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Hamiltonian dynamics and spectral theory for spin-osmts

Alvaro Pelays and San Vii Ngo

Abstract

We study the Hamiltonian dynamics and spectral theory af-sgcillators. Because of their rich
structure, spin-oscillators display fairly general prdjas of integrable systems with two degrees of free-
dom. Spin-oscillators have infinitely many transversallipgc singularities, exactly one elliptic-elliptic
singularity and one focus-focus singularity. The mostrieséng dynamical features of integrable sys-
tems, and in particular of spin-oscillators, are encodeteir singularities. In the first part of the paper
we study the symplectic dynamics around the focus-focugusdmity. In the second part of the paper
we quantize the coupled spin-oscillators systems and ghely spectral theory. The paper combines
techniques from semiclassical analysis with differergedmetric methods.

1 Introduction

Coupled spin-oscillators arg&dimensional integrable Hamiltonian systems with two éegrof freedom
constructed by “coupling” the classical spin on thephereS? (see Figurg 3]1) with the classical harmonic
oscillator on the Euclidean plari®?. Coupled spin-oscillators are one of the most fundamemtaingles

of integrable systems; their dynamical behavior is rich mmtesents some fairly general properties of low
dimensional integrable systems. The goal of this paperssudy coupled spin-oscillators from the point of
view of classical and quantum mechanics, using methods ¢tagsical and semiclassical analysis.

A 4-dimensional integrable system with two degrees of freedomsists of a connected symplectic
4-manifold equipped with two almost everywhere linearly@pdndent smooth functions which Poisson
commute, i.e. two smooth functions on the manifold such tre of them is invariant along the flow
of the Hamiltonian vector field generated by of the other. st interesting geometric and dynamical
features of integrable systems are encoded in their singeda i.e the points where Hamiltonian vector
fields generated by the functions are linearly dependerdurd the regular points, the dynamics is simple,
and described by the Arnold-Liouville-Mineur action-amgheorem. As we will see, the dynamics near the
singularities is in general much more complicated and dépéeavily on the type of singularity.

Let us explain the construction of coupled spin-oscillatorore precisely. Le§? be the unit sphere in
R3 with coordinatesz, y, z), and letR? be equipped with coordinatés, v). Let )\, p > 0 be positive
constants. Lef be the product manifol¢? x R? equipped with the product symplectic structixeg: &
pwo. LetJ, H: M — R be the smooth maps defined y= p(u? +v%)/2+ Az andH := 1 (uz +vy). A
coupled spin-oscillators a4-dimensional integrable system of the foft, Awg2 @® pwo, (J, H)), where
wg:2 is the standard symplectic form on the sphere @ns the standard symplectic form &?.

The singularities of coupled spin-oscillators are noneshegate and of elliptic-elliptic, transversally-
elliptic (both of these types are usually referred to aspsd singularities”) or focus-focus type. They have
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infinitely many transversally-elliptic singularities ¢alg a piecewise smooth curve, as we shall see), one
elliptic-elliptic singularity at(0,0,—1,0,0) and one singularity of focus-focus type @ 0,1,0,0). The
J component of this system is the Hamiltonian (or momentum)noéphe S'-action that simultaneously
rotates about the vertical axes of thephere, and about the origin B?. The H component is given as
follows. Using the natural embedding 6f in R?, let 7. be the orthogonal projection froifi> onto R?
viewed as the: = 0 hyperplane. Letx, y, z) € S? and(u, v) € R% Under the flow ofJ the points
(x, y, z) and(u, v) are moving along the flows af and (u? + v?) /2, respectively, with the same angular
velocity. Hence the inner produ¢t,(z, v, 2), (u, v)) = uz + vy = 2H is constant and commutes with
J.

Because does not come from afi'-action, coupled spin-oscillators are not toric integeakystems
— they are what now is callesemitoric integrable systemar simply semitoric systemsSemitoric systems
form arich class of integrable systems, commonly foundrimpéé physical models. For simplicity, through-
out this paper we assume the rescaling- p = 1. The statements and proofs extend immediately to the
case of\, p > 0, but we feel that the notation is already sufficiently heawyve shall avoid carrying these
parameters.

Semitoric integrable systems

Our interest in semitoric integrable systems was motivatethe remarkable convexity results for Hamilto-
nian torus actions by Atiyali][1], Guillemin-Sternbe[g] [[14hd Delzant[[6]. Despite important contributions
by Arnold, Duistermaat[]8], Eliassofi 10], Vi Ngd23, [2}], Zung [2P] and many others, the singularity
theory of integrable systems from the point of view of syraspitegeometry is far from being completely
understood. As a matter of fact, very few integrable systamsunderstood. The singularities of these
systems encode a vast amount of information about the sgtipliynamics and geometry of the system,
much of which is not computable with the current methods.

This singularity theory is interesting not only from the piodf view of semiclassical analysis and sym-
plectic geometry, but it also shares many common featurtsthw study of singularities in the context of
symplectic topology{[3d, 16], algebraic geometry and nrisygmmetry (se€[[]3] and the references therein).

The coupled spin-oscillator is perhaps the simplest nanpawt example of an integrable system of
semitoric type. Precisely, semitoric integrable systeon M is an integrable systemi H € C>*(M, R)
for which the componen{ is a proper momentum map for a Hamiltonian circle actiomérand the map
F := (J, H) : M — R? has only non-degenerate singularities in the sense ofanifion [27], without
real-hyperbolic blocks. This means that in addition to thelaknown elliptic singularities of toric systems,
semitoric systems may hafecus-focus singularities

Semitoric integrable systems cehmanifolds have been symplectically classified by the asthio
[L8, [19] in terms a collection of five invariants. While copteally they are more easily describable, some
of these invariants are involved to compute explicitly fopaaticular integrable system. The most diffi-
cult invariant to compute is the so called Taylor series tiiavd, which classifies a neighborhood of the
focus-focus singular fibeof F. This invariant, which was introduced i |23], encodes adaamount of
information about the local and semiglobal behavior of §&em. Focus-focus singular fibers are singular
fibers that contain some fixed point (i.e. rank(dF’) = 0) which is of focus-focustype, meaning that
there are symplectic coordinates locally neatin whichm = (0,0,0,0), w = d§ Adx +dn Ady and

F = F(m) + (z€ +yn, zn — y&) + O((z, &, y, n)?).



Dynamics and singularities of coupled spin-oscillators

The coupled spin-oscillator system has non-degeneragelaiities of elliptic-elliptic, transversally-ellipti
and focus-focus type. It has exactly one singularity of fafacus type. Near the focus-focus singularity,
the behavior of the Hamiltonian vector fields generated lysiystem is no2r-periodic, as it occurs with
toric systems.

Figure 1.1: Singularity of focus-focus type and vanishiggle. Topologically a fiber containing a single
focus-focus singularity is a pinched torus.

Loosely speaking, one of the components of the system isditte periodic, but the other one generates
an arbitrary flow which turns indefinitely around the focosts singularity and which, a8 tends to the
critical valueF'(m), deviates from periodic behavior in a logarithmic fashiop to a certain error term; this
deviation from being logarithmic is a symplectic invariamd can be made explicit — it is in fact given by
an infinite Taylor serie$S)> on two variablesX, Y with vanishing constant term. This was proven by the
second author if[23]. The goal of the first part of the prepaper is compute the linear approximation of
this deviation.

Theorem 1.1. The coupled spin—oscillator is a semitoric integrable egst with one single focus-focus
singularity atm = (0, 0, 1, 0, 0) € S? x R%. The semiglobal dynamics around may be described
as follows: the linear deviation from exhibiting logaritiorbehavior in a saturated neighborhood «wf is
given by the linear mag : R? — R with expression(X, Y) = 5 X +5In2Y. In other words, we have
an equality(S(X, Y))™® = L(X, Y) + O(X,Y)?, where(S(X, Y))> denotes the Taylor series invariant
at the focus-focus singularity.

As far as we know, this theorem gives the first rigorous egénia the literature of the logarithmic
deviation, and hence the first explicit quantization of tiimglectic dynamics around the singularity; we
prove it in Section 2. The proof is computational but rathéstle, and it combines a number of theorems
from integrable systems and semiclassical analysis. Theadef proof of Theorenh 1.1 (given in several
steps) provides a fairly general algorithm to implementhia tase of other semitoric integrable systems.
Moreover, it seems plausible to expect that the techniquemtroduce generalize to compute higher order
approximations, but not immediately — indeed, the linegrraximation relies on various semiclassical
formulas that are not readily available for higher orderragimations. In this paper we will also find the
other invariants that characterize the coupled spindasail (Section 3): the polygon and height invariants;
these are easier to find.



Spectral theory for quantum coupled spin-oscillators

Sections 4, 5 of this paper are devoted to the spectral th&foqantum coupled spin-oscillators. The
following theorem describes the quantum spin-oscillakar anys > 0 such that = A(n + 1), for some
non-negative integer € N, let’H denote the standarcH-1-dimensional Hilbert space quantizing the sphere
S? (see Sectiof 4.1).

Figure 1.2: Semiclassical joint spectrum.bff. We will explain this figure in more detail in Section 4.

Theorem 1.2. Let.S? x R? be the coupled spin-oscillator, and (as above)lefd : M — R be the Poisson
commuting smooth functions that define it. The unboundedtaps ./ :=Id ® ( - %2% + %) + (2 ®I1d)
andH = (2 ® u +§ ® (2:2) on the Hilbert spacé{ ® L*(R) ¢ L*(R?) ® L*(R) are self-adjoint and
commute. The spectrum &fis discrete and consists of eigenvaluegiifs2 + N).

For a fixed eigenvalug of J, let &y :=ker(J — AId) be the eigenspace of the operatbover . There
exists a basif3, of £, in which H restricted tof), is given by

0 B ... 0
b 0 fo 0
A " 0 B2 0 B 0

Ma, () = (3)° |
Bu
0 0 ... B, 0

where0 < k < n, {y := % + 2L p=min(ly, n), By := /(bo + 1 — k)k(n — k + 1).
The dimension of), is p + 1.

Finding out how information from quantum completely intsigle systems leads to information about
classical systems is a fascinating “inverse” problem withyvfew precise results at this time. Section 5
explains how information of the coupled spin-oscillatocluding itslinear singularity theory (computed in
Section 2), may be recovered from the quantum semiclasspeaitrum.

The way in which we recover this linear singularity theorlfgg on a conjecture for Toeplitz operators,
which has been proven for pseudodifferential operators.eXgtain in detail how to do this and formulate
the following conjecture about semitoric integrable syste that a semitoric system is determined up to
symplectic equivalence by its semiclassical joint spewtrie. the set of points ilR? where on thec-axis
we have the eigenvalues df and on the vertical axis the eigenvaluesfbfrestricted to the\-eigenspace
of J. From any such spectrum one can construct explicitly thecis®d semitoric system. We give strong
evidence of this conjecture for the coupled spin oscilkator
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2 Singularity theory for coupled spin-oscillators

This section considers semiglobal properties. It is inddpat of Section 3 which concerns global proper-
ties. The main goal of this section is to prove Theoferh 1.1.

Let(M, w, F := (J, H)) be a semitoric integrable system. Recall thsirgular point or asingularity,
is a pointp € M such thatrank(dF)(p) < 2, whereF := (J, H): M — R2. A singular fiberof the system
is a fiber of ': M — RR? that contains some singular point.

Letm be a focus-focus singular point. Let B := F(M). Leté = F(m). The set of regular values of
FisInt(B) \ {¢}, the boundary of3 consists of all images of elliptic singularities, and thesfibof ' are
connected (se¢ [P5]).

We assume that the critical fib&,, := F~1(¢) contains only one critical point:, which according to
Zung [28] is a generic condition, and l& denote the associated singular foliation.

By Eliasson’s theoren [10] there exist symplectic coortiadz;, xo, &1, &) in a neighborhood/
aroundm in which (¢1, ¢2), given by

@1 = 2182 — 12&1, @2 = 11&1 + 2282, (2.1)

is a momentum map for the foliatia® (in the sense that for some local diffeomorphigrn= g o F', so
the maps; and F' have the same fibers); here the critical pointorresponds to coordinatés, 0, 0, 0).
Because of the uniqueness of thie-action one may chose Eliasson’s coordinafep [22] suchythat.J.

2.1 Construction of the singularity invariant at a focus-facus singularity

Fix A" € F,, N (U \ {m}) and let® denote a small 2-dimensional surface transversa& & the point4’,
and letQ) be the open neighborhood &f,, which consists of the leaves which intersect the surface

Since the Liouville foliation in a small neighborhoodis regular for both¥ andg = (¢1, ¢2), there is
alocal diffeomorphismp of R? such thaty = p o F, and we can define a global momentum ndag: po F
for the foliation, which agrees with on U. Write ® := (H;, Hs) and A, := ®~1(c). For simplicity we
write ® = ¢. Note thatAq = F,,. It follows from (2.]) that nearn the H,-orbits must be periodic of
primitive period2r.

Suppose thatl € A, for some regular value. Let 72(c) > 0 be the time it takes the Hamiltonian flow
associated withH, leaving fromA to meet the Hamiltonian flow associated with which passes through
A, and letr; (¢) € R/27Z the time that it takes to go from this intersection point baxk, hence closing
the trajectory. We denote by. the corresponding loop iA..

Write ¢ = (¢1, ¢2) = ¢1 + ice, and letin z for a fixed determination of the logarithmic function on the
complex plane. Let

o1(c) = 7i(c) —S(nc)
{ I

oa(c) = m(c)+R(nc

~

)
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Figure 2.1: Singular foliation near the leaf,, whereS'(A) denotes thes*-orbit generated by, = .J.

whereR and <y respectively stand for the real an imaginary parts of a cesnpumber. Vi Ngo proved
in [B3, Prop. 3.1] that; ando, extend to smooth and single-valued functions in a neighismd of0 and
that the differential 1-form

o :=o01decy +ogdes

is closed. Notice that if follows from the smoothnessrefthat one may choose the lift @8 to R such that
02(0) € [0, 27). This is the convention used throughout. Followifig [23,.C21] , letS be the unique
smooth function defined arouride R? such that

dS =0, S(0)=0.

The Taylor expansion d§ at (0, 0) is denoted by S)°.
The Taylor expansiofS)> is a formal power series in two variables with vanishing ¢tansterm, and
we say thatS)° is theTaylor series invariant of M, w, (J, H)) at the focus-focus poirnt

2.2 The coupled spin-oscillators

Let S? be the unit sphere iR? with coordinategx, y, z), and letR? be equipped with coordinatés, v).
Recall from the introduction that the coupled-spin ostiltanodel is the produc$? x R? equipped with the
product symplectic structutey: & wg given bydé Adz &du Adv, and with the smooth Poisson commuting
mapsJ, H: M — R given byJ := (u? +v%)/2 + z andH := 1 (uz + vy). Sometimes we denote
the coupled spin-oscillator by the trip(? x R?, wg2 @ wy, (J, H)). A simple verification leads to the
following observation.

Proposition 2.1. The coupled spin-oscillatofS? x R?, wg> @ wo, (J, H)) is a completely integrable
system, meaning that the Poisson bradkétH } vanishes everywhdie

In addition, the magp/ is the momentum map for the Hamiltonian circle actiorSdfon S? x R? that
rotates simultaneously horizontally about the verticaésonS?, and about the origin ofR?.

The singularities of the coupled spin—oscillator are nageherate and of elliptic-elliptic, transversally-
elliptic or focus-focus type. It has exactly one focus-fogingularity at the “North Pole™((0, 0, 1), (0, 0)) €
S? x R? and one elliptic-elliptic singularity at the “South Pol€{0, 0, —1), (0, 0)).

tequivalently the Hamiltonian vector fieltl; is constant along the flow ot



Corollary 2.2. The coupled spin-oscillatdiS? x R?, wg2 @ wo, (J, H)) is a semitoric integrable system.

Computing the Taylor series invariant at the focus-focagudarity is rather involved. At this point we
are able to compute the first two terms a- (for the coupled spin-oscillators). Even in this case orsetba
do a delicate coordinate analysis of flows involving Eliags@oordinates, and the computation of various
integrals.

(0,0,1)

(0,0,-1)

Figure 2.2: Spin model with momentum map Here (6, z) are the angle-height coordinates on the unit
sphereS?.

2.3 Set up for coupled spin-oscillators — Integral formuladfor singularity invariant

Throughout we letV/ = S% x R? andF = (J, H). In this set up stage we introduce théorms x; . and
k2.c in terms of which the Taylor series in defined[in][23], and weatimit integral formulas for the Taylor
series invariant. Then we introduce the limit theorem pddnethe semiclassical papgr]22, Proposition 6.8],
which will be the key ingredient for the computation .

The formulas that we present here do not correspond to tlet stedlements in the corresponding papers,
but can be immediately deduced from it assuming the confekiegpresent paper.

The one formsk; . and k.. As usual, we denote by, the Hamiltonian vector field generated by
i =1, 2. Letc be afixed regular value df. Letx; . € Q'(A.), k1. € Q(A.) be the smooth-forms on
the fiberA. := F~!(c) corresponding to the valuedefined by the conditions

K1,c(Xg) == =1, K1(Xy) =0, (2.2)
and
KZQ’C(qu) = O7 K27C(Xq2) = —1. (23)

Note that the conditions i (2.2) and (2.3) are enough tordete k1, andky . on A, becauset;, , X,
form a basis of each tangent space.

We will call k1 o, k2,0 the corresponding form defined in the same way;as k2 ., but only onAg\ {m},
wherem = (0,0, 1,0, 0) is the singular point of the focus-focus singular fiber

Remark 2.3 The formsk; ¢, k2., =1, 2 are closed. See alsp]22, Section 3.2.1]. @



Limit integral formula for Taylor invariants.  The following result will be key for our purposes in the
present paper.

Lemma 2.4. Let (S) € R[[X, Y]] be the Taylor series invariant of the coupled-spin osallafThen the
first terms of the Taylor series are given by the limits ofdrdés a; = lim._,q (f,y K1, + arg(c)> and

as = lim._yq (f% K2, +1n |c|)

Proof. It follows from the definition of the dynamical invariants(c) and(c) in Section[R and the defi-
nition of x; . andxs . in (B:3) and [2]3) respectively thaf(c) = f% Kie, © = 1, 2. The first two terms of
the Taylor series invariant; (0) ando,(0) whereo; = 71 +arg(c) andoy = 75 —In|c|.

Sinceo; andoy are smooth, we have that = 01(0) = lim._,q (f7 K1e +arg(c)> andas = 02(0) =

lim._yq (f% Ko, +1n |c|) O
Localization on the critical fiber. On the other hand, we have the followirig][22, Propositiorj fe8ult
proved by the second author.

Theorem 2.5([R3]). Let~, be aradial simple loop. The integrals in Lemfng 2.4 are reipely equal to

Bo=v0(1-t)
ar = lim ( L c m,c+arg(c)) = < /A L Tt (ta — 93)), (2.4)
and
Bo(t):=0(1-1)
ag = 21_% (/% K2,c —Hn\c\) = (s,t)hf(lo,o) </Ao:vo(s) K2,0 —i—ln(mopgo)), (2.5)

where for any pointd in M close tom with Eliasson coordinateézy, 2, £1, &2) as defined in equation
(B:2), we denote by, t4, pa, 64) the polar symplectic coordinafgef A, i.e. (r4, t) are polar coor-
dinates corresponding t@r;, x2) and(pa, 64) are polar coordinates corresponding (6, &2).

2.4 Computation of integral limit formulas for coupled spin-oscillators

Now, in order to apply Theorefn 2.5 we need to find the cugves well as thé-form x and the coordinates
(r, 0, p, ), both of which are defined ofy. First we describe a parametrization &of, and then we use
this parametrization to defing. We have divided the computation into five steps.

Stage 1 — Eliasson’s coordinate§ry, zs, &1, &)

We find explicitly symplectic coordinatds:, -, &1, 52) € M = S? x R? in which the “momentum map”
F: M — R% for the coupled spin-oscillator has the formz.l), up toiadtbrder approximation, i.e. up to
(O(21, &2, &1, £2)). For brevity writeO(3) = (O(&1, &2, &1, &2))°.

2These coordinate@ 4, ta, pa, 6.4) should not be confused with the coordinatest, p, ) without the subscript, which are
coordinates iR? x S2.



Lemma 2.6. Consider the mag: T g o ,0) R* — T(0,0,1,0,0)(S? x R?) given by
B, b2, €1, &) = (vi= —=(in +60), @ = —=(r — €0), wi= (i + ), y 1= (i1 + &)
15 L2 §1, G2 -\/52 17-\/52 17-\/512721-\/51 2))-

The mapy is a linear symplectomorphism, i.e. an automorphism suah#hQ = wy, wherewy = di; A
dé; @dig Adé, is the standard symplectic form @&, andQ = (wg2 @ du /\d”)mo 0.1.0.0 (52X R2) (recall

wg2 is the standard symplectic form ?). In addition, ¢ satisfies the equatioHess(ﬁ) o = (g1, q2),

whereF := Bo (F — F(m)) = Bo (F — (1, 0)) : M — R2, for the matrixB := ( (1) (2) > .

In the above statement, we identify a Hessian with its aasediquadratic form on the tangent space.

Stage 2 — Curve and Singular Fiber Parametrization

Parametrization of Ay. Let's now parametrize the singular finkg := F~1(1, 0), whereF = (J, H) as
usual. This singular fibek, corresponds to the system of equatiohs- 1 and H = 0, which explicitly is
given by system of two nonlinear equatiofs= (u? + v?)/2 4+ z = 0 andH = 3 (uz + vy) = 0. on the
coordinatesx, y, z, u, v) on the coupled spin oscillatd = S? x R2.

In order to solve this system of equations we introduce pmlardinates:+iv = re'* andz +iy = pe'?
where recall that the-spheres? ¢ R? is equipped with coordinateg:, y, z), andR? is equipped with
coordinategu, v).

Fore = =+1, we consider the mappin§. : [-1, 1] x R/27Z — R? x S? given by the formula
S.(p) = (r(p) €t®), (p(p) @) 2P))) wherep = (2, §) € [-1,1] x [0,2x) and

Proposition 2.7. The mapS,, wheree = +1, is continuous and. restricted to(—1, 1) x R/27xZ is a
diffeomorphism onto its image. If we l&f := S.([—1, 1] x R/27Z), thenA} U A2 = Ay and

AN AZ = ({00, 0} < {(1,0,0)}) U (€2 x {(0, 0, =1)}),

whereC, denotes the circle of radiuscentered af0, 0) in R2. Moreover,S, restricted to(—1, 1) xR /277Z
is a smooth Lagrangian embedding i3 x S2.

Proof. On the one hand we have tha&t= 1 — 22 — y> = 1 — p?. The expressions for the magsand
in the new coordinateg, t, p, 6) are

1
J = §r2i 1—p2, H = %cos(t—@). (2.6)

In virtue of the formula forH in the right hand-side of (2.6), il = 0thenr =0orp=0o0rt—6 =
Z(mod ), which leads to three separate cases. The first case ismhen then.J = /1 — p? =1, and
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hencep = 0. Hence the only solution i&:, v, x, y, z) = (0, 0, 0, 0, 1). The second case is when= 0;
then eitherz = 1 andr = 0, or = = —1 andr = 2. Hence the set of solutions consist§@f 0, 0, 0, 1) and
the circler = 2, p = 0 andz = —1. Finally, the third case is when— 6 = 7 (mod 7); because/ = 1 and
H = 0, it follows from the formula for: above and the left hand-side ¢ (2.6) that= 2(1 — z). Hence the
set of solutions\ is equal to the set of pointge'’, p €'?) such that

r=+/2(1-2), ze€[-1,1]

0=t—5 or =t+75, tecl0,2m) (2.7)
p=V1-—2z2
This case contains the previous two cases, which provesnstat (3) part (i) in virtue of expressiop (2.5).
The other statements are left to the reader. O

Remark 2.8 The singular fibe\( consists of two sheets glued along a point and a circle; topcdlly Ag
is a pinched torus, i.e. Zzdimensional torus’! x S! in which one circle{p} x S! is contracted to a point
(which is of course not a a smooth manifold at the point whigimes from the contracting circle). %)

The radial vector field X3 on Ag.

Proposition 2.9. Let X, be the Hamiltonian vector field gf (which recall is defined in saturated neighbor-
hood of the singular fibeA,). On the singular fiben, the vector fieldsy,,, Xy and X,,, X'y are linearly
independent, preciselyY,, = Xy, X, = 2Xy. In particular the vector fieldts is radial.

Proof. It follows from Eliasson’s theorem that there exists a sdanction s such thaty = h o F and
dh(0) is the invertible2 by 2 matrix B in Lemma[2.p.
Then onAg we have that

Oh; Oh;
—x -
o7 't om
Because the coefficients are constant aldpgit is sufficient to do the computation at the origin. At
the origin the computation is given by the matfixin Lemma[2J, so we have théfs (0) =, 954(0) =

0, 22(0) = 0 andZ222(0) = 2. The proposition follows from[(28). O

X, = Xy, i=1,2. (2.8)

In the following section we will need to use explicitly the idatonian vector fieldYy, and therein it
will be most useful to a have the following explicit coordi@axpression.

Lemma 2.10. The Hamiltonian vector field’y of H is of the form

yod x0 —yut+xzvd z(zu+yv) 0
Xy=c——- 4>~
20u  20v 2 0z  2(1—-2%) 06
Proof. For this computation let us use coordinates v, z, ) as a parametrization &2 x S2.

The coordinate expression for the Hamiltoni#ins H = %(zu + yv) = (pcosfu + psinfv), Then
the Hamiltonian vector fieldty is of the formXy = a2 + b& + 2 + d-2, where since the symplectic
form onR? x S? in these coordinates ds: Adv +df Adz, the function coefficient (which will be important
later in the proof) is given by

OH 1

= —psin(f) = y

“=5r "3 2 (2.9)
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and the other function coefficients are giventby: —2 = pcos(9) = —£,¢ = 2 = £(—sin(f)u +
cos(0)v) = ~LLE andd = —%—g.

We need to computé explicitly. Since% = 0 because the angledoes not depend on the height
and¥2 = — &= We have that

or 836@ dx 90 O0xdp —uz

% 8oz 9052 Bods 2.1
9 Opoz 9002 9poz 12 (2.10)
Oy Oyodp Oydbd 0Oydp —yz

5 =900 T 09 " 508, = 7 2.11
9 0pdz 000z  0pdz P2 (2.11)

It follows that from [2.1p) and[(2.11) that the function digént d is given by

g OH  OHOx O0HOy w-—-zz wv-yz  z(au+yv)

oH 0H Oz  OH u 4 z(zu + yv)
0z  O0x 0z 0Oy 0z 2 p? 2 202 202 SR

O

Definition of a simple “radial” loop in Ag. In order to apply the theorem it is enough to takeo be an
integral curve of the radial vector fieltl.

We definey, as the simple loop obtained through the parametrizattonand.S_ by letting Z run from
—1to 1 and back to-1, respectively. For instance, one can use the formula

o Si(—1+4s, —3) if0<s<i;
Yo(s) = { 5@ A3y flouz

Corollary 2.11. Along the curvey, we have

Xy

y 0 yu 0
w 20u 2 0z (2.12)

i 3
Proof. We use the n;fatlon of Lemnja 2.10. Alongwe havev = 0, z = 0 andf = 7 or § = 2. Hence

a=4%b=0,,c=—% d=0. Therefore the vector field;; along the curvey, is given by [2.1p). O

Using Corollary{2.7]1 we describe the very explicit relatlmetween the curve, and the Hamiltonian
vector fieldXy.

Proposition 2.12. The curveyy: [0, 1] — M is an integral curve ofty.
Proof. Since by construction the vector fieﬂ(%) is tangent to the curvey, it is enough to show that

S*(%) is colinear toX are colinear at each point.
A computation gives that

0 0 1 0 z 0
(=)= — = _. 2.13
S (az) 0z /2(1 — 2) or + V1—220p ( )
On the other hand
w=/201=2), (2.14)



0 — 2
and sincer, t) are polar coordinates f@f:, v —{—smt , Which att = 0 gives thatg. = 4.

Q = cost o 0
Therefore, because at= 0 the last factor ofis) is zero we conclude frdm (R.14) tha

It follows from (2.1D) thatty = —4* S,
point, as desired.

az , which shows thai’; and S. (%) are colinear at every

/_\
\_/

O

Stage 3 — Integration in linearized Eliasson’s coordinates

Let ¢ be a local symplectic map such that F o ¢ = g onR*, as given by Eliasson’s normal form theorem.
The integrals in (..) are defined in terms of the correspandamonical coordinateg:, xo, &1, &) in R4
Because our computation is local, we can use instead theriteeel coordinates that we have de-
fined in Lemma[2]6. More precisely, one can always chapsech that the tangent mal, o,0,0) ¢ :
T(0.0,0,0 R? = T(0,0,1,0,0)S* x R? is equal tod, and this gives local coordinatés:, i, &1, &) in a
neighborhood ofn, such thatB o F(i1, 2, &1, &) = q(&1, &2, &1, &) + O(3).
Note that these coordinates are not symplectic, except at

Lemma 2.13. The integral [2]5) gives us the same result when computéukiarized coordinates, i.e. upon
replacingr 4 by 74, ta byta, pa by ps andf, byHA

Proof. Sincer? = z7 + 23, then

P =22+ as =2t + 23+ O0B3) =14+ 0(3) (2.16)
We know that Qi) = O(1), and therefore it follows from[(2.16) that
E)
2\ 12 _ 03) 2y _ 2y _ 2
In(73) =In(ri +O03)) =In (1 + —=) +In(ry) =In(1 + O(1)) +In(ry) = O(1) +1n(ry). (2.17)

4

Similarlyln(p%) = O(1) +1In(p%). Hencdn(rapg) =In(ra) +1n(pp) =In(?4) +In(pp) =In(fapp) +
O(1). Then

(s,t)li—r>l(10, 0)1H(TAOPBO) - ln(onﬁBo) =0. (2.18)

It follows from expressiong (3.5) anfl (2}18) that

Bo=v0(1-sg)
w=Jm (/ K0 +1nym0pjgo\). (2.19)

(sa,sB)— Ao=70(s4)

This concludes the proof. O
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Stage 4 — Computation of the first order Taylor series invariants a; and as

In order to compute the integrals ip (2.19) we can reptacey any integral curve ofty; with the same
endpoints. Thus, lef be a solution tey = Xy o . By definition, for any 1-formk,

Bo:=(s2) ED) S2
/ k= [ @) ds = [ (X (s)ds. (2.20)

Ao:="(s1), alongy s1 S1

Theorem 2.14.Let (S) € R[[X, Y]] be the Taylor series invariant of the couple-spin osciltafthen the
first coefficient of the first term of the series is giveruby= 7. The second coefficient of the first term of
the first order Taylor series invariant is, = 5 In 2.

Proof. We have divided the computation @f in several steps.

Step 1 Set-up of the integral of, o. We need to compute expressi¢n (.19).

Let a be given by[(2]9).

In view of (2.12), the pathy betweenA, and B, can be parametrized by the variable This means
that the pathy is obtained by first increasingup tou = 2 on the first sheet (parametrized By) and then
decreasing: on the second sheet (parametrizedsay.

By Lemma[2P we know that,, = 2X}; and hencera )., ) (Xu(v(s))) = (”2’0)7‘“(2)((’2 GED) gy
definition of k5 o we know thatxs o(X,,) = —1 and hence it follows from[{2-20) thaﬁﬁo along F2,0 =
/2 4. Sinceg is equal ton = 4 we have that

Bo 52 q 2 d u2
/ m:/ _8:/ _u+/ Jdu (2.21)
Ap, alongy S1 2 Uy y+(u) 2 y_(’LL)

wherey. (u) is they-coordinate along the part of the curyg which corresponds to the parametrization
S., respectively. Our next goal is to compute expressfon Jj2.21

Step 2 Computation of expressiop (2]2Now, y = psin(f) = £p.

Now let us express the dependence of « along the path. By the equatiory = %(u2+v2)+z =—1,
which is always true along the singular fiber, we have thacesi = 0, “72 + z = 1, or in other words,
z=1- % It follows from this equation that

2 2
yr = +p = +1/1— 22 :j:\/l—(l—%) :iu\/l—“z sinceu > 0. (2.22)

On the other hand, note that the functiGi¢) = In (L + tan t> is a primitive of the functiory(t) =

cost
Colst. Then by equation (2.p2), using the change of variaiiz = cos ¢, and then applying the fundamental
theorem of calculus we obtfjn

24 2 d 2
/ul ) / ﬁ =~ [m (o “a”)]z = [m(; +§v1 - UZ)E;

3The integral is equal t6 whenu = 2
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and simplifying this expression we then obtain
2 du 2 u%
= (u—l) +In (1 a1 Z>‘ (2.23)
The goal of this proof is to computg, which by (2.b) is equal to the limit
Bo(t):=y0(1-1)
/ K20 + ln(erpBo)> 5
Ao:=70(s)

and precisely because this limit exists, we may calculaoiig the diagonal values given by= u; = us.
Then it follows from equation(2.23) that

/jon - /jj /Wd—u—Z/jin—::2<ln(%)+ln<l+ 1—“{)). (2.24)

This concludes this step.

lim <
(s, t)—(0,0)

Step 3 Computation of the logarithm factdn (7 4, ﬁBO)

From the notation of Stage 1 we have thjt= 7 + 23 and thatpA = §1 + £2. Using Lemmd 2]6 we
find thati? = (22 + y? 4+ u? + v?) + (—uy + vz) andp? = $(z? + ¢y + u® + v?) + (uy — vx).
We need to computnéA0 andppg,. The points4y and B, are in the pathy andAo = (UAy, VAgs Oags 24,) =

(uAO? Oa bE 1- )? andBO = (uBoa UBy; 930, ZBO) (uAO? 07 2 ) 1- ;0)

With this information we can computey, andj g, using expressior] (2.22) and recalling that v = 0

along~:
1 ut u? u? u? / u2
) 2 2
- 1l—— = —(2—— —24/1-— 2.25

2

where here we have also uset=1— 22 = 1 — (1 — %)2 = 42 — “* And we also have that

PBy, = T4, (2.26)
It follows from [2.2%) and[(2.36) that

A 1.9 . 1. . u? u? u?
In(74008,) = §1n(7°§xOP230) = §1n(7°§10) =1In(/%,) =In <7(2 - t2yi- z))

and therefore that
o U u? u?

This concludes the computation of the logarithmic factor.

Step 4 Conclusion It follows from 2.3), [2.24) and (2.27) that

By
as = lim </ K2,0 —l—ln(f‘AOpABO))

u—0

Ao
. 2 u2 U u? u2
~ lim <(2ln( )+ 2In(1+ /1 — —) £2(5) +In2 - +24/1- Z)>
= 2In2+4+2In2-In2+2In2=>5In2. (2.28)
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So we have proven that = 5In2 as we wanted to show.
In order to finda,, note that the following holdz > 0, v = 0, 6 = 5 or 37”, p=+V1-22%2 2=

2 . -~ . .
1 - % p=/u2-%. Inthis caser; = “22, 1, = “3£ and thereford = Z. Similarly & =

—wEL gy = “TP = ¢, and hencer = 7. Itfollows thatfa, — ap, = 5. Therefore by Theorefn 2.5

Bo=v0(1-t) A ™
a; = lim (/ k10 + (04 — @B)) T2
(5,8)=(0,0) \J 4g=r0(1) ’

Here we are using that becausg X';7) = 0 and~y is tangent everywhere & so one has that

Bo=v0(1-t)
I _o.
(5,1 2(0,0) (/A KO)

0="0(1)
(See also the paragraphs before Thedrenj 2.14). This cascthe proof. O
Theoren L] follows from Theorem 2]14.

Remark 2.15 It is plausible that our proof technique generalizes to catmhe higher order terms of
the Taylor series invariant, but not immediately, as we agiythe limit theorem proved i [R2] which only
applies to the first two terms. The computation provides neeidence of the fact that from a dynamical
and geometric view-point focus-focus singularities contalarge amount of information. @

3 Convexity theory for coupled spin-oscillators

The planeR? is equipped with its standard affine structure with origin(@t0), and orientation. Let
Aff (2,R?) := GL(2,R?) x R? be the group of affine transformationsRf. Let Aff(2,Z) := GL(2,Z) x R?
be the subgroup dhtegral-affinetransformations.

Let 7 be the subgroup okff(2, Z) of those transformations which leave a vertical line irsmat; or
equivalently, an element df is a vertical translation composed with a maffi%, wherek € Z and

T = < o > €GL(2, 7).

Let ¢, C R? be a vertical line in the plane, not necessarily through tigirg which splits it into two half-
-spaces, and let € Z. Fix an origin in¢. Let?y : R? — R? be the identity on the left half-space, aifti

on the right half-space. By definitiof} is piecewise affine. Aonvex polygonal seh is the intersection

in R? of (finitely or infinitely many) closed half-planes such tloateach compact subset of the intersection
there is at most a finite number of corner points. We sayAhi rational if each edge is directed along a
vector with rational coefficients. For brevity, in this papee usually write“polygon” instead of‘convex
polygonal set

3.1 Construction of the semitoric polygon invariant

Let ¢ be a vertical line through the focus-focus vatug.et B, :=Int(B) \ {c}, which is precisely the set of
regular values of’. Given a sigre € {—1,+1}, let¢c C ¢ be the vertical half line starting atat extending
in the direction of : upwards ife = 1, downwards ife = —1.
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In Th. 3.8 in [2P] it was shown that farc {—1, +1} there exists a homeomorphisf= f.: B — R2,
modulo a left composition by a transformationin such thatf| g\, is a diffeomorphism into its image
A := f(B), which is arational convex polyganf| g, is affine (it sends the integral affine structure of
B, to the standard structure &) and f preserves/: i.e. f(z, y) = (z, f®(z, y)). f satisfies further
properties [[18], which are relevant for the uniqueness rdraoproof. In order to arrive af\ one cuts
(J, H)(M) c R? along the vertical half-linegc. Then the resulting image becomes simply connected and
thus there exists a glob2itorus action on the preimage of this set. The polygois just the closure of the
image of a toric momentum map corresponding to this torusract

52 x R? )

1
/' . (kl = 0’ hy = 1751)
\,1,u R
1t

Figure 3.1: The coupled spin-oscillator example. The n@ddjure shows the image of the initial moment
. . 2 2

map_F = (J, H). lts boundary is the parametrlzr—_fd. curygs) = 32;3.,h(5) = i_ﬁ), s € [1,_oo).

The image is the connected component of the origin. The sy&ea simple semitoric system with one

focus-focus point whose image (i$, 0). The invariants are depicted on the right hand-side. Thesab

generalized polygons for this system consists of two patggo

We can see that this polygon is not unique. The choice of thedection” is encoded in the signs
¢, and there remains some freedom for choosing the toric mtumremap. Precisely, the choices and the
corresponding homeomorphisnfisare the following :

(a) an initial set of action variableg of the form(.J, K) near a regular Liouville torus iff [P5, Step 2,
pf. of Th. 3.8]. If we choos¢; instead off,, we get a polygon\’ obtained by left composition with
an element of/". Similarly, if we choosef; instead offy, we obtainf composed on the left with an
element ofT;

(b) an integere € {1, —1}. If we choose’ instead ofc we getA’ = ¢, (A) with u = (e — ¢') /2, by [28,
Prop. 4.1, expr. (11)]. Similarly instead ¢fwe obtainf’ = ¢, o f.

Oncefy ande have been fixed as in (a) and (b), respectively, then thestsexiunique toric momentum
mapy on M, := F~(IntB \ f¢) which preserves the foliatio, and coincides wittfy o F' where they are
both defined. Then, necessarily, the first componentisf/, and we have:(M,) = A.
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We need now for our purposes to formalize choices (a) andn(ld single geometric object. Let
Polyg(R?) be the space of rational convex polygonsRih. Let Vert(R?) be the set of vertical lines in

R2. A weighted polygorfof complexity1) is a triple of the formA,, = (A, 0, e) whereA € Polyg(RR?),

¢ € Vert(R?), ande € {—1, 1}. LetG := {1, +1}. Obviously, the groug sends a rational convex
polygon to a rational convex polygon. It corresponds to thadformation described in (a). On the other
hand, the transformation described in (b) can be encodetidgroupG acting on the tripled,, by the
formula

e - <A, Ly, e) = (tu(A), £, e'e),

whereu = (e — €') /2. This, however, does not always preserve the convexitk,ads is easily seen when
A is the unit square centered at the origin and= 0. However, whenA comes from the construction
described above for a semitoric systérh H), the convexity is preserved. Thus, we say that a weighted
polygon isadmissiblewhen theG-action preserves convexity. We denotelPolyg(RR?) the space of all
admissible weighted polygons (of complexity The setz x 7 is an abelian group, with the natural product
action. The action ofi x 7 on W Polyg(RR?), is given by:

(€, 7)- <A, Ly, e) = (tu(T(A)), Oy, € e),

whereu = (e — €') /2. We call asemitoric polygorthe equivalence class of an admissible weighted polygon
under the(G x T)-action.

Let A be a rational convex polygon obtained from the momentum édg H )(M ) according to the
above construction of cutting along the vertical half-litie

Definition 3.1 The semitoric polygon invariant of M, w, (J, H)) is the semitoric polygon equal to the
(G x T)-orbit (G x T) - (A, £, €) € WPolyg(R?)/(G x T). o

3.2 The semitoric polygon invariant of coupled spin-oscidtors

Proposition 3.2. The semitoric polygon invariant of the coupled spin-oatil is the(G x T)-orbit con-
sisting of the two convex polygons depicted on the right fsdel of Figurd 3]1.

Proof. As shown in Figurd 3]1, a representative of the semitoriggmi invariant is a polygon iR? with
exactly two vertices at—1, 0) and(1, 0), and from these two points leave straight lines with slogthe
other possible polygon representative has verticés-at 0) and(1, 2)). One finds this polygon simply by
combining the information about the isotropy weights atléfecorner of the polygon (an elliptic-elliptic
critical value) [2b, Prop. 6.1], together with the formulaven in [25, Thm. 5.3], in which the relation
between isotropy weights and the slopes of the edges of tlygqois described using the Duistermaat-
Heckman function. O

3.3 Classification theory for coupled spin-oscillators

The authors have recently given a general classificatiorenéial semitoric integrable in dimesiarifLg],
[L9] in terms of five symplectic invariants; the reader faamilvith these works can easily that two of these
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invariants do not appear in the case of coupled spin-osmi#iaand we state the uniqueness theorem therein
in this particular cage

Consider a focus-focus critical poimt whose image by(.J, H) is ¢, and letA be a rational con-
vex polygon corresponding to the systéil, w, (J, H)). If x is a toric momentum map for the system
(M, w, (J, H)) corresponding t&\, then the image:(m) is a point in the interior ofA, along the line/.
We proved in[18] that the vertical distanbe= y(m) — mingesna m2(s) > 0 is independent of the choice
of momentum map. Heremy: R? — Ris ma(cy, c2) = co.

Theorem 3.3(consequence of Th. 6.4, J18])et (M, w, (J, H)) be a4-dimensional semitoric integrable
system with exactly one focus-focus singularity. T$teof invariants of(M, w, (J, H)) consists of the
following items: (i) the Taylor series invariarftS)> at the focus-focus singularity:; (ii) the semitoric
polygon invariant; (iii) the volume invariant, i.e. the lgéit » > 0 of m. Two4-dimensional simple semitoric
integrable system&\/1, wi, (J1, Hi)) and(Ma, we, (J2, H2)) with exactly one focus-focus singularity are
isomorphic if and only if the list of invariants (i)-(iii) dfM/, w1, (J1, H1)) is equal to the list of invariants
(i)-(iil) Of (Mo, w, (J2, Ha)).

Theorem 3.4. The coupled spin-oscillator has the following sympleaticariants: (i) first terms of the
Taylor series invariant:a; = § andas = 5In2; (i) semitoric polygon invariant:(G' x 7)) - Ay, where
Ay is either the upper or lower weighted polygon depicted orrijtet-most side of Figurg 3.1; (iii) volume
invariant: A = 1.

Proof. The semitoric polygon invariant and the first terms of theldageries invariant were computed
previously. The height of the focus-focus point of the syste the polygon is equal to half of the Liouville
volume of the submanifold o/ given by the equatioy = 1. This is because the functiofd and

J are symmetric about thé-axis of R? in the sense thatl (z, v, z, u, v) = J(x, y, 2z, —u, —v) and
H(z,y, z, u, v) = —H(z, y, z, —u, —v). Here there is no need to compute anything because the volume
of the submanifold given by = 1 in M is just the length of the vertical slice of the polygonJat= 1,
which is 2, and hence the height of the focus-focus point of the systeln i= 1, and the image of the
focus-focus point in the polygon g, 1). O

4 Spectral theory for qguantum spin-oscillators

In this section, we use the notation of the previous sectibﬁs“22va + zandH = (zu + vy). Our goal
in this section is to quantize this example and analyze itsdassical spectrum.

First we quickly review the process of assigning a quantusiesy to a classical system. Loosely
speaking, aguantum integrable systeim a collection of commuting self-adjoint operators on abiit
space. Quantizationis a process that takes a classical phase space (here, astimpianifold /) to a
Hilbert spacel, and classical Hamiltoniang € C>(M) to self-adjoint operatorg acting onM. The
guantization of symplectic manifold is often called geomeeguantization. See the recent book by Kostant-
Pelayo [1b] for a survey. Quantizing Hamiltonians involvesre difficulties. For instance, we need the map

“The first of these invariants is the number of focus-focugidarities. The last of these invariants, the so calledtimgsindex
invariant, is a rather subtle topological invariant whickasures how the topology near a focus-focus singular filtetiessto the
topology near the other focus-focus fibers. Hence the iam&gnly appears when there is more than one focus-focuslanity,
and in the following we shall not mention it. The twistingdex expresses the fact that there is, in a neighborhood ofcag-
focus pointc;, aprivileged toric momentum map This momentum map, in turn, is due to the existence of a enkyperbolic
radial vector field in a neighborhood of the focus-focus fiidrerefore, one can view the twisting-index as a dynamioadriant.
This is an important invariant in the general case, Ee [18].
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f — f to be a Lie algebra homomorphism, at least at first order :eifdlassical system is given by two
Poisson commuting function§ ¢ then the quantum system is given by two operajorg such that
Lf. 9l=0  mod (O(h)). (4.1)

)

Such a quantization is well-knofirio exist when)/ = R?", and more generally on a cotangent bundle
M = T*X, usingh-pseudodifferential quantizatiof] [7]. Quantizing compsygmplectic manifolds is also
possible under an integrality condition (the existence sf-@alled prequantum line bundle), using Toeplitz
quantization [[4]. However, because of the remaindef i) (4t is not known whether a classical integrable
system can always be quantized to a true quantum integngdtiens. Very recently, in the algebraic setting,
the relevant obstruction was defindd][11]. In the couplea-sgcillator example, like in many known
systems, an exact quantization can be found by hand.

A well-known example is the harmonic oscillator[&¥. The harmonic oscillator is given by/ = R?
with coordinategu, v) and Hamiltonian function onivV(u, v) = “2+”2 . The self-adjoint operata¥ in the

Hilbert space E(R) given by N = 2 du2 + % ® is the standard Weyl quantization of the Hamiltonisin

The spectrum ofV is discrete and given b{/h(n + 1) | n € N}. The eigenfunctions ardermite functions
This operator will be used as a quantum building tool in theusé

4.1 Quantization of R* and the Harmonic Oscillator

We shall viewS? as a reduced space Bff ~ C? under the coordinate identification = =, + i,
29 = 9 + i1&. ONR* we consider the well-known harmonic oscillatduzy, z2) = M which has a
2r-periodic flow generating a Hamiltoniat -actiont - (21, zp) = (z1e7't, zpe ).

The spac&’y := {L = E}, for any valueE > 0, is of course the euclideamsphereSi”/ﬁ c R?
of radiusv/2E. It is well known that the reduced spa¢é = E}/S! is 2-sphere, and the fibration map
{L = E} — {L = E}/S" is the standardHopf fibration More precisely, we may represent this reduced
space as the euclidean sph;é%2 C R3 of radiusE /2. Denoting by(x, y, z) the variables irR3, we have
the following useful formula for the Hopf map, which will besed for quantization :

T = (212_2)/2
Y = %(212_2)/2

(|21 = I22f*) /4.

The usual quantization d&* is the Hilbert spacé{R4 L2(R?). The Weyl quantization of the Hamil-

2 2
tonian functionZ is the unbounded operatér:= —2%- (dd; + %) + Bt
2

The spectrum of. is given byspec(L) = {(n + 1) |n € N}. To see this, define the operatby :=

—% (%) + % acting orlL*(R 2;). We can writel = L; + L. Note that the spectrum df; is
1

spec(L;) = {h(n; + ) |n; € N} 4.2)

Therefore we deduce that the spectruni.d$ given by{%(ni +ns+1)|n; € N, ny € N}, and the formula
above follows since:; andng are arbitrary non-negative integers. The multiplicityadf 4+ 1) is given by
the number of pairény, ny) such thatu; + ny = n, which is preciselyr + 1.

Sfor instance Weyl quantization, but there are other possibbices
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4.2 Quantization of the spaces? x R? and the Hamiltonians J and L

We define theguantizationof 5129/2 to be the finite dimensional Hilbert spaggs := ker(L — E). When
E = h(n + 1), thendim(Hg) = n + 1 (otherwiseHHr = {0}). It will be convenient to introduce the
“anihilation operators’a; := \/%(ha%j + x]—>, i = 1,2, which naturally quantize;/v/2h, i = 1,2

respectively. Thed, = h(ayaj + azal — 1). Thequantizationof the Hamiltonians:, y, z on S%/Q are the
restrictions toH i of the operators:

- * * ~ h * 2 h * *

T = §(a1a2 + agay), = —(a1a5 — agay), Z:= §(a1a1 — aga3). 4.3)

This definition makes sense becadsg is stable under the action df 3, 2. This can be checked right
away using the commutation relatio[a@,a;f] = 1, but it will also follow from the explicit action of these
operators, as explained in Sectjor] 4.3 below.

Of course, wR% , the quantization of is ¢ := (——) and the quantizatiof of « is the multiplication
by u (that we S|mply denote by). Thus we have the very natural definition:

Definition 4.1 The quantizationof SE/2 x R? is the (infinite dimensional) Hilbert spadéz @ L2(R) C

L?(R?) ® L?(R). The quantization ofJ is the operator/ = Id@( - ’faajg + ) + (2 ®1d). The

quantization off is the operatof] = l@out+je ¢ au)) @
This definition depends on the energy which will be fixed throughout the paper. For the numerical

computations, we have takéh= 2, which corresponds to the quantization of the standardrepier y2 +
2
ze=1.

Lemma 4.2. The operators and.J commute, i.e. we have the identify, .J] = 0, both in the functional
analysis senséd. as an unbounded operator on a dense domain), and in the agebense, as a bracket
in the Lie algebra of polynomial differential operators.

Proof. Itis enough to show thd#, .J] = 0 holds on elements of the forh® g, wheref is any element in
Hg, andg € C3°(R). And indeed,

A, \(feg) = (HI=JH)(f@g)=HI(f@g) - JH(f@g)

= Ao Rg+ () ©9)~ 2 (@] ©ug+if @ bg)
%(@f@uNngfcéf®ug+ﬁf®@Ng+@§f®@g)
_ %(j;f@Nug+gf®N®g+2§3f®ug+73@f®@9)

= 2f®[u, Nlg+ [#, 2]f ® ug+ §f ® [0, Ng + [4, 2]f ® dg. (4.4)
As before, we have denoted := —%288—1; + % Now
. 4?2 2 h2 d? u2 h? d? d?
N p— —_—— — —_— _ —_— —_— — —
[w, N1f “( 2 a2 )f < S a )“f 2 ( Y32 T e )f
and 2 2 2 2
d d®u dfdu ds f df d= f
— = 42— fu—2 =21 fu—2.
du? (uf) fdu2 du du + udu du + udu2
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Hencelu, N|f = 2290y = p2d (). Therefore[u, N] = iko. Similarly, [0, N] = —ifu. It is also
standard to check that the “angular momentum varialllesy), z) satisfy :[y, z] = —ih& and|z, 2] = ihy.
Hence expressiof (4.4) equals

Tf @ (ihv)g + (ihy)f @ ug + 5f @ (—ihu)g + (—ihz) f @ vg = 0.

The result follows. O

Remark 4.3 Although the proof of Lemm§ 4.2 is interesting on its ownréhis a theoretical reason for
this lemma to be true, because our operators all derive frayl \Quantization of polynomial. And for
such operators the following result is known: suppose fitais a quadratic Hamiltonian anH, is any
polynomial Hamiltonian function such thdt/;, H>} = 0. Then Moyal's formula[[26[ 7] 12] yields,
formally, [ﬁl, ]fIQ] = 0. In our caseJ is quadratic in the variable&:, v, x1,x2,&1,£2). This gives an
alternative proof of Lemmp4.2. %

4.3 Joint spectrum of J, H

We have left to find the spectrum &f and of.J. First, we conjugate by the unitary transform if(R?) :
U: f(x1,22) = Vhf(Vhey, Vhey).

This has the effect of setting= 1 in the operator; :

. 1 0
Next, it is convenient to use the Bargmann representaftihmf@ich states that the operatdr; defined
above and its adjointi’ are unitarily equivalent to the operato-b% and z;, respectively, acting on the

Hilbert space of holomorphic functions on two variableﬁ%l(.(C?, w—le—‘Z‘Q). (The notationz; here is not
exactly the same as the initial one in secfjof 4.1, but we kdfep simplicity.)
The following lemma is standard.

Lemma 4.4([@]). The function\j% = \%, wherea = (a1, a), is an eigenfunction of, with norm1

and eigenvaluéi(a; + ag + 1).
Proof. The functionz{" is an eigenfunction of; ;2 with eigenvaluey;. Sincel = h(z1 52 + 272 + 1),
we getL(z®) = h(ay + ag + 1)2%.
2
We can computﬂzaHLﬁo'(@’r1 o-1212)

of L. O

= a!. Therefore the functior—m% is a normalized eigenfunction

Next we find the eigenspace @éffor the eigenvalugi(n + 1). Since the monomial§z® /v a!} ene
form a Hilbert basis of the Bargmann space, the sgége= ker(L — h(n + 1)) is simply given by

ZCV
HEe ZSPaH{ﬁ | a1+ ag = n},
(6%
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thus it is the space of homogeneous polynomials of degieeC?. We will use for it the following basis :
{28, 2027t L 20 e, 2T

In order to understand the operath, we need to considet and N. The restriction of the operator

2 = L(aja} — aza3) to the Hilbert spacé{r in given in terms of this polynomial basis b2k 20k =
i

-n 0 0
0 2—n 0 0
0 0 4—n 0 0
h
2
0
0 0 0 n

Notice that this shows thé{ z is indeed invariant under the action ©fOf course, a similar calculation can
be done fori: andy (see the proof of Propositidn }1.7 below). Notice also thatigenvalues of range from
—2n to n; in the case of the standard sphéfe(with £ = 2), we have the relatiol = 2 = h(n + 1).
Therefore the eigenvalues gfrange from— 2 to -2~ In the semiclassical limit — oo, we recover the
classical rangé-1, 1] of the hamiltonian: on S2.

Next we consider the Bargmann representationfor “224”2 This time, we act of the Hilbert space
L2oi(C,, 7 Le171*) and we obtainV = a(rZ + 1).

The eigenfunctions afV are\;—z_! corresponding to the eigenval@ér + %).

Lemma 4.5. The spectrum of is discrete, and we have

spec{j):h<1;n+N>.

More precisely, for a fixed valuk € A(15% + N), let &, := ker(J — \). Then
n

= \: < k <n: > .
=X 0<k<m e_o}

1
Ex :span{TZ ® 2K F | h(¢ + 3 +k—

In particular £, has dimension + min(n, 3 + 251).

Proof. In the double Bargmann representation, we have

- o 1 h 0 0
=1 — )N+ (21— — 29— ) ®Id.
J d®(h(7’a7_+2))+2(21821 22622)@) d
Hence a simple computation gives
R 1
Jrt @487 = h (f o k- g) (' ® 21257F) (4.5)

so the corresponding eigenvalues afé + % +k — 5) where0 < k < nandn, £ > 0. This shows that/

admits a complete set of eigenvectors. He]méj — \) is spanned by the set of eigenvectors coming from
this family and corresponding to the eigenvalueThis space is finite dimensional (henéehas discrete
spectrum), and its dimension is the number of solutigng) to the equatior(¢ + 5 + k — 2) = A with
constraint®) < k < n; ¢ > 0, which is preciselyl + min(n, % + %). O
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The fact that€), is finite dimensional should be compared to the fact that ldiesical hamiltoniary is
proper.

Corollary 4.6. Given anyn € N, and any\ € h(an + N), the ordered set

rt Zhonk A on 1 A no 1
By = = Q2 | k=0, 1, ...,mi S —2),andl=S4 - — = —ky.
v Q= 7 @ A | TS it g ) RN

is an orthonormal basis of).

Our next goal is to compute the matrix Bf. More precisely, sincél commutes with/, the eigenspace
&, is stable byH. Thus, the spectral theory @f is merely reduced to the study of the restrictionfbto
&, which we explicitly compute below. Then the best way to deflie spectra off and H is to display
thejoint spectrum(see figur¢ 4]1), which is the set 0¥, v) € R? such that, for a common eigenfunctign
one has both
Jf=Xf and Hf =vf.

Letly := % + 5 - %, @ =min(4y,n) and let

Br =+l +1—k)k(n —k+1).

Figure 4.1: Semiclassical joint spectrum.bfH and momentum map image juxtaposed, computed using
a numerical diagonalization of the band matrix in Proposif.J. In all our computations we have chosen
E = 2, which corresponds to the quantization of the standardrepfte+ y? + 2> = 1. This implies the
relation2 = i(n + 1). Heren = 13, soh ~ 1.14.

Proposition 4.7. The matrixV g, (ﬁ[) of the self-adjoint operatoH on the basis3, is the symmetric matrix

0 B ... 0

B 0 B 0

) Py 2 0 B2 0 fs 0
Ms, () = (5)° |
B

0 0 Bu 0
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Proof. We start by evaluating andy on this basis:

h
Beb ) = ST 4 (= R
N n— h — n— n—
y(ZfZQ k) = E(kzk 122 k“) —(n— k)zfﬂzz i 1)
We introduce: ) oh ) oh
o= —(u+h—), of = —(u—h—
\/271( au) \/271( au)

Henceu(= 1) = (a + oz*)\/é. Now we do the Bargmann representation

- 72(+£) A_EE_O‘—O‘ \f h__
TN TR YT ou T 25 =)

h 1 /h
a(rt) = \/;(7'”1 + 070, o(rh) = T\/;(ETZI — 7,

In what follows, for brevity of the notation, we writg, := z’fz’;*k. Note thatn is fixed. Recalling
H=1iu®i+0®7), we get

H(r'2t257%) = %((2)3/2(7-“_1 + 07 (kg + (0 — k)cpyr)
— (B ) e — (0 W)
_ %(g)s/ ’ (m”lck_l T ey 4 (n— k)T e + £ — k)T e
— k'l (= KT e + R e — (n— k)T”lckH)
- @)3/2(% Flog 1+ (n—k)r o). (4.6)

Notice how this formula, together with Lemrfia}4.5, confirmat#), is stable undef.
In order to have a better numerically prepared matrix (antterthooking formula !), we next express

21 22

everything in an orthonormal basis. Denetg. = \/(i GV TomT so thate, ;, is an eigenvector of of norm
1:

“ 1 n
J(eer) = h(l+ 5 Tk— §)€e,k = Neg

. N3/2kT ey +0(n — k)T ey
H(ewr) (5) 0k (n — k) ' 9
On the other hand we have that.; ,_; = \/(£+1)T(ll:i§i;fk+1)! and that the first term of (4.7) is
S S R N (ST R T P
MR — k) TR — k)] ’

= \/(f + 1)]{3(’11 —k + 1)64+17k_1.
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Similarly the second term of (4.7) is

ln— k)" e ln—k)
= R DR D — k= Dle,
MR(n k) Ty Y (¢ DI+ Dl Vet ki1

= VU +1)(n = k)er 1 i1

Sincel = ¢y, — k, we get

Aleer) = (1) (VT k4 DRk~ Devrimr + Vo~ B0+ D01~ Rer-iin

h\ 3/2
— (5) (Brers1,k—1 + Brt1€0—1k+1)-

This, of course, gives the statement of the proposition. O

4.4 The spectrumS(n) of H|,.,j_iq

In the next section, we will be particularly interested ie theigenvalue\ = 1, which corresponds to the
J-critical value of the focus-focus point, in the classicgtem. Sincel = 2 = h(n + 1), we see that
by = "EL 4 2oLl = . Therefore the dimension ébr(J —1d) is equal ton + 1. Notice that, for\ < 1,
the dimension oker(j — \) is increasing linearly with slope 1 (with respect to the paeterk that we
introduced above) whereas far> 1 this dimension is constant, equal o+ 1. This can be seen as a
quantum manifestation of the Duistermaat-Heckmann foanfil

5 Inverse spectral theory for quantum spin-oscillators

The theme of this section is to give evidence of the followdogjecture being true in the case of coupled
spin oscillators:

Conjecture 5.1. A semitoric system is determined up to symplectic equigal®y its semiclassical joint
spectrumi(e. the set of points iR where on ther-axis we have the eigenvalug®f J, and on the vertical
axes the eigenvalues &f restricted to the\-eigenspace of ). From any such spectrum one can construct
explicitly the associated semitoric system.

In this section we try to convey some ideas to explicitly comepall the symplectic invariants from the
semiclassical spectrum. It might not necessarily be thenabtway to prove an inverse spectral result, as
some quantities are more easily defined implicitly rathantexplicitly by the spectrum. But we believe
that, from a quantum viewpoint, having constructive forasufor the symplectic invariants is particularly
valuable.

We emphasize the word “semiclassical” here : in order toweicthe symplectic invariants we need be
able to compute the joint spectrum for small valueg.o¥What can be said for a unique, fixed valueias
much harder question.

5.1 Polygon and height invariant

Recovering the polygon invariant is probably the easiedtaost pictorial procedure, as long as one stays on
a heuristic level. Making the heuristic rigorous should begible along the lines of the toric case explained
in [P4] and [21], but we don't attempt to do it here.
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The first thing to do is to recover the image of the classicaineat map, including the position of the
singular values. This could be done by a local examinatiafeakity of the joint eigenvalues.

Next, in order to recover the polygon invariant, we need ttaiobthe integral affine structure of the
image of the momentum map. We know froff [5] 24] that the jopecsrum possesses a semiclassical
integral affine structure on the regular values of the moorannap. This integral affine structure can be
extended to the elliptic boundaries, as explainedl ih [2#sT except along a vertical cut through the focus-
focus critical value, one can develop this affine structuhghat the joint eigenvalues become elements of
the latticenZ?. See figurg 5]1.

cut

oo o o
O o 0 o o o o

000 0 0

o oo o
s 000000
0 0 0 0lo 06 o o
00 000000 0 O

O 0 000

o o 0 o
0 0 00000000 O O

0 0 0600080000 O O
O O O O O CCRIEISIEIEIGING
O 0 000000000 O O O
OO 000000000 O O O
O 0 0 00000000 0 O O
O 0 0 0 0000000 O O O
0 O 0 0 0 0000 0 0 0 0 O
R R I R R N
O 0 0 0 0 0 {0 O O O O O O
O 0 0 O O O 0[O0 O 0 0 O O O
O 0 0 0 0 0 0|0 0 0 0 0 O O
O 0 0 O 0 0 0|0 O O O O O ©
6 0 0 0 0 O 0[O0 O O O O o ©
S 6 6 o 0 O 0|06 O o6 o o6 O o
S 6 0 6 ©6 o oo o ©o 6 o o o

o o ©° o o o e

° o
o0 0
60 00

°
60000000
600000000
60000000 00
60000000000
60000000000 o
60000000000 o0
6606006000060 00060
6606006000060 00060
6606006000060 00060
6606006000060 00060
6606006000060 00060
6606006000060 00060
6606006000060 00060
6606006000060 00060
6606006000060 00060
6606006000060 00060
6606006000060 00060

~40 0 006 060000000 0 0
40 0 0 0 00000000 0 0
6000000000000 O
“d6 0 00000000000 0

Figure 5.1: Recovering the polygon invariant. The top pitis the joint spectrum o(fj, ﬁ). In the
bottom picture, we have developed the joint eigenvaluesanegular lattice. One can easily check on this
illustration that the number of eigenvalues in each vertina in the same in both pictures.

The convex hull of the resulting set is a rational, convexygohal set, depending ol Since the
semiclassical affine structure is Ardeformation of the classical affine structure, we see #&dt,— 0, this
polygonal set converges to the semitoric polygon invariant

5.2 Semiclassical formula for the spectrunt(n)

In order to recover the Taylor series invariant from the sp@c, we need a precise description of this
spectrum. There are two options : either describe the spadtr regular regions, and then take the limit to
the focus-focus critical value; or describe the spectruraatly in a small neighborhood of the focus-focus
value. We choose the second option, because it seems maopagafe for a reasonably accurate numerical
formula for the invariants, in the spirit of equatidn (3.28)

The drawback of this approach is that there is no result ntiyravailable giving the description of this
spectrum. The singular Bohr-Sommerfeld ruleg of [22] wagilek the required result, in caseand H were
pseudodifferential operators. Of course they are notedime phase spac® x R? is not a cotangent bundle.
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However they are semiclassical Toeplitz operators, in émse of [], and it is known that the algebra of
Toeplitz operators is microlocally equivalent to the algebf pseudodifferential operatolg [3]. Therefore,
we propose the following conjecture.

Conjecture 5.2. The formula in Corollary 6.8 in ¥ Ngac's paper [22] holds also if the operators therein
involved are Toeplitz instead of pseudodifferential.

This conjecture may be stated in the following way. DB&t) be the spectrum °ﬁ|ker(j_1d)- For
bounded: € R, the formula

N <i€(t)+1+j

A#) — &(t)In(2h) — 2arg T - ) € 217 + O(h™)

holds if and only ifait € ¥(n) + O(h>) with

€)) S\(t) = A(t; h) admits an asymptotic expansion on integer—1 powers off with smooth (€°°)
coefficients in starting withA(t) = [ ao + Ly (#(t)) + uF + O(h).

(b) €(t) = €(t; h) has an asymptotic expansion on integef) powers off. with smooth coefficients in
starting with the second component of the vedt, ¢) + O(h) whereB is the2 x 2 matrix such
thatB(J”, H”)m = (ql, QQ).

(c) I,,(~(t)) is what is called the “principal value integral” &f(t), wherek(t) is the 1-form on A
defined by

(R()(X7), R()(Xr)) = (0, 1) <= (R()(Xq), A()Xy,)) = B(0, 1) (5.1)
Finally, I, (') is defined in Proposition 6.15 df[22] as
Bo=v0(1—s2)
LoE®) = dm (] R CRICIYOWS)
wheree(t) is the first order term of(¢).

1 0

, with B 0. Thus we get
By Bﬂ) 22 # g

For a semitoric system, the mattixis of the formB = (

G(t) = ngt.
Moreover, because of formulf (p.1),
(R(6)(Xq), R()(Xgy)) = (0, Baat).

Therefore we see thé?lf;g—t) = Basko, Wherers g is the restriction ta\, of the 1-form defined in equa-
tion (2.3). Thus, in view of equatior (2.4), we get an expliormula for the symplectic invarian; :

1 9 -
= B i (Lo ®) Ti=o (5.2)

Though we haven't worked it out here, a similar formula foe first invarianta; could be obtained
along the same lines.

a2

In the case of the coupled spin-oscillatér,= (1 0) ,S0B% = 2 anday = %%(I%(Rt)) l—0.

0 2
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5.3 Obtaining a, from the spectrum X(n)

We show in this paragraph how the conjecture gives a way t@imbs. Using formula [5]2) above, an easy
corollary of the conjecture is Theorem 7.6 in][22], whichsé#yat

. (B — B\ 21/ Bao
mln( h )_|lnh|+a2—|—ln2+7+0(h) 3)

for ¥(n) = {Ey < Ey <...< E,}. Herey is Euler’s constant.
From the spectrum we can calcul&té” (h) = min <M) SO

271_

tmin

By (|Inh| + a2 +In2 +~)(1 + O(h)) = Bao(|Inh| + a2 +1In2 + ) + O(hln k).

Therefore we may recovéds,, as

2m
Bog = lim [ ——— ). 5.4
2 ﬁli%<tmm|1nh|> (®-4)

Because the convergence of this limit is very slow (of oqdiem’l), it is in practice much better to solve
the system obtained with two different valueshoivhich gives :

2m _ 27
Byy = ) B2) o p Iy By) + OBy In Biy). 5.5
22 In(Fia /) + O(h1Inhy) + O(hg In hy) (5.5)

Thus, if we chooséi, to be a fixed multiple ofi = /i, we get a convergence speed of ordHi:1n /),
which is indeed much more reasonable.
OnceBy is known, it is easy to recover, again through formuld(3.3) :

. 27
as = %11)% (W —|InAl —1In2 — 7> , (5.6)

and the convergence rate is again of oréf In 7).

5.4 Numerical approximation of a, using Maple

Using Propositior] 4]7, we compute the spectrtim) of the Spin-Oscillator example for various values
of n = 2/h — 1 by entering the matrix in the computer algebra system 'Maghel ask for a numeric
diagonalization. Then is it easy to implement the formu&a§)and[5)6).

From the general theory, the minimal eigenvalue spacintsined — at least in the limit — 0, at the
focus-focus critical valuéf = 0. This is confirmed from the numerics. In fact, using the rsiur formula
for the characteristic polynomidD,,(X') of the matrix Mg, (H) (with £y = n) :

Dn(X) = XDp1(X) = B Dpa(X),

we prove by induction thaD,,(X) has the parity of» + 1. In particular, the spectrum is symmetric :
Y(n) = —%(n). Whenn is odd,0 is not an eigenvaluel{,, (0) = (—1)»~1/23,35 - - 8,,), and hence the
smallest spacing is simply twice the smallest positive mighie :

tmin(h) = 2E[g]+2/h with i =

n+1
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Figure 5.2: Recovering the coefficieByy (which is equal to 2 in our example). The horizontal scale is
logarithmic: the integer abscisgacorresponds ta = 2¥ + 1. Thush starts at).5 and decreases to the
right to reachl /513 ~ 0.002. The top curve — with circles — is the result of formuja [5W}ich indeed
converges very slowly. The curve with diamonds is obtaingthb accelerated formulg (b.5).
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Figure 5.3: Recovering the invariaat. The graph plots the values a@f/1n 2 (which should be 5 in our
example) computed using the formufa]5.6). The horizortalesis the same is in figufe b.2.

The results of our numerical experiments are plotted in &g andi 5 3. They should be compared to
the theoretical values of Theorgm 3.14.
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