arg(c)

)
and

a2 = limc→0

( ∫
γc
κ2,c +ln |c|

)
.

Proof. It follows from the definition of the dynamical invariantsτ1(c) andτ2(c) in Section 2 and the defi-
nition of κ1,c andκ2,c in (2.2) and (2.3) respectively thatτi(c) =

∫
γc
κi,c, i = 1, 2. The first two terms of

the Taylor series invariantσ1(0) andσ2(0) whereσ1 = τ1 +arg(c) andσ2 = τ2 − ln |c|.
Sinceσ1 andσ2 are smooth, we have thata1 = σ1(0) = limc→0

( ∫
γc
κ1,c +arg(c)

)
anda2 = σ2(0) =

limc→0

( ∫
γc
κ2,c +ln |c|

)
.

Localization on the critical fiber. On the other hand, we have the following [22, Proposition 6.8] result
proved by the second author.

Theorem 2.5([22]). Letγ0 be a radial simple loop. The integrals in Lemma 2.4 are respectively equal to

a1 = lim
c→0

( ∫

γc

κ1,c +arg(c)
)
= lim

(s, t)→(0, 0)

(∫ B0=γ0(1−t)

A0=γ0(s)
κ1,0 + (tA − θB)

)
, (2.4)

and

a2 := lim
c→0

(∫

γc

κ2,c +ln |c|
)
= lim

(s, t)→(0, 0)

( ∫ B0(t):=γ0(1−t)

A0:=γ0(s)
κ2,0 +ln(rA0ρB0)

)
, (2.5)

where for any pointA in M close tom with Eliasson coordinates(x1, x2, ξ1, ξ2) as defined in equation
(2.1), we denote by(rA, tA, ρA, θA) the polar symplectic coordinates2 of A, i.e. (rA, tA) are polar coor-
dinates corresponding to(x1, x2) and(ρA, θA) are polar coordinates corresponding to(ξ1, ξ2).

2.4 Computation of integral limit formulas for coupled spin-oscillators

Now, in order to apply Theorem 2.5 we need to find the curveγ0, as well as the1-form κ and the coordinates
(r, θ, ρ, α), both of which are defined onΛ0. First we describe a parametrization ofΛ0, and then we use
this parametrization to defineγ0. We have divided the computation into five steps.

Stage 1 — Eliasson’s coordinates(x1, x2, ξ1, ξ2)

We find explicitly symplectic coordinates(x̂1, x̂2, ξ̂1, ξ̂2) ∈ M = S2 ×R
2 in which the “momentum map”

F : M → R
2 for the coupled spin-oscillator has the form (2.1), up to a third order approximation, i.e. up to

(O(x̂1, x̂2, ξ̂1, ξ̂2))
3. For brevity writeO(3) = (O(x̂1, x̂2, ξ̂1, ξ̂2))

3.

2These coordinates(rA, tA, ρA, θA) should not be confused with the coordinates(r, t, ρ, θ) without the subscript, which are
coordinates inR2

× S2.
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Lemma 2.6. Consider the map̂φ : T(0, 0, 0, 0)R
4 →T(0, 0, 1, 0, 0)(S

2 × R
2) given by

φ(x̂1, x̂2, ξ̂1, ξ̂2) = (v :=
1√
2
(x̂2 + ξ̂1), x :=

1√
2
(x̂2 − ξ̂1), u :=

1√
2
(−x̂1 + ξ̂2), y :=

1√
2
(x̂1 + ξ̂2)).

The mapφ̂ is a linear symplectomorphism, i.e. an automorphism such that φ∗Ω = ω0, whereω0 = dx̂1 ∧
dξ̂1 ⊕dx̂2 ∧dξ̂2 is the standard symplectic form onR4, andΩ = (ωS2 ⊕du ∧dv)↾T(0,0,1,0,0)(S2×R2) (recall

ωS2 is the standard symplectic form onS2). In addition, φ̂ satisfies the equationHess(F̃ ) ◦ φ̂ = (q1, q2),

whereF̃ := B ◦ (F − F (m)) = B ◦ (F − (1, 0)) : M → R
2, for the matrixB :=

(
1 0
0 2

)
.

In the above statement, we identify a Hessian with its associated quadratic form on the tangent space.

Stage 2 — Curve and Singular Fiber Parametrization

Parametrization of Λ0. Let’s now parametrize the singular fiberΛ0 := F−1(1, 0), whereF = (J, H) as
usual. This singular fiberΛ0 corresponds to the system of equationsJ = 1 andH = 0, which explicitly is
given by system of two nonlinear equationsJ = (u2 + v2)/2 + z = 0 andH = 1

2 (ux + vy) = 0. on the
coordinates(x, y, z, u, v) on the coupled spin oscillatorM = S2 × R

2.
In order to solve this system of equations we introduce polarcoordinatesu+ iv = reit andx+ iy = ρeiθ

where recall that the2-sphereS2 ⊂ R
3 is equipped with coordinates(x, y, z), andR2 is equipped with

coordinates(u, v).
For ǫ = ±1, we consider the mappingSǫ : [−1, 1] × R/2πZ → R

2 × S2 given by the formula
Sǫ(p) = (r(p) eit(p), (ρ(p) eiθ(p), z(p))) wherep = (z̃, θ̃) ∈ [−1, 1] × [0, 2π) and





r(p) =
√

2(1− z̃)

t(p) = θ̃ + ǫπ2
ρ(p) =

√
1− z̃2

θ(p) = θ̃

z(p) = z̃.

Proposition 2.7. The mapSǫ, whereǫ = ±1, is continuous andSǫ restricted to(−1, 1) × R/2πZ is a
diffeomorphism onto its image. If we letΛǫ

0 := Sǫ([−1, 1]× R/2πZ), thenΛ1
0 ∪ Λ2

0 = Λ0 and

Λ1
0 ∩ Λ2

0 =
(
{(0, 0)} × {(1, 0, 0)}

)
∪
(
C2 × {(0, 0, −1)}

)
,

whereC2 denotes the circle of radius2 centered at(0, 0) in R
2. Moreover,Sǫ restricted to(−1, 1)×R/2πZ

is a smooth Lagrangian embedding intoR2 × S2.

Proof. On the one hand we have thatz2 = 1 − x2 − y2 = 1 − ρ2. The expressions for the mapsJ andH
in the new coordinates(r, t, ρ, θ) are

J =
1

2
r2 ±

√
1− ρ2, H =

rρ

2
cos(t− θ). (2.6)

In virtue of the formula forH in the right hand-side of (2.6), ifH = 0 thenr = 0 or ρ = 0 or t− θ =
π
2 (modπ), which leads to three separate cases. The first case is whenr = 0; thenJ = ±

√
1− ρ2 = 1, and

9



henceρ = 0. Hence the only solution is(u, v, x, y, z) = (0, 0, 0, 0, 1). The second case is whenρ = 0;
then eitherz = 1 andr = 0, or z = −1 andr = 2. Hence the set of solutions consists of(0, 0, 0, 0, 1) and
the circler = 2, ρ = 0 andz = −1. Finally, the third case is whent− θ = π

2 (modπ); becauseJ = 1 and
H = 0, it follows from the formula forz above and the left hand-side of (2.6) thatr2 = 2(1− z). Hence the
set of solutionsΛ0 is equal to the set of points(reit, ρ eiθ) such that





r =
√

2(1 − z), z ∈ [−1, 1]

θ = t− π
2 or θ = t+ π

2 , t ∈ [0, 2π)

ρ =
√
1− z2

(2.7)

This case contains the previous two cases, which proves statement (3) part (i) in virtue of expression (2.5).
The other statements are left to the reader.

Remark 2.8 The singular fiberΛ0 consists of two sheets glued along a point and a circle; topologicallyΛ0

is a pinched torus, i.e. a2-dimensional torusS1 × S1 in which one circle{p} × S1 is contracted to a point
(which is of course not a a smooth manifold at the point which comes from the contracting circle). ⊘

The radial vector field XH onΛ0.

Proposition 2.9. LetXqi be the Hamiltonian vector field ofqi (which recall is defined in saturated neighbor-
hood of the singular fiberΛ0). On the singular fiberΛ0, the vector fieldsXq1 , XJ andXq2 , XH are linearly
independent, precisely:Xq1 = XJ , Xq2 = 2XH . In particular the vector fieldXH is radial.

Proof. It follows from Eliasson’s theorem that there exists a smooth functionh such thatq = h ◦ F and
dh(0) is the invertible2 by 2 matrixB in Lemma 2.6.

Then onΛ0 we have that

Xqi =
∂hi
∂J

XJ +
∂hi
∂H

XH , i = 1, 2. (2.8)

Because the coefficients are constant alongΛ0, it is sufficient to do the computation at the origin. At
the origin the computation is given by the matrixB in Lemma 2.6, so we have that∂h1

∂J (0) =, ∂h1
∂H (0) =

0, ∂h2
∂J (0) = 0 and ∂h2

∂H (0) = 2. The proposition follows from (2.8).

In the following section we will need to use explicitly the Hamiltonian vector fieldXH , and therein it
will be most useful to a have the following explicit coordinate expression.

Lemma 2.10. The Hamiltonian vector fieldXH of H is of the form

XH =
y

2

∂

∂u
− x

2

∂

∂v
+

−yu+ xv

2

∂

∂z
− z(xu+ yv)

2(1 − z2)

∂

∂θ
.

Proof. For this computation let us use coordinates(u, v, z, θ) as a parametrization ofR2 × S2.
The coordinate expression for the HamiltonianH is H = 1

2(xu + yv) = 1
2(ρ cos θu+ ρ sin θv), Then

the Hamiltonian vector fieldXH is of the formXH = a ∂
∂u + b ∂

∂v + c ∂
∂z + d ∂

∂θ , where since the symplectic
form onR2×S2 in these coordinates isdu∧dv+dθ∧dz, the function coefficienta (which will be important
later in the proof) is given by

a =
∂H

∂v
=

1

2
ρ sin(θ) =

y

2
(2.9)
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and the other function coefficients are given byb = −∂H
∂u = ρ cos(θ) = −x

2 , c = ∂H
∂θ = ρ

2 (− sin(θ)u +

cos(θ)v) = −yu+xv
2 andd = −∂H

∂z .
We need to computed explicitly. Since∂θ

∂z = 0 because the angleθ does not depend on the heightz,

and dρ
dz = − z√

1−z2
, we have that

∂x

∂z
=

∂x

∂ρ

∂ρ

∂z
+

∂x

∂θ

∂θ

∂z
=

∂x

∂ρ

∂ρ

∂z
=

−xz

ρ2
(2.10)

∂y

∂z
=

∂y

∂ρ

∂ρ

∂z
+

∂y

∂θ

∂θ

∂z
=

∂y

∂ρ

∂ρ

∂z
=

−yz

ρ2
(2.11)

It follows that from (2.10) and (2.11) that the function coefficient d is given by

d = −∂H

∂z
= −∂H

∂x

∂x

∂z
+

∂H

∂y

∂y

∂z
=

u

2

−xz

ρ2
+

v

2

−yz

2ρ2
= −z(xu+ yv)

2ρ2
= −z(xu+ yv)

2(1− z2)
.

Definition of a simple “radial” loop in Λ0. In order to apply the theorem it is enough to takeγ0 to be an
integral curve of the radial vector fieldXH .

We defineγ0 as the simple loop obtained through the parametrizationsS+ andS− by letting z̃ run from
−1 to 1 and back to−1, respectively. For instance, one can use the formula

γ0(s) :=

{
S1(−1 + 4s, −π

2 ) if 0 ≤ s ≤ 1
2 ;

S2(3− 4s, π
2 ) if 1

2 < s ≤ 1.

Corollary 2.11. Along the curveγ0 we have

XH

∣∣∣
γ0

=
y

2

∂

∂u
− yu

2

∂

∂z
. (2.12)

Proof. We use the notation of Lemma 2.10. Alongγ0 we havev = 0, x = 0 andθ = π or θ = 3π
2 . Hence

a = y
2 , b = 0, , c = −yu

2 , d = 0. Therefore the vector fieldXH along the curveγ0 is given by (2.12).

Using Corollary 2.11 we describe the very explicit relationbetween the curveγ0 and the Hamiltonian
vector fieldXH .

Proposition 2.12. The curveγ0 : [0, 1] → M is an integral curve ofXH .

Proof. Since by construction the vector fieldS∗(
∂
∂z̃ ) is tangent to the curveγ0, it is enough to show that

S∗( ∂
∂z̃ ) is colinear toXH are colinear at each point.
A computation gives that

S∗
( ∂

∂z̃

)
=

∂

∂z
− 1√

2(1− z)

∂

∂r
+

z√
1− z2

∂

∂ρ
. (2.13)

On the other hand

u =
√

2(1− z), (2.14)

11



and since(r, t) are polar coordinates for(u, v), ∂
∂r = cos t ∂

∂u+sin t ∂
∂v , which att = 0 gives that ∂∂r = ∂

∂u .
Therefore, because att = 0 the last factor of (2.13) is zero, we conclude from (2.14) that

S∗
( ∂

∂z̃

)
=

∂

∂z
− 1

u

∂

∂u
. (2.15)

.
It follows from (2.12) thatXH = −yu

2 S∗
(

∂
∂z̃

)
, which shows thatXH andS∗(

∂
∂z̃ ) are colinear at every

point, as desired.

Stage 3 — Integration in linearized Eliasson’s coordinates

Letφ be a local symplectic map such thatg ◦F ◦φ = q onR
4, as given by Eliasson’s normal form theorem.

The integrals in (..) are defined in terms of the corresponding canonical coordinates(x1, x2, ξ1, ξ2) in R
4.

Because our computation is local, we can use instead the linearized coordinates that we have de-
fined in Lemma 2.6. More precisely, one can always chooseφ such that the tangent mapd(0, 0, 0, 0) φ :

T(0, 0, 0, 0)R
4 → T(0, 0, 1, 0, 0) S

2 × R
2 is equal toφ̂, and this gives local coordinates(x̂1, x̂2, ξ̂1, ξ̂2) in a

neighborhood ofm, such thatB ◦ F (x̂1, x̂2, ξ̂1, ξ̂2) = q(x̂1, x̂2, ξ̂1, ξ̂2) +O(3).
Note that these coordinates are not symplectic, except atm.

Lemma 2.13. The integral (2.5) gives us the same result when computed in linearized coordinates, i.e. upon
replacingrA by r̂A, tA by t̂A, ρA by ρ̂A andθA by θ̂A.

Proof. Sincer2A = x21 + x22, then

r̂2A = x̂21 + x̂22 = x21 + x22 +O(3) = r2A +O(3) (2.16)

We know that O(3)
x2
1+x2

2
= O(1), and therefore it follows from (2.16) that

ln(r̂2A) = ln(r2A +O(3)) = ln
(
1 +

O(3)

r2A

)
+ln(r2A) = ln(1 +O(1)) + ln(r2A) = O(1) + ln(r2A). (2.17)

Similarly ln(ρ̂2B) = O(1) +ln(ρ2B). Henceln(rAρB) = ln(rA) +ln(ρB) = ln(r̂A) +ln(ρ̂B) = ln(r̂Aρ̂B) +
O(1). Then

lim
(s, t)→(0, 0)

ln(rA0ρB0)− ln(r̂A0 ρ̂B0) = 0. (2.18)

It follows from expressions (2.5) and (2.18) that

a2 = lim
(sA, sB)→(0, 0)

(∫ B0=γ0(1−sB)

A0=γ0(sA)
κ2,0 +ln |r̂A0 ˆρB0 |

)
. (2.19)

This concludes the proof.
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Stage 4 — Computation of the first order Taylor series invariants a1 and a2

In order to compute the integrals in (2.19) we can replaceγ0 by any integral curve ofXH with the same
endpoints. Thus, letγ be a solution tȯγ = XH ◦ γ. By definition, for any 1-formκ,

∫ B0:=γ(s2)

A0:=γ(s1), alongγ
κ =

∫ s2

s1

κγ(s)(γ̇(s))ds =

∫ s2

s1

κγ(s)(XH(γ(s)))ds. (2.20)

Theorem 2.14. Let (S) ∈ R[[X, Y ]] be the Taylor series invariant of the couple-spin oscillator. Then the
first coefficient of the first term of the series is given bya1 = π

2 . The second coefficient of the first term of
the first order Taylor series invariant isa2 = 5 ln 2.

Proof. We have divided the computation ofa2 in several steps.

Step 1: Set-up of the integral ofκ2,0. We need to compute expression (2.19).
Let a be given by (2.9).
In view of (2.12), the pathγ betweenA0 andB0 can be parametrized by the variableu. This means

that the pathγ is obtained by first increasingu up tou = 2 on the first sheet (parametrized byS1) and then
decreasingu on the second sheet (parametrized byS2).

By Lemma 2.9 we know thatXq2 = 2XH and hence(κ2,0)γ(s)(XH(γ(s))) =
(κ2,0)γ(t)(Xq2 (γ(s)))

2 . By

definition of κ2,0 we know thatκ2,0(Xq2) = −1 and hence it follows from (2.20) that
∫ B0

A0, alongγ κ2,0 =∫ s2
s1

ds
2 . Sincedu

ds is equal toa = y
2 we have that

∫ B0

A0, alongγ
κ2,0 =

∫ s2

s1

ds

2
=

∫ 2

u1

du

y+(u)
+

∫ u2

2

du

y−(u)
, (2.21)

wherey±(u) is they-coordinate along the part of the curveγ0 which corresponds to the parametrization
S±, respectively. Our next goal is to compute expression (2.21).

Step 2: Computation of expression (2.21). Now,y = ρ sin(θ) = ±ρ.

Now let us express the dependence ofy in u along the pathγ. By the equationJ = 1
2(u

2+v2)+z = −1,

which is always true along the singular fiber, we have that, sincev = 0, u2

2 + z = 1, or in other words,

z = 1− u2

2 . It follows from this equation that

y± = ±ρ = ±
√

1− z2 = ±
√

1− (1− u2

2
)2 = ±u

√
1− u2

4
sinceu > 0. (2.22)

On the other hand, note that the functionG(t) = ln
(

1
cos t + tan t

)
is a primitive of the functiong(t) =

1
cos t . Then by equation (2.22), using the change of variableu/2 = cos t, and then applying the fundamental
theorem of calculus we obtain3

∫ 2

u1

du

y+
=

∫ 2

u1

du

u
√

1− u2

4

= −
[
ln

( 1

cos t
+ tan t

)]0
t1
= −

[
ln

(2
u
+

2

u

√
1− u2

4

)]2
u1

,

3The integral is equal to0 whenu = 2
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and simplifying this expression we then obtain
∫ 2

u1

du

y+
= ln

( 2

u1

)
+ln

(
1 +

√
1− u21

4

)
. (2.23)

The goal of this proof is to computea1, which by (2.5) is equal to the limit

lim
(s, t)→(0, 0)

( ∫ B0(t):=γ0(1−t)

A0:=γ0(s)
κ2,0 +ln(rA0ρB0)

)
,

and precisely because this limit exists, we may calculate italong the diagonal values given byu = u1 = u2.
Then it follows from equation (2.23) that

∫ B0

A0

κ =

∫ 2

u1

du

y+
+

∫ u2

2

du

y−
= 2

∫ 2

u

dy+
y+

= 2
(
ln

( 2
u

)
+ln

(
1 +

√
1− u2

4

))
. (2.24)

This concludes this step.

Step 3: Computation of the logarithm factorln(r̂A0 ρ̂B0).

From the notation of Stage 1 we have thatr̂2A = x̂21 + x̂22 and thatρ̂2A = ξ̂21 + ξ̂22 . Using Lemma 2.6 we
find thatr̂2A = 1

2 (x
2 + y2 + u2 + v2) + (−uy + vx) andρ̂2A = 1

2 (x
2 + y2 + u2 + v2) + (uy − vx).

We need to computêrA0 andρ̂B0 . The pointsA0 andB0 are in the pathγ0 andA0 := (uA0 , vA0 , θA0 , zA0) =

(uA0 , 0,
π
2 , 1−

u2
A0
2 ), andB0 := (uB0 , vB0 , θB0 , zB0) = (uA0 , 0,

−π
2 , 1− u2

A0
2 ).

With this information we can computêrA0 andρ̂B0 using expression (2.22) and recalling thatx = v = 0
alongγ:

r̂2A0
=

1

2
(u2 − u4

4
+ u2)− u2

√
1− u2

4
=

u2

2
(2− u2

4
− 2

√
1− u2

4
), (2.25)

where here we have also usedρ2 = 1− z2 = 1− (1− u2

2 )
2 = u2 − u2

4 . And we also have that

ρ̂2B0
= r̂2A0

. (2.26)

It follows from (2.25) and (2.26) that

ln(r̂A0 ρ̂B0) =
1

2
ln(r̂2A0

ρ̂2B0
) =

1

2
ln(r̂4A0

) = ln(r̂2A0
) = ln

(u2
2
(2− u2

4
+ 2

√
1− u2

4
)
)

and therefore that

ln(r̂A0 ρ̂B0) = 2ln(
u√
2
) + ln(2− u2

4
+ 2

√
1− u2

4
). (2.27)

This concludes the computation of the logarithmic factor.

Step 4: Conclusion. It follows from (2.5), (2.24) and (2.27) that

a2 = lim
u→0

(∫ B0

A0

κ2,0 +ln(r̂A0 ρ̂B0)
)

= lim
u→0

(
(2ln(

2

u
) + 2ln(1 +

√
1− u2

4
) + 2ln(

u√
2
) + ln(2− u2

4
+ 2

√
1− u2

4
)
)

= 2ln 2 + 2ln 2− ln 2 + 2ln 2 = 5ln 2. (2.28)
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So we have proven thata2 = 5ln2 as we wanted to show.
In order to finda1, note that the following hold:u ≥ 0, v = 0, θ = π

2 or 3π
2 , ρ =

√
1− z2, z =

1 − u2

4 , ρ =
√

u2 − u2

4 . In this casex1 = u±ρ
2 , x2 = u±ρ

2 , and thereforêθ = π
4 . Similarly ξ1 =

−u±ρ
2 , ξ2 =

u∓ρ
2 = −ξ1, and henceα = π

4 . It follows thatθ̂A0 − α̂B0 = π
2 . Therefore by Theorem 2.5

a1 = lim
(s, t)→(0, 0)

(∫ B0=γ0(1−t)

A0=γ0(1)
κ1,0 + (θ̂A − α̂B)

)
=

π

2
.

Here we are using that becauseκ0(XH) = 0 andγ0 is tangent everywhere toXH so one has that

lim
(s, t)→(0, 0)

(∫ B0=γ0(1−t)

A0=γ0(1)
κ0

)
= 0.

(See also the paragraphs before Theorem 2.14). This concludes the proof.

Theorem 1.1 follows from Theorem 2.14.

Remark 2.15 It is plausible that our proof technique generalizes to compute the higher order terms of
the Taylor series invariant, but not immediately, as we relyon the limit theorem proved in [22] which only
applies to the first two terms. The computation provides moreevidence of the fact that from a dynamical
and geometric view-point focus-focus singularities contain a large amount of information. ⊘

3 Convexity theory for coupled spin-oscillators

The planeR2 is equipped with its standard affine structure with origin at(0, 0), and orientation. Let
Aff (2,R2) := GL(2,R2)⋉R

2 be the group of affine transformations ofR
2. Let Aff(2,Z) := GL(2,Z)⋉R

2

be the subgroup ofintegral-affinetransformations.
Let T be the subgroup ofAff(2, Z) of those transformations which leave a vertical line invariant, or

equivalently, an element ofT is a vertical translation composed with a matrixT k, wherek ∈ Z and

T k :=

(
1 0
k 1

)
∈GL(2, Z).

Let ℓ0 ⊂ R
2 be a vertical line in the plane, not necessarily through the origin, which splits it into two half-

-spaces, and letn ∈ Z. Fix an origin inℓ. Let tnℓ0 : R
2 → R

2 be the identity on the left half-space, andT n

on the right half-space. By definitiontnℓ0 is piecewise affine. Aconvex polygonal set∆ is the intersection
in R

2 of (finitely or infinitely many) closed half-planes such thaton each compact subset of the intersection
there is at most a finite number of corner points. We say that∆ is rational if each edge is directed along a
vector with rational coefficients. For brevity, in this paper we usually write“polygon” instead of“convex
polygonal set”.

3.1 Construction of the semitoric polygon invariant

Let ℓ be a vertical line through the focus-focus valuec. LetBr := Int(B) \{c}, which is precisely the set of
regular values ofF . Given a signǫ ∈ {−1,+1}, let ℓǫ ⊂ ℓ be the vertical half line starting atc at extending
in the direction ofǫ : upwards ifǫ = 1, downwards ifǫ = −1.
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In Th. 3.8 in [25] it was shown that forǫ ∈ {−1,+1} there exists a homeomorphismf = fǫ : B → R
2,

modulo a left composition by a transformation inT , such thatf |(B\ℓǫ) is a diffeomorphism into its image
∆ := f(B), which is arational convex polygon, f |(Br\ℓǫ) is affine (it sends the integral affine structure of
Br to the standard structure ofR2) andf preservesJ : i.e. f(x, y) = (x, f (2)(x, y)). f satisfies further
properties [18], which are relevant for the uniqueness theorem proof. In order to arrive at∆ one cuts
(J, H)(M) ⊂ R

2 along the vertical half-linesℓǫ. Then the resulting image becomes simply connected and
thus there exists a global2-torus action on the preimage of this set. The polygon∆ is just the closure of the
image of a toric momentum map corresponding to this torus action.

−1 0 1 2 3

−1

0

1

−1 0 1 2 3

−1

0

1

−1 0 1 2 3

−1

0

1

(J, H)

(ℓ1, ǫ1 = −1)

(ℓ1, ǫ1 = +1)

(k
1

=
0,
h 1

=
1,
S 1

)

(k1 = 0, h1 = 1, S1)

S2
× R

2

Figure 3.1: The coupled spin-oscillator example. The middle figure shows the image of the initial moment
mapF = (J, H). Its boundary is the parametrized curve(j(s) = s2−3

2s , h(s) = ± s2−1
2s3/2

), s ∈ [1,∞).
The image is the connected component of the origin. The system is a simple semitoric system with one
focus-focus point whose image is(1, 0). The invariants are depicted on the right hand-side. The class of
generalized polygons for this system consists of two polygons.

We can see that this polygon is not unique. The choice of the “cut direction” is encoded in the signs
ǫ, and there remains some freedom for choosing the toric momentum map. Precisely, the choices and the
corresponding homeomorphismsf are the following :

(a) an initial set of action variablesf0 of the form(J, K) near a regular Liouville torus in [25, Step 2,
pf. of Th. 3.8]. If we choosef1 instead off0, we get a polygon∆′ obtained by left composition with
an element ofT . Similarly, if we choosef1 instead off0, we obtainf composed on the left with an
element ofT ;

(b) an integerǫ ∈ {1, −1}. If we chooseǫ′ instead ofǫ we get∆′ = tu(∆) with u = (ǫ− ǫ′)/2, by [25,
Prop. 4.1, expr. (11)]. Similarly instead off we obtainf ′ = tu ◦ f .

Oncef0 andǫ have been fixed as in (a) and (b), respectively, then there exists a unique toric momentum
mapµ onMr := F−1(IntB \ ℓǫ) which preserves the foliationF , and coincides withf0 ◦F where they are
both defined. Then, necessarily, the first component ofµ is J , and we haveµ(Mr) = ∆.
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We need now for our purposes to formalize choices (a) and (b) in a single geometric object. Let
Polyg(R2) be the space of rational convex polygons inR

2. LetVert(R2) be the set of vertical lines in

R
2. A weighted polygon(of complexity1) is a triple of the form∆w =

(
∆, ℓλ, ǫ

)
where∆ ∈Polyg(R2),

ℓ ∈ Vert(R2), andǫ ∈ {−1, 1}. Let G := {−1, +1}. Obviously, the groupT sends a rational convex
polygon to a rational convex polygon. It corresponds to the transformation described in (a). On the other
hand, the transformation described in (b) can be encoded by the groupG acting on the triple∆w by the
formula

ǫ′ ·
(
∆, ℓλ, ǫ

)
=

(
tu(∆), ℓλ, ǫ

′ ǫ
)
,

where~u = (ǫ− ǫ′)/2. This, however, does not always preserve the convexity of∆, as is easily seen when
∆ is the unit square centered at the origin andλ1 = 0. However, when∆ comes from the construction
described above for a semitoric system(J, H), the convexity is preserved. Thus, we say that a weighted
polygon isadmissiblewhen theG-action preserves convexity. We denote byWPolyg(R2) the space of all
admissible weighted polygons (of complexity1). The setG×T is an abelian group, with the natural product
action. The action ofG× T onWPolyg(R2), is given by:

(ǫ′, τ) ·
(
∆, ℓλ, ǫ

)
=

(
tu(τ(∆)), ℓλ, ǫ

′ ǫ
)
,

whereu = (ǫ− ǫ′)/2. We call asemitoric polygonthe equivalence class of an admissible weighted polygon
under the(G× T )-action.

Let ∆ be a rational convex polygon obtained from the momentum image (J, H)(M) according to the
above construction of cutting along the vertical half-lineℓǫ.

Definition 3.1 Thesemitoric polygon invariant of(M, ω, (J, H)) is the semitoric polygon equal to the

(G× T )-orbit (G× T ) ·
(
∆, ℓ, ǫ

)
∈ WPolyg(R2)/(G× T ). ⊘

3.2 The semitoric polygon invariant of coupled spin-oscillators

Proposition 3.2. The semitoric polygon invariant of the coupled spin-oscillator is the(G × T )-orbit con-
sisting of the two convex polygons depicted on the right hand-side of Figure 3.1.

Proof. As shown in Figure 3.1, a representative of the semitoric polygon invariant is a polygon inR2 with
exactly two vertices at(−1, 0) and(1, 0), and from these two points leave straight lines with slope1 (the
other possible polygon representative has vertices at(−1, 0) and(1, 2)). One finds this polygon simply by
combining the information about the isotropy weights at theleft corner of the polygon (an elliptic-elliptic
critical value) [25, Prop. 6.1], together with the formula given in [25, Thm. 5.3], in which the relation
between isotropy weights and the slopes of the edges of the polygon is described using the Duistermaat-
Heckman function.

3.3 Classification theory for coupled spin-oscillators

The authors have recently given a general classification of general semitoric integrable in dimesion4 [18],
[19] in terms of five symplectic invariants; the reader familiar with these works can easily that two of these
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invariants do not appear in the case of coupled spin-oscillators, and we state the uniqueness theorem therein
in this particular case4

Consider a focus-focus critical pointm whose image by(J, H) is c̃, and let∆ be a rational con-
vex polygon corresponding to the system(M, ω, (J, H)). If µ is a toric momentum map for the system
(M, ω, (J, H)) corresponding to∆, then the imageµ(m) is a point in the interior of∆, along the lineℓ.
We proved in [18] that the vertical distanceh := µ(m)−mins∈ℓ∩∆ π2(s) > 0 is independent of the choice
of momentum mapµ. Hereπ2 : R2 → R is π2(c1, c2) = c2.

Theorem 3.3(consequence of Th. 6.2, [18]). Let (M, ω, (J, H)) be a4-dimensional semitoric integrable
system with exactly one focus-focus singularity. Thelist of invariants of(M, ω, (J, H)) consists of the
following items: (i) the Taylor series invariant(S)∞ at the focus-focus singularitym; (ii) the semitoric
polygon invariant; (iii) the volume invariant, i.e. the heighth > 0 ofm. Two4-dimensional simple semitoric
integrable systems(M1, ω1, (J1, H1)) and(M2, ω2, (J2, H2)) with exactly one focus-focus singularity are
isomorphic if and only if the list of invariants (i)-(iii) of(M1, ω1, (J1, H1)) is equal to the list of invariants
(i)-(iii) of (M2, ω2, (J2, H2)).

Theorem 3.4. The coupled spin-oscillator has the following symplectic invariants: (i) first terms of the
Taylor series invariant:a1 = π

2 anda2 = 5ln 2; (ii) semitoric polygon invariant:(G × T ) · ∆w, where
∆w is either the upper or lower weighted polygon depicted on theright-most side of Figure 3.1; (iii) volume
invariant: h = 1.

Proof. The semitoric polygon invariant and the first terms of the Taylor series invariant were computed
previously. The height of the focus-focus point of the system in the polygon is equal to half of the Liouville
volume of the submanifold ofM given by the equationJ = 1. This is because the functionsH and
J are symmetric about theJ-axis of R2 in the sense thatJ(x, y, z, u, v) = J(x, y, z, −u, −v) and
H(x, y, z, u, v) = −H(x, y, z, −u, −v). Here there is no need to compute anything because the volume
of the submanifold given byJ = 1 in M is just the length of the vertical slice of the polygon atJ = 1,
which is 2, and hence the height of the focus-focus point of the system is h1 = 1, and the image of the
focus-focus point in the polygon is(1, 1).

4 Spectral theory for quantum spin-oscillators

In this section, we use the notation of the previous sectionsJ = u2+v2

2 + z andH = 1
2(xu+ vy). Our goal

in this section is to quantize this example and analyze its semiclassical spectrum.
First we quickly review the process of assigning a quantum system to a classical system. Loosely

speaking, aquantum integrable systemis a collection of commuting self-adjoint operators on a Hilbert
space.Quantizationis a process that takes a classical phase space (here, a symplectic manifoldM ) to a
Hilbert spaceM̂ , and classical Hamiltoniansf ∈ C∞(M) to self-adjoint operatorŝf acting onM̂ . The
quantization of symplectic manifold is often called geometric quantization. See the recent book by Kostant-
Pelayo [15] for a survey. Quantizing Hamiltonians involvesmore difficulties. For instance, we need the map

4The first of these invariants is the number of focus-focus singularities. The last of these invariants, the so called twisting index
invariant, is a rather subtle topological invariant which measures how the topology near a focus-focus singular fiber relates to the
topology near the other focus-focus fibers. Hence the invariant only appears when there is more than one focus-focus singularity,
and in the following we shall not mention it. The twisting-index expresses the fact that there is, in a neighborhood of anyfocus-
focus pointci, a privileged toric momentum mapν. This momentum map, in turn, is due to the existence of a unique hyperbolic
radial vector field in a neighborhood of the focus-focus fiber. Therefore, one can view the twisting-index as a dynamical invariant.
This is an important invariant in the general case, see [18].
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f 7→ f̂ to be a Lie algebra homomorphism, at least at first order : if the classical system is given by two
Poisson commuting functionsf, g then the quantum system is given by two operatorsf̂ , ĝ such that

~

i [f̂ , ĝ] = 0 mod (O(~)). (4.1)

Such a quantization is well-known5 to exist whenM = R
2n, and more generally on a cotangent bundle

M = T∗X, using~-pseudodifferential quantization [7]. Quantizing compact symplectic manifolds is also
possible under an integrality condition (the existence of aso-called prequantum line bundle), using Toeplitz
quantization [4]. However, because of the remainder in (4.1), it is not known whether a classical integrable
system can always be quantized to a true quantum integrable system. Very recently, in the algebraic setting,
the relevant obstruction was defined [11]. In the coupled spin-oscillator example, like in many known
systems, an exact quantization can be found by hand.

A well-known example is the harmonic oscillator inR2. The harmonic oscillator is given byM = R
2

with coordinates(u, v) and Hamiltonian function on itN(u, v) = u2+v2

2 . The self-adjoint operator̂N in the

Hilbert space L2(R) given byN̂ = −~2

2
d2

du2 + u2

2 is the standard Weyl quantization of the HamiltonianN .

The spectrum of̂N is discrete and given by{~(n+ 1
2) | n ∈ N}. The eigenfunctions areHermite functions.

This operator will be used as a quantum building tool in the sequel.

4.1 Quantization ofR4 and the Harmonic Oscillator

We shall viewS2 as a reduced space ofR4 ≃ C
2 under the coordinate identificationz1 = x1 + iξ1,

z2 = x2 + iξ2. OnR4 we consider the well-known harmonic oscillator,L(z1, z2) =
|z1|2+|z2|2

2 which has a
2π-periodic flow generating a HamiltonianS1-actiont · (z1, z2) = (z1 e

−it, z2e
−it).

The spaceYE := {L = E}, for any valueE > 0, is of course the euclidean3-sphereS3√
2E

⊂ R
4

of radius
√
2E. It is well known that the reduced space{L = E}/S1 is 2-sphere, and the fibration map

{L = E} → {L = E}/S1 is the standardHopf fibration. More precisely, we may represent this reduced
space as the euclidean sphereS2

E/2 ⊂ R
3 of radiusE/2. Denoting by(x, y, z) the variables inR3, we have

the following useful formula for the Hopf map, which will be used for quantization :

x = ℜ(z1z̄2)/2
y = ℑ(z1z̄2)/2
z = (|z1|2 − |z2|2)/4.

The usual quantization ofR4 is the Hilbert spaceHR4 = L2(R2). The Weyl quantization of the Hamil-

tonian functionL is the unbounded operator̂L := −~2

2

(
d2

dx2
1
+ d2

dx2
2

)
+

x2
1+x2

2
2 .

The spectrum of̂L is given byspec(L̂) = {~(n + 1) |n ∈ N}. To see this, define the operatorL̂j :=

−~2

2

(
d2

dx2
1

)
+

x2
j

2 acting onL2(Rxj). We can writeL̂ = L̂1 + L̂2. Note that the spectrum of̂Lj is

spec(Lj) = {~(nj +
1

2
) |nj ∈ N}. (4.2)

Therefore we deduce that the spectrum ofL̂ is given by{~(n1+n2+1) |n1 ∈ N, n2 ∈ N}, and the formula
above follows sincen1 andn2 are arbitrary non-negative integers. The multiplicity of~(n + 1) is given by
the number of pairs(n1, n2) such thatn1 + n2 = n, which is preciselyn+ 1.

5for instance Weyl quantization, but there are other possible choices
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4.2 Quantization of the spaceS2 × R2 and the HamiltoniansJ and L

We define thequantizationof S2
E/2 to be the finite dimensional Hilbert spaceHE := ker(L̂ − E). When

E = ~(n + 1), thendim(HE) = n + 1 (otherwiseHE = {0}). It will be convenient to introduce the

“anihilation operators”ai := 1√
2~

(
~

∂
∂xj

+ xj

)
, i = 1, 2, which naturally quantizezi/

√
2~, i = 1, 2

respectively. Then̂L = ~(a1a
∗
1 + a2a

∗
2 − 1). Thequantizationof the Hamiltoniansx, y, z onS2

E/2 are the
restrictions toHE of the operators:

x̂ :=
~

2
(a1a

∗
2 + a2a

∗
1), ŷ :=

~

2i
(a1a

∗
2 − a2a

∗
1), ẑ :=

~

2
(a1a

∗
1 − a2a

∗
2). (4.3)

This definition makes sense becauseHE is stable under the action of̂x, ŷ, ẑ. This can be checked right
away using the commutation relations[aj, a∗j ] = 1, but it will also follow from the explicit action of these
operators, as explained in Section 4.3 below.

Of course, inR2
(u,v), the quantization ofv is v̂ := (~i

∂
∂u) and the quantization̂u of u is the multiplication

by u (that we simply denote byu). Thus we have the very natural definition:

Definition 4.1 Thequantizationof S2
E/2 × R

2 is the (infinite dimensional) Hilbert spaceHE ⊗L2(R) ⊂
L2(R2) ⊗ L2(R). The quantization ofJ is the operatorĴ = Id⊗

(
− ~2

2
∂2

∂u2 + u2

2

)
+ (ẑ ⊗ Id). The

quantization ofH is the operator̂H = 1
2 (x̂⊗ u+ ŷ ⊗ (~i

∂
∂u)). ⊘

This definition depends on the energyE, which will be fixed throughout the paper. For the numerical
computations, we have takenE = 2, which corresponds to the quantization of the standard spherex2+y2+
z2 = 1.

Lemma 4.2. The operatorsĤ and Ĵ commute, i.e. we have the identity[Ĥ, Ĵ ] = 0, both in the functional
analysis sense (ie. as an unbounded operator on a dense domain), and in the algebraic sense, as a bracket
in the Lie algebra of polynomial differential operators.

Proof. It is enough to show that[Ĥ, Ĵ ] = 0 holds on elements of the formf ⊗ g, wheref is any element in
HE, andg ∈C∞

0 (R). And indeed,

[Ĥ, Ĵ ](f ⊗ g) = (ĤĴ − ĴĤ)(f ⊗ g) = ĤĴ(f ⊗ g)− ĴĤ(f ⊗ g)

= Ĥ(f ⊗ N̂g + (ẑf)⊗ g)− Ĵ

2
(x̂f ⊗ ug + ŷf ⊗ v̂g)

=
1

2
(x̂f ⊗ uN̂g + x̂ẑf ⊗ ug + ŷf ⊗ v̂Ng + ŷξ̂f ⊗ v̂g)

− 1

2
(x̂f ⊗ N̂ug + ŷf ⊗ N̂ v̂g + ẑx̂f ⊗ ug + ẑŷf ⊗ v̂g)

= x̂f ⊗ [u, N̂ ]g + [x̂, ẑ]f ⊗ ug + ŷf ⊗ [v̂, N̂ ]g + [ŷ, ẑ]f ⊗ v̂g. (4.4)

As before, we have denoted̂N := −~2

2
∂2

∂u2 + u2

2 . Now

[u, N̂ ]f = u
(
− ~

2

2

d2

du2
+

u2

2

)
f −

(
− ~

2

2

d2

du2
+

u2

2

)
uf =

~
2

2

(
− u

d2

du2
+

d2

du2
u
)
f

and
d2

du2
(uf) = f

d2 u

du2
+ 2

d f

du

du

du
+ u

d2 f

du2
= 2

df

du
+ u

d2 f

du2
.
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Hence[u, N̂ ]f = ~2

2 (2
df
du) = ~

2 d
du(f). Therefore[u, N̂ ] = i~v̂. Similarly, [v̂, N̂ ] = −i~u. It is also

standard to check that the “angular momentum variables”(x, y, z) satisfy :[ŷ, ẑ] = −i~x̂ and[x̂, ẑ] = i~ŷ.
Hence expression (4.4) equals

x̂f ⊗ (i~v̂)g + (i~ŷ)f ⊗ ug + ŷf ⊗ (−i~u)g + (−i~x̂)f ⊗ v̂g = 0.

The result follows.

Remark 4.3 Although the proof of Lemma 4.2 is interesting on its own, there is a theoretical reason for
this lemma to be true, because our operators all derive from Weyl quantization of polynomial. And for
such operators the following result is known: suppose thatH1 is a quadratic Hamiltonian andH2 is any
polynomial Hamiltonian function such that{H1, H2} = 0. Then Moyal’s formula [26, 17, 12] yields,
formally, [Ĥ1, Ĥ2] = 0. In our caseJ is quadratic in the variables(u, v, x1, x2, ξ1, ξ2). This gives an
alternative proof of Lemma 4.2. ⊘

4.3 Joint spectrum ofĴ , Ĥ

We have left to find the spectrum of̂H and ofĴ . First, we conjugate by the unitary transform in L2(R2) :

U : f(x1, x2) →
√
~f(

√
~x1,

√
~x2).

This has the effect of setting~ = 1 in the operatoraj :

UajU
∗ =

1√
2

(
∂

∂xj
+ xj

)
=: Aj.

Next, it is convenient to use the Bargmann representation [2], which states that the operatorAj defined
above and its adjointA∗

j are unitarily equivalent to the operators∂∂zj and zj, respectively, acting on the

Hilbert space of holomorphic functions on two variables L2
hol(C

2, π−1e−|z|2). (The notationzj here is not
exactly the same as the initial one in section 4.1, but we keepit for simplicity.)

The following lemma is standard.

Lemma 4.4([2]). The function
z
α1
1 zα2√
α1!α2!

= zα√
α!
, whereα = (α1, α2), is an eigenfunction of̂L with norm1

and eigenvalue~(α1 + α2 + 1).

Proof. The functionzαi
i is an eigenfunction ofzi ∂

∂zi
with eigenvalueαi. SinceL̂ = ~(z1

∂
∂z1

+ z2
∂
∂z2

+ 1),

we getL̂(zα) = ~(α1 + α2 + 1)zα.
We can compute‖zα‖2

L2
hol(C

2, π−1 e−|z|2 )
= α!. Therefore the functionz

α√
α!

is a normalized eigenfunction

of L̂.

Next we find the eigenspace of̂L for the eigenvalue~(n + 1). Since the monomials{zα/
√
α!}α∈N2

form a Hilbert basis of the Bargmann space, the spaceHE = ker(L̂− ~(n+ 1)) is simply given by

HE = span{ zα√
α!

|α1 + α2 = n},
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thus it is the space of homogeneous polynomials of degreen in C
2. We will use for it the following basis :

{zn2 , zn1 zn−1
2 , . . . , zn−1

1 z2, z
n
1 }.

In order to understand the operatorĤ, we need to consider̂z andN̂ . The restriction of the operator
ẑ = ~

2(a1a
∗
1 − a2a

∗
2) to the Hilbert spaceHE in given in terms of this polynomial basis bŷz(zk1z

n−k
2 ) =

~

2 (k− (n−k))zk1z
n−k
2 . It follows that the matrix of̂z = ~

2(a1a
∗
1−a2a

∗
2) relative to this basis is the diagonal

matrix

~

2




−n 0 . . . 0
0 2− n 0 0
0 0 4− n 0 0

...
...

...
.. .

...
...
0

0 0 . . . 0 n




Notice that this shows thatHE is indeed invariant under the action ofẑ. Of course, a similar calculation can
be done for̂x andŷ (see the proof of Proposition 4.7 below). Notice also that the eigenvalues of̂z range from
−~

2n to ~

2n; in the case of the standard sphereS2 (with E = 2), we have the relationE = 2 = ~(n + 1).
Therefore the eigenvalues ofẑ range from− n

n+1 to n
n+1 . In the semiclassical limitn → ∞, we recover the

classical range[−1, 1] of the hamiltonianz onS2.
Next we consider the Bargmann representation forN̂ = û2+v̂2

2 . This time, we act of the Hilbert space

L2
hol(Cτ , π

−1e−|τ |2) and we obtainN̂ = ~(τ ∂
∂τ + 1

2).

The eigenfunctions of̂N are τℓ√
ℓ!

corresponding to the eigenvalue~(k + 1
2 ).

Lemma 4.5. The spectrum of̂J is discrete, and we have

spec(Ĵ) = ~

(
1− n

2
+N

)
.

More precisely, for a fixed valueλ ∈ ~(1−n
2 + N), let Eλ := ker(Ĵ − λ). Then

Eλ = span
{
τ ℓ ⊗ zk1z

n−k
2 | ~(ℓ+

1

2
+ k − n

2
) = λ; 0 ≤ k ≤ n; ℓ ≥ 0

}
.

In particular Eλ has dimension1 + min(n, λ
~
+ n−1

2 ).

Proof. In the double Bargmann representation, we have

Ĵ = Id⊗(~(τ
∂

∂τ
+

1

2
)) +

~

2
(z1

∂

∂z1
− z2

∂

∂z2
)⊗ Id .

Hence a simple computation gives

Ĵ(τ ℓ ⊗ zk1z
n−k
2 ) = ~

(
ℓ+

1

2
+ k − n

2

)
(τ ℓ ⊗ zk1z

n−k
2 ) (4.5)

so the corresponding eigenvalues are~(ℓ + 1
2 + k − n

2 ) where0 ≤ k ≤ n andn, ℓ ≥ 0. This shows that̂J
admits a complete set of eigenvectors. Henceker(Ĵ −λ) is spanned by the set of eigenvectors coming from
this family and corresponding to the eigenvalueλ. This space is finite dimensional (hencêJ has discrete
spectrum), and its dimension is the number of solutions(k, ℓ) to the equation~(ℓ + 1

2 + k − n
2 ) = λ with

constraints0 ≤ k ≤ n; ℓ ≥ 0, which is precisely1 + min(n, λ
~
+ n−1

2 ).
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The fact thatEλ is finite dimensional should be compared to the fact that the classical hamiltonianJ is
proper.

Corollary 4.6. Given anyn ∈ N, and anyλ ∈ ~(1−n
2 + N), the ordered set

Bλ :=
{
eℓ,k :=

τ ℓ√
ℓ!

⊗ zk1z
n−k
2√

k!(n − k)!
| k = 0, 1, . . . ,min(n,

λ

~
+

n

2
− 1

2
), and ℓ =

λ

~
+

n

2
− 1

2
− k

}
.

is an orthonormal basis ofEλ.

Our next goal is to compute the matrix of̂H. More precisely, sincêH commutes withĴ , the eigenspace
Eλ is stable byĤ. Thus, the spectral theory of̂H is merely reduced to the study of the restriction ofĤ to
Eλ, which we explicitly compute below. Then the best way to depict the spectra of̂J andĤ is to display
the joint spectrum(see figure 4.1), which is the set of(λ, ν) ∈ R

2 such that, for a common eigenfunctionf ,
one has both

Ĵf = λf and Ĥf = νf.

Let ℓ0 := λ
~
+ n

2 − 1
2 , µ =min(ℓ0, n) and let

βk :=
√
(ℓ0 + 1− k)k(n − k + 1).

Figure 4.1: Semiclassical joint spectrum ofĴ , Ĥ and momentum map image juxtaposed, computed using
a numerical diagonalization of the band matrix in Proposition 4.7. In all our computations we have chosen
E = 2, which corresponds to the quantization of the standard sphere x2 + y2 + z2 = 1. This implies the
relation2 = ~(n+ 1). Heren = 13, so~ ≃ 1.14.

Proposition 4.7. The matrixMBλ
(Ĥ) of the self-adjoint operator̂H on the basisBλ is the symmetric matrix

MBλ
(Ĥ) =

(
~

2

) 3
2




0 β1 . . . 0
β1 0 β2 0
0 β2 0 β3 0

...
...

. . .
...

...
...
βµ

0 0 . . . βµ 0




.
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Proof. We start by evaluatinĝx andŷ on this basis:

x̂(zk1 z
n−k
2 ) =

~

2
(kzk−1

1 zn−k+1
2 + (n− k)zk+1

1 zn−k−1
2 )

ŷ(zk1 z
n−k
2 ) =

~

2i
(kzk−1

1 zn−k+1
2 )− (n− k)zk+1

1 zn−k−1
2 )

We introduce:

α :=
1√
2~

(u+ ~
∂h

∂u
), α∗ :=

1√
2~

(u− ~
∂h

∂u
)

Henceu(= û) = (α+ α∗)
√

~

2 . Now we do the Bargmann representation

û =

√
~

2
(τ +

∂

∂τ
), v̂ =

~

i
∂

∂u
=

(α− α∗)
i

√
~

2
=

1

i

√
~

2
(
∂

∂τ
− τ).

Hence we obtain

û(τ ℓ) =

√
~

2
(τ ℓ+1 + ℓτ ℓ−1), v̂(τ ℓ) =

1

i

√
~

2
(ℓτ ℓ−1 − τ ℓ+1).

In what follows, for brevity of the notation, we writeck := zk1z
n−k
2 . Note thatn is fixed. Recalling

Ĥ = 1
2(û⊗ x̂+ v̂ ⊗ ŷ), we get

Ĥ(τ ℓzk1z
n−k
2 ) =

1

2

((
~

2

)3/2
(τ ℓ+1 + ℓτ ℓ−1)(kck−1 + (n− k)ck+1)

−
(
~

2

)3/2
(ℓτ ℓ−1 − τ ℓ+1)(kck−1 − (n− k)ck+1)

)

=
1

2

(
~

2

)3/2(
kτ ℓ+1ck−1 + ℓkτ ℓ−1ck−1 + (n− k)τ ℓ+1ck+1 + ℓ(n− k)τ ℓ−1ck+1

− ℓkτ ℓ−1ck−1 + ℓ(n− k)τ ℓ−1ck+1 + kτ ℓ+1ck−1 − (n− k)τ ℓ+1ck+1

)

=
(
~

2

)3/2
(kτ ℓ+1ck−1 + (n − k)ℓτ ℓ−1ck+1). (4.6)

Notice how this formula, together with Lemma 4.5, confirms thatEλ is stable under̂H.
In order to have a better numerically prepared matrix (and a nicer-looking formula !), we next express

everything in an orthonormal basis. Denoteeℓ,k = τℓ√
ℓ!

zk1 z
n−k
2√

k!(n−k)!
so thateℓ,k is an eigenvector of̂J of norm

1:

Ĵ(eℓ,k) = ~(ℓ+
1

2
+ k − n

2
)eℓ,k = λeℓ,k

Ĥ(eℓ,k) =
(
~

2

)3/2 kτ ℓ+1ck−1 + ℓ(n− k)τ ℓ−1ck+1√
ℓ!k!(n − k)!

. (4.7)

On the other hand we have thateℓ+1,k−1 =
τℓ+1ck−1√

(ℓ+1)!(k−1)!(n−k+1)!
and that the first term of (4.7) is

k√
ℓ!k!(n − k)!

τ ℓ+1ck−1 =
k√

ℓ!k!(n − k)!

√
(ℓ+ 1)!(k − 1)!(n − k + 1)!eℓ+1,k−1

=
√

(ℓ+ 1)k(n − k + 1)eℓ+1,k−1.
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Similarly the second term of (4.7) is

ℓ(n− k)τ ℓ−1ck+1√
ℓ!k!(n − k)!

=
ℓ(n− k)√
ℓ!k!(n − k)!

√
(ℓ− 1)!(k + 1)!(n − k − 1)!eℓ−1,k+1

=
√
ℓ(k + 1)(n − k)eℓ−1,k+1.

Sinceℓ = ℓ0 − k, we get

Ĥ(eℓ,k) =
(
~

2

)3/2(√
(ℓ0 − k + 1)k(n − k − 1)eℓ+1,k−1 +

√
(ℓ0 − k)(k + 1)(n − k)eℓ−1,k+1

)

=
(
~

2

)3/2
(βkeℓ+1,k−1 + βk+1eℓ−1,k+1).

This, of course, gives the statement of the proposition.

4.4 The spectrumΣ(n) of Ĥ|ker(Ĵ−Id)

In the next section, we will be particularly interested in the Ĵ-eigenvalueλ = 1, which corresponds to the
J-critical value of the focus-focus point, in the classical system. SinceE = 2 = ~(n + 1), we see that
ℓ0 = n+1

2 + n−1
2 = n. Therefore the dimension ofker(Ĵ − Id) is equal ton + 1. Notice that, forλ < 1,

the dimension ofker(Ĵ − λ) is increasing linearly with slope 1 (with respect to the parameterk that we
introduced above) whereas forλ > 1 this dimension is constant, equal ton + 1. This can be seen as a
quantum manifestation of the Duistermaat-Heckmann formula [9].

5 Inverse spectral theory for quantum spin-oscillators

The theme of this section is to give evidence of the followingconjecture being true in the case of coupled
spin oscillators:

Conjecture 5.1. A semitoric system is determined up to symplectic equivalence by its semiclassical joint
spectrum (i.e. the set of points inR2 where on thex-axis we have the eigenvaluesλ of Ĵ , and on the vertical
axes the eigenvalues of̂H restricted to theλ-eigenspace of̂J). From any such spectrum one can construct
explicitly the associated semitoric system.

In this section we try to convey some ideas to explicitly compute all the symplectic invariants from the
semiclassical spectrum. It might not necessarily be the optimal way to prove an inverse spectral result, as
some quantities are more easily defined implicitly rather than explicitly by the spectrum. But we believe
that, from a quantum viewpoint, having constructive formulas for the symplectic invariants is particularly
valuable.

We emphasize the word “semiclassical” here : in order to recover the symplectic invariants we need be
able to compute the joint spectrum for small values of~. What can be said for a unique, fixed value of~ is
much harder question.

5.1 Polygon and height invariant

Recovering the polygon invariant is probably the easiest and most pictorial procedure, as long as one stays on
a heuristic level. Making the heuristic rigorous should be possible along the lines of the toric case explained
in [24] and [21], but we don’t attempt to do it here.
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The first thing to do is to recover the image of the classical moment map, including the position of the
singular values. This could be done by a local examination ofdensity of the joint eigenvalues.

Next, in order to recover the polygon invariant, we need to obtain the integral affine structure of the
image of the momentum map. We know from [5, 24] that the joint spectrum possesses a semiclassical
integral affine structure on the regular values of the momentum map. This integral affine structure can be
extended to the elliptic boundaries, as explained in [24]. Thus, except along a vertical cut through the focus-
focus critical value, one can develop this affine structure such that the joint eigenvalues become elements of
the lattice~Z2. See figure 5.1.

cut

Figure 5.1: Recovering the polygon invariant. The top picture is the joint spectrum of(Ĵ , Ĥ). In the
bottom picture, we have developed the joint eigenvalues into a regular lattice. One can easily check on this
illustration that the number of eigenvalues in each vertical line in the same in both pictures.

The convex hull of the resulting set is a rational, convex polygonal set, depending on~. Since the
semiclassical affine structure is an~-deformation of the classical affine structure, we see that,as~ → 0, this
polygonal set converges to the semitoric polygon invariant.

5.2 Semiclassical formula for the spectrumΣ(n)

In order to recover the Taylor series invariant from the spectrum, we need a precise description of this
spectrum. There are two options : either describe the spectrum in regular regions, and then take the limit to
the focus-focus critical value; or describe the spectrum directly in a small neighborhood of the focus-focus
value. We choose the second option, because it seems more appropriate for a reasonably accurate numerical
formula for the invariants, in the spirit of equation (2.28).

The drawback of this approach is that there is no result currently available giving the description of this
spectrum. The singular Bohr-Sommerfeld rules of [22] wouldgive the required result, in casêJ andĤ were
pseudodifferential operators. Of course they are not, since the phase spaceS2×R

2 is not a cotangent bundle.
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However they are semiclassical Toeplitz operators, in the sense of [4], and it is known that the algebra of
Toeplitz operators is microlocally equivalent to the algebra of pseudodifferential operators [3]. Therefore,
we propose the following conjecture.

Conjecture 5.2. The formula in Corollary 6.8 in Ṽu Ngo. c’s paper [22] holds also if the operators therein
involved are Toeplitz instead of pseudodifferential.

This conjecture may be stated in the following way. LetΣ(n) be the spectrum of̂H|ker(Ĵ−Id). For
boundedt ∈ R, the formula

λ̃(t)− ǫ̃(t)ln(2~)− 2arg Γ
( i ǫ̃(t) + 1 + j

2

)
∈ 2πZ+O(~∞)

holds if and only if~t ∈ Σ(n) +O(~∞) with

(a) λ̃(t) = λ̃(t; ~) admits an asymptotic expansion on integer≥ −1 powers of~ with smooth (=C∞)
coefficients int starting withλ̃(t) = 1

~

∫
γ0

α0 +Iγ0(κ̃(t)) + µπ
2 +O(~).

(b) ǫ̃(t) = ǫ̃(t; ~) has an asymptotic expansion on integer≥ 0 powers of~ with smooth coefficients int
starting with the second component of the vectorB(0, t) + O(~) whereB is the2 × 2 matrix such
thatB(J ′′, H ′′)m = (q1, q2).

(c) Iγ0(κ̃(t)) is what is called the “principal value integral” of̃κ(t), whereκ̃(t) is the 1-form on Λ0

defined by

(κ̃(t)(XJ ), κ̃(t)(XH)) = (0, t) ⇐⇒ (κ̃(t)(Xq1), κ̃(t)Xq2)) = B(0, t) (5.1)

Finally, Iγ0(κ̃
t) is defined in Proposition 6.15 of [22] as

Iγ0(κ̃(t)) = lim
(s1, s2)→(0, 0)

( ∫ B0=γ0(1−s2)

A0=γ0(s1)
κ̃(t) + ǫ(t)ln(rA0ρB0)

)

whereǫ(t) is the first order term of̃ǫ(t).

For a semitoric system, the matrixB is of the formB =

(
1 0

B21 B22

)
, with B22 6= 0. Thus we get

ǫ(t) = B22t.

Moreover, because of formula (5.1),

(κ̃(t)(Xq1), κ̃(t)(Xq2)) = (0, B22t).

Therefore we see that∂κ̃(t)∂t = B22κ2,0, whereκ2,0 is the restriction toΛ0 of the 1-form defined in equa-
tion (2.3). Thus, in view of equation (2.4), we get an explicit formula for the symplectic invarianta2 :

a2 =
1

B22

∂

∂t

(
Iγ0(κ̃

t)
)
↾t=0 . (5.2)

Though we haven’t worked it out here, a similar formula for the first invarianta1 could be obtained
along the same lines.

In the case of the coupled spin-oscillator,B =

(
1 0
0 2

)
, soB22 = 2 anda2 = 1

2
∂
∂t(Iγ0(κ̃

t)) ↾t=0.
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5.3 Obtaining a2 from the spectrum Σ(n)

We show in this paragraph how the conjecture gives a way to obtaina2. Using formula (5.2) above, an easy
corollary of the conjecture is Theorem 7.6 in [22], which says that

min
(Ek+1 − Ek

~

)
=

2π/B22

| ln ~|+ a2 +ln 2 + γ
+O(~) (5.3)

for Σ(n) = {E0 ≤ E1 ≤ . . . ≤ En}. Hereγ is Euler’s constant.

From the spectrum we can calculatetmin(~) = min
(
Ek+1−Ek

~

)
so

2π

tmin
= B22(| ln ~|+ a2 +ln 2 + γ)(1 +O(~)) = B22(| ln ~|+ a2 +ln 2 + γ) +O(~ ln ~).

Therefore we may recoverB22 as

B22 = lim
~→0

(
2π

tmin |ln~|

)
. (5.4)

Because the convergence of this limit is very slow (of order|ln ~|−1), it is in practice much better to solve
the system obtained with two different values of~, which gives :

B22 =

2π
tmin(~1)

− 2π
tmin(~2)

ln(~2/~1)
+O(~1 ln ~1) +O(~2 ln ~2). (5.5)

Thus, if we choose~2 to be a fixed multiple of~ = ~1, we get a convergence speed of orderO(~ ln ~),
which is indeed much more reasonable.

OnceB22 is known, it is easy to recovera2, again through formula (5.3) :

a2 = lim
~→0

(
2π

B22tmin
− |ln ~| − ln 2− γ

)
, (5.6)

and the convergence rate is again of orderO(~ ln ~).

5.4 Numerical approximation of a2 using Maple

Using Proposition 4.7, we compute the spectrumΣ(n) of the Spin-Oscillator example for various values
of n = 2/~ − 1 by entering the matrix in the computer algebra system ’Maple’ and ask for a numeric
diagonalization. Then is it easy to implement the formulas (5.5) and (5.6).

From the general theory, the minimal eigenvalue spacing is obtained — at least in the limit~ → 0, at the
focus-focus critical valueH = 0. This is confirmed from the numerics. In fact, using the recursion formula
for the characteristic polynomialDn(X) of the matrix MBλ

(Ĥ) (with ℓ0 = n) :

Dn(X) = XDn−1(X)− β2
nDn−2(X),

we prove by induction thatDn(X) has the parity ofn + 1. In particular, the spectrum is symmetric :
Σ(n) = −Σ(n). Whenn is odd,0 is not an eigenvalue (Dn(0) = (−1)(n−1)/2β1β3 · · · βn), and hence the
smallest spacing is simply twice the smallest positive eigenvalue :

tmin(~) = 2E[n
2
]+2/~ with ~ =

2

n+ 1
.
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Figure 5.2: Recovering the coefficientB22 (which is equal to 2 in our example). The horizontal scale is
logarithmic: the integer abscissak corresponds ton = 2k + 1. Thus~ starts at0.5 and decreases to the
right to reach1/513 ≃ 0.002. The top curve — with circles — is the result of formula (5.4),which indeed
converges very slowly. The curve with diamonds is obtained by the accelerated formula (5.5).
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Figure 5.3: Recovering the invarianta2. The graph plots the values ofa2/ ln 2 (which should be 5 in our
example) computed using the formula (5.6). The horizontal scale is the same is in figure 5.2.

The results of our numerical experiments are plotted in figures 5.2 and 5.3. They should be compared to
the theoretical values of Theorem 2.14.
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