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LINEAR PREDICTION OF LONG-RANGE DEPENDENT TIME SERIES

Fanny Godet
1

Abstract. We present two approaches for linear prediction of long-memory time series. The first
approach consists in truncating the Wiener-Kolmogorov predictor by restricting the observations to
the last k terms, which are the only available data in practice. We derive the asymptotic behaviour
of the mean-squared error as k tends to +∞. The second predictor is the finite linear least-squares
predictor i.e. the projection of the forecast value on the last k observations. It is shown that these two
predictors converges to the Wiener Kolmogorov predictor at the same rate k−1.
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1. Introduction 1

ARMA (autoregressive moving-average) processes are often called short-memory processes because their 2

covariances decay geometrically. On the other hand, a long-memory process is characterised by the following 3

feature: the autocovariance function σ decays more slowly in so far as it is not absolutely summable. These 4

processes are so-named because of the strong association between observations widely separated in time. The 5

long-memory time series models have attracted much attention lately and there is now a growing realisation that 6

time series possessing long-memory characteristics arise in areas as diverse as Economics, Geophysics, Hydrology 7

or telecom traffic (see, e.g., [14] and [8]). Although there exists substantial literature on the prediction of short- 8

memory processes (see [5] and [2] for the univariate case or [13] for the multivariate case), there are fewer 9

results for long-memory time series. Most prediction methods are successfully applied on long memory data 10

either simulated like in [7] or on real data like electricity demand (see [17]). In this paper, we consider the 11

question of prediction in long memory models from a theoretical point of view. 12

More precisely, we compare two prediction methods for long-memory processes. We search linear predictors 13

of Xk+h knowing (X1, . . . , Xk) which are optimal in the sense that they minimise the mean-squared error. We 14

study the behaviour of the mean-squared errors as k tends to infinity as [15] does for short memory processes. 15

The paper is organised as follows. First we introduce our model and our main assumptions. Then, in Section 2, 16

we study the best linear predictor knowing all the past i.e. the Wiener-Kolmogorov predictor proposed by [19] 17

and by [3] for long-memory time series. In practice, only the last k values of the process are available. Therefore 18

we need to truncate the infinite series in the definition of the predictor and to derive the asymptotic behaviour 19

of the mean-squared error as k tends to +∞. This method is for example used by [1] to forecast US monetary 20

indices. 21
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In Section 3 we discuss the asymptotic properties of the forecast error if we project onto the closed span of1

the last k observations. This approach has been proposed by [16] for fractional noise series and by [7] for other2

simulated data. These authors view this approach as fitting a misspecified autoregressive model of order k. The3

simulations in [16] show that high-order AR-models predict fractional integrated noise very well.4

Finally in Section 4 we compare the two previous methods for h-step prediction. We give some asymptotic5

properties of the mean-squared error of the linear least-squares predictor as h tends to +∞ in the particular6

case of long-memory processes. Then we study our kth order predictors as k tends to +∞.7

Let (Xn)n∈Z be a discrete-time (weakly) stationary process in L2 with mean 0 and σ its autocovariance8

function. We assume that the process (Xn)n∈Z admits an infinite moving average representation as follows:9

Xn =
∞∑

j=0

bjεn−j (1)

where (εn)n∈Z is a white-noise series consisting of uncorrelated random variables, each with mean zero and10

variance σ2
ε , and where (bj)j∈N is square-summable and b0 = 1. We shall further assume that (Xn)n∈Z admits11

an infinite autoregressive representation:12

εn =
∞∑

j=0

ajXn−j, (2)

where the sequence (aj)j∈N is absolutely summable and a0 = 1. We assume also that (aj)j∈N and (bj)j∈N,13

occurring respectively in (2) and (1), satisfy the following conditions for all δ > 0:14

|aj | ≤ C1j
−d−1+δ (3)

|bj | ≤ C2j
d−1+δ, (4)

where C1 and C2 are constants and d is a parameter verifying d ∈ ]0, 1/2[. The class of processes satisfying (3)15

and (4) includes long memory processes i.e. processes with covariances not absolutely summable:16

∞∑

k=−∞
|σ(k)| = ∞.17

For example, the FARIMA process (Xn)n∈Z, the most studied long memory process, is the stationary solution18

to the difference equations:19

φ(B)(1 − B)dXn = θ(B)εn (5)
where (εn)n∈Z is a white noise series in L2 with mean zero, B is the backward shift operator and φ and θ are20

polynomials with no zero in the closed unit disk. The coefficients verify as j goes to infinity21

|aj | ∼
+∞ C1j

−d−1

|bj | ∼
+∞ C2j

d−1

and thus (3) and (4) hold.22

More generally, conditions (3) and (4) hold when the coefficients are of the form:23

|aj | ∼
+∞ L(j)j−d−1 (6)

|bj| ∼
+∞ L′(j)jd−1 (7)

where L and L′ are slowly varying functions. A positive function L is a slowly varying function in the sense24

of [20] if, for any δ > 0, x �→ x−δL(x) is ultimately decreasing and x �→ xδL(x) is ultimately increasing.25
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Under conditions (6) and (7), (Xn)n∈Z is a long memory process. Indeed [11] proved that (7) implies that [11] 1

proved that if: 2

σ(j) ∼ j2d−1 [L′ (j)β(d, 1 − 2d)]2 3

where β is the beta function. Note that the converse is not true. More assumptions about the series (bj)j∈N are 4

needed in order to get an asymptotic equivalent for (bj)j∈N using an asymptotic equivalent of (σ(j))j∈N(see [12]). 5

2. Wiener-Kolmogorov next step prediction theory 6

2.1. The Wiener-Kolmogorov predictor 7

The aim of this part is to compute the best linear one-step predictor (with minimum mean-squared distance 8

from the true random variable) knowing all the past {Xk+1−j, j � 1}. Our predictor is therefore an infinite 9

linear combination of the infinite past: 10

X̃k(1) =
∞∑

j=0

λ(j)Xk−j

where (λ(j))j∈N are chosen to minimise the mean squared prediction error: 11

E

[(
X̃k(1) − Xk+1

)2]
. 12

Since εk+1 is orthogonal to the past [ε]k−∞ = [X ]k−∞, the Wiener-Kolmogorov predictor is equal to 13

X̃k(1) = −
∞∑

j=1

ajXk+1−j . (8)

2.2. Mean-squared prediction error when the predictor is truncated 14

In practice, we only know a finite subset of the past, the one which we have observed. So the predictor 15

should only depend on the observations. Assume that we only know the set {X1, . . . , Xk} and that we replace 16

the unknown values by 0, then we have the following new predictor: 17

X̃ ′
k(1) = −

k∑

j=1

ajXk+1−j . (9)

It is equivalent to say that we have truncated the infinite series (8) to k terms. The following proposition 18

provides the asymptotic properties of the mean-squared prediction error as a function of k. 19

Theorem 2.1. Let (Xn)n∈Z be a linear stationary process defined by (1), (2) and verifying conditions (3) 20

and (4). We can approximate the mean-squared prediction error of X̃ ′
k(1) by: 21

∀δ > 0, E
([

Xk+1 − X̃ ′
k(1)

]2) = σ2
ε + O(k−1+δ) as k → +∞. 22

Note that the prediction error is the sum of σ2
ε , the error in the Wiener-Kolmogorov model, and the error due 23

to the truncation to k terms which is bounded by O(k−1+δ) for all δ > 0. We denote σ̃2
k := E

([
Xk+1− X̃ ′

k(1)
]2)

24

hereafter the sum of these two errors. 25

The proof of Theorem (2.1) hinges on the following lemma: 26

Lemma 2.2. Under assumption (4), the autocovariance function σ of the process (Xn)n∈Z verifies: 27

∀δ > 0, ∃C3 ∈ R, |σ(j)| ≤ C3j
2d−1+δ. (10)
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Proof. Notice that it suffices to prove (10) for δ near 0 in order to prove (10) for all δ > 0. Let δ < 1 − 2d:1

σ(k) =
+∞∑

j=0

bjbj+k2

|σ(k)| ≤
+∞∑

j=1

|bjbj+k| + |b0bk|3

≤ C2
2

+∞∑

j=1

jd−1+δ/2(k + j)d−1+δ/2 + |b0bk|4

≤ C2
2k2d−1+δ

∫ +∞

0

jd−1+δ/2(1 + j)d−1+δ/2dj + C2k
d−1+δ/2

5

≤ C3k
2d−1+δ. �6

7

We now prove Theorem 2.1.8

Proof.

Xk+1 − X̃ ′
k(1) = εk+1 −

+∞∑

j=k+1

ajXk+1−j . (11)

The two parts of the sum (11) are orthogonal with respect to the inner product associated with the mean-squared9

norm. Consequently:10

E

([
Xk+1 − X̃ ′

k(1)
]2)

= σ2
ε +

∞∑

j=k+1

∞∑

l=k+1

ajalσ(l − j).11

The error due to the truncation, which we have to study, is then equal to:12

σ̃2
k − σ2

ε =
∞∑

j=k+1

∞∑

l=k+1

ajalσ(l − j) (12)

we have:13

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j) = 2
+∞∑

j=k+1

aj

+∞∑

l=j+1

alσ(l − j) +
+∞∑

j=k+1

a2
jσ(0)

≤ 2
+∞∑

j=k+1

|aj | |aj+1| |σ(1)| +
+∞∑

j=k+1

a2
jσ(0)

+2
+∞∑

j=k+1

|aj |
+∞∑

l=j+2

|al||σ(l − j)|.

From (3) and (10) and the triangular inequality, it follows that:14

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j) ≤ C2
1C3

⎛

⎝2
+∞∑

j=k+1

j−d−1+δ(j + 1)−d−1+δ +
+∞∑

j=k+1

(
j−d−1+δ

)2
⎞

⎠

+2C2
1C3

+∞∑

j=k+1

j−d−1+δ
+∞∑

l=j+2

l−d−1+δ|l − j|2d−1+δ (13)
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for all δ > 0. Assume now that δ < 1/2 − d. For the terms (13), since j �→ j−d−1+δ(j + 1)−d−1+δ is a positive 1

and decreasing function on R
+, we have the following approximations: 2

2C2
1C3

+∞∑

j=k+1

j−d−1+δ(j + 1)−d−1+δ ∼ 2C2
1C3

∫ +∞

k

j−d−1+δ(j + 1)−d−1+δdj 3

∼ 2C2
1C3

1 + 2d − 2δ
k−2d−1+2δ. 4

Since the function j �→ (
j−d−1+δ

)2 is also positive and decreasing, we can establish in a similar way that: 5

C2
1C3

+∞∑

j=k+1

(
j−d−1+δ

)2 ∼ C2
1C3

∫ +∞

k

(
j−d−1+δ

)2
dj 6

∼ C2
1C3

1 + 2d − 2δ
k−2d−1+2δ. 7

For the infinite double series (13), we will similarly compare the series with an integral. In the next lemma, we 8

establish a necessary result for this comparison: 9

Lemma 2.3. Let g the function (l, j) �→ j−d−1+δ l−d−1+δ |l − j|2d−1+δ. Let m and n be two positive integers. 10

We assume that δ < 1 − 2d and m ≥ δ−d−1
δ+2d−1 for all δ ∈

]
0, δ−d−1

δ+2d−1

[
. If n ≥ m + 1 then 11

∫

An,m

g(l, j) dj dl ≥ g(n + 1, m) 12

where An,m is the square domain [n, n + 1] × [m, m + 1]. 13

Assume now that δ < 1 − 2d without loss of generality. Thanks to the previous Lemma and the asymptotic 14

equivalents of (13), there exists K ∈ N such that if k > K: 15

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j) ≤ C

∫ +∞

k+1

j−d−1+δ

[∫ +∞

j

l−d−1+δ(l − j)2d−1+δdl

]
dj + O

(
k−2d−1+2δ

)
.

By using the substitution jl′ = l in the integral over l we obtain: 16

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j) ≤ C′
∫ +∞

k+1

j−2+3δ

∫ +∞

1

l−d−1+δ(l − 1)2d−1+δdldj + O
(
k−2d−1

)
. 17

Since if δ < (1 − d)/2 18
∫ +∞

1

l−d−1+δ(l − 1)2d−1+δdl < +∞, 19

it follows: 20

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j) ≤ O
(
k−1+3δ

)
+ O

(
k−2d−1

)

≤ O
(
k−1+3δ

)
. (14)
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If δ > 0, δ < 1 − 2d and δ < (1 − d)/2, we have:1

σ̃2
k − σ2

ε =
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j) = O
(
k−1+3δ

)
.2

Notice that if the equality is true under the assumptions δ > 0, δ < 1− 2d and δ < (1 − d)/2, it is also true for3

any δ > 0. This concludes the proof. �4

The result of Theorem 2.1 is not interesting for short memory processes. It is proved in [15] that the error5

due to the truncation (σ̃2
k − σ2

ε) converges to 0 at an exponential rate for short memory processes. We now6

prove that there exist long-memory processes whose prediction error attains the rate of convergence k−1.7

When we specify the form of the autoregressive coefficients and the autocovariance function, we obtain an8

equivalent of the mean-squared prediction error.9

Proposition 2.4. Let (Xn)n∈Z be a linear stationary process defined by (1), (2) and verifying (6). Assume10

that the coefficients (aj)j∈N∗ are ultimately of constant sign. We assume also that the autocovariance function11

σ of the process (Xn)n∈Z verifies:12

|σ(j)| ∼
+∞ L′(j)j2d−1

13

with L′ a slowly varying function and that the function σ is of a constant sign. Then the rate of convergence14

O(k−1) is optimal i.e. we have the following asymptotic equivalent:15

E
([

Xk+1 − X̃ ′
k(1)

]2) = σ2
ε + L′′(k)k−1 + o

(
k−1

)
as k → +∞ (15)

where L′′ is a slowly varying function.16

Proof. In this particular case, we can estimate the prediction error more precisely:17

∣∣∣∣∣

+∞∑

k+1

+∞∑

k+1

ajalσ(l − j)

∣∣∣∣∣ =
+∞∑

k+1

|aj |
+∞∑

j+1

|al||σ(l − j)| +
+∞∑

k+1

a2
jσ(0)

=
∫ +∞

k+1

j−d−1L(j)
∫ +∞

j+1

l−d−1L(l)(l − j)2d−1L′(l − j)dldj

+
k−2d−1L2(k)

1 + 2d
+ O

(
k−2d−1

)

∼
∫ +∞

k+1

j−2L2(j)L′(j)
∫ +∞

1/j+1

l−d−1 L(lj)
L(j)

(l − 1)2d−1 L′(j(l − 1))
L′(j)

dldj

∼ k−1 L2(k)L′(k)Γ(1 − d)Γ(2d)
Γ(1 + d)

· (16)

�18

Example 2.5. Assume now that (Xn)n∈Z is fractionally integrated noise, which is the stationary solution of19

the difference equation:20

Xn = (1 − B)−dεn (17)
with B the usual backward shift operator, (εn)n∈Z is a white-noise series and d ∈ ]0, 1/2[ (see for example [6]).21

This is a particular case of FARIMA models defined in (5) with φ = θ = 1. We can compute the coefficients22

and obtain that:23

∀j > 0, aj =
Γ(j − d)

Γ(j + 1)Γ(−d)
< 024



LINEAR PREDICTION OF LONG-RANGE DEPENDENT TIME SERIES 7

and 1

aj ∼ j−d−1

Γ(−d)
as j → ∞. 2

We can also compute the autocovariance function and we obtain: 3

∀j ≥ 0, σ(j) =
(−1)jΓ(1 − 2d)

Γ(j − d + 1)Γ(1 − j − d)
σ2

ε > 0 4

and 5

σ(j) ∼ j2d−1Γ(1 − 2d)
Γ(d)Γ(1 − d)

σ2
ε as j → ∞. 6

In this particular case, we can estimate the prediction error more precisely and give the explicit expression of 7

L′′ defined in (15): 8

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j) ∼ Γ(1 − 2d)Γ(2d)σ2
ε

Γ(−d)2Γ(d)Γ(1 + d)
k−1 (18)

since in this case the functions L and L′ are constant and equal respectively to
1

Γ(−d)
and to

Γ(1 − 2d)σ2
ε

Γ(d)Γ(1 − d)
. 9

In the specific case of fractionally integrated noise, we may write the prediction error as: 10

E
([

Xk+1 − X̃ ′
k(1)

]2) = σ2
ε + C(d)k−1 + o

(
k−1

)
11

and we can express C(d) as a function of d: 12

C(d) =
Γ(1 − 2d)Γ(2d)σ2

ε

Γ(−d)2Γ(d)Γ(1 + d)
· (19)

It is easy to prove that C(d) → +∞ as d → 1/2 and we may write the following asymptotic equivalent as 13

d → 1/2: 14

C(d) ∼ σ2
ε

(1 − 2d)Γ(−1/2)2Γ(1/2)Γ(3/2)
· (20)

As d → 0, C(d) → 0 and we have the following equivalent as d → 0: 15

C(d) ∼ σ2
εd2. 16

As Figure 1 suggests and the asymptotic equivalent given in (20) proves, the mean-squared error tends to +∞ 17

as d → 1/2. By contrast, the constant C(d) takes small values for d in a large interval of [0, 1/2[. Although 18

the rate of convergence has a constant order k−1, the forecast error is bigger when d → 1/2. This result is 19

not surprising since the correlation between the predicted variable and the unobserved variables increases when 20

d → 1/2. 21

Example 2.6. Long-memory processes with seasonal effects (see for example [18]) provide another class of long 22

memory processes verifying assumptions of Theorem 2.1 but not those of Proposition 2.4. We can also prove 23

that the rate of convergence k−1 is attained for some seasonal processes. We consider the particular case of 24

GARMA processes introduced by [10] and studied for example by [9]. We first recall their definition. (Xn)n∈Z 25

is a GARMA process if it is the stationary solution of the equation: 26

∀n ∈ Z, Xn = (1 − 2 cos νB + B2)−dεn 27
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Figure 1. Behaviour of constant C(d), d ∈ [0, 1/2[, defined in (19).

with cos ν �= 0, d ∈]0, 1/2[, (εn)n∈Z a white noise and B the backward shift operator. (Xn)n∈Z admits an infinite1

autoregressive representation like in (2). The coefficients verify:2

aj =
cos[(j − d)ν + (dπ/2)]

Γ(−d) sin−d(ν)

(
2
j

)1+d

+ O
(
j−5/2

)
. (21)

Its autocovariance function σ is such that:3

σ(j) = K cos(jν)j2d−1
(
1 + O(j−1)

)
(22)

where K is a constant independent of j.4

We now give the asymptotic behaviour of the mean-squared error of prediction for these processes.5

Proposition 2.7. If (Xn)n∈Z is a GARMA process, then6

E
([

Xk+1 − X̃ ′
k(1)

]2) = σ2
ε + Ck−1 + o

(
k−1

)
as k → +∞.7

Proof. The proof is given in Appendix. �8

After these results on the truncating Wiener-Kolmogorov predictor, we will propose another predictor. In-9

stead of truncating to k terms the series which defines the Wiener-Kolmogorov predictor it is more efficient to10

project directly onto the observations in order to minimise the forecast error. We study this method in the11

following section.12

3. Prediction method13

In this section, we study the asymptotic properties of the forecast mean-squared error when we project the14

forecast random variable Xk+1 onto the closed span of the subset {Xk, . . . , X1}. This is a generalisation of the15

“autoregressive model fitting” approach developed by [16] in the case of fractionally integrated noise (defined16

in (17)). Fitting a k-th order autoregressive process is equivalent to projecting onto the span of the subset17

{Xk, . . . , X1}.18
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3.1. Definition of the predictor 1

Here (Xn)n∈Z is a long-memory process which verifies the assumptions (1)–(4) of Section 1. We choose to 2

define the predictor as the projection mapping onto the closed span of the subset {Xk, . . . , X1} of the Hilbert 3

space L2(Ω,F , P) with inner product 〈X, Y 〉 = E(XY ). Then the predictor can be written as: 4

X̂k(1) = −a1,kXk − . . . − ak,kX1. 5

Consequently the coefficients (−ai,k)1≤i≤k of the projection verify the kth order Yule-Walker equations: 6

∀j ∈ �1, k�,

k∑

i=1

ai,kσ(i − j) = −σ(j). (23)

The mean-squared prediction error is: 7

E

[(
X̂k(1) − Xk+1

)2] = σ2
ε + E

⎡

⎢⎣

⎛

⎝−
∞∑

j=1

ajXk+1−j +
k∑

j=1

aj,kXk+1−j

⎞

⎠
2
⎤

⎥⎦. (24)

3.2. Rate of convergence of the error by projection 8

In the next theorem we derive an asymptotic expression for the prediction error when projecting onto the 9

finite past: 10

Theorem 3.1. Let (Xn)n∈Z be a linear stationary process defined by (1), (2) and verifying conditions (3) 11

and (4) of Section 1. We can approximate the mean-squared prediction error of X̂k(1) by: 12

E
[(

X̂k(1) − Xk+1

)2]− σ2
ε = O(k−1) as k → +∞. (25)

There exist long-memory processes such that: 13

E
[(

X̂k(1) − Xk+1

)2]− σ2
ε ∼ Ck−1 as k → +∞ 14

where C is a constant. 15

Proof. Hereafter we will denote σ̂2
k := E

[(
X̂k(1) − Xk+1

)2]. Since the projection minimises the forecast error 16

using k observations, the error by using truncation is bigger and since the truncation method involves an error 17

bounded by O
(
k−1

)
, we obtain (25). 18

Consequently we only need prove that this rate of convergence is attained. This is the case for the fractionally 19

integrated processes defined in (17). We want to express the error made by projection in terms of the Wiener- 20

Kolmogorov truncation error. Therefore in the case of a fractionally integrated process we need only show 21

that: 22

σ̂2
k − σ2

ε ∼ Ck−1. 23

Now, setting aj,k = 0 if j > k and developping (24) 24

σ̂2
k − σ2

ε =
+∞∑

j=0

+∞∑

l=0

(aj − aj,k)(al − al,k)σ(l − j)

=
+∞∑

j=0

(aj − aj,k)
+∞∑

l=0

alσ(l − j) −
k∑

l=0

al,k

+∞∑

j=0

(aj − aj,k)σ(l − j). (26)
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We first study the first term of the sum (26). For any j > 0 , we have
∑+∞

l=0 alσ(l − j) = 0:1

εn =
∞∑

j=0

alXn−l2

E (Xn−jεn) =
∞∑

l=0

alσ(l − j) = 03

as εn is orthogonal to Xn−j for j > 0. We can thus rewrite the first term of (26):4

+∞∑

j=0

(aj − aj,k)
+∞∑

l=0

alσ(l − j) = (a0 − a0,k)
+∞∑

l=0

alσ(l)

= 0

since a0 = a0,k = 1 according to definition. Next we study the second term of the sum in (26). And we obtain:5

k∑

l=0

al,k

+∞∑

j=0

(aj − aj,k)σ(l − j) =
k∑

l=1

(al,k − al)
k∑

j=1

(aj − aj,k)σ(l − j)

+
k∑

l=1

(al,k − al)
+∞∑

j=k+1

ajσ(l − j)

+
k∑

l=0

al

k∑

j=1

(aj − aj,k)σ(l − j)

+
k∑

l=0

al

+∞∑

j=k+1

ajσ(l − j). (27)

Similarly we rewrite the term (27) using the Yule-Walker equations:6

k∑

l=1

(al,k − al)
+∞∑

j=k+1

ajσ(l − j) = −
k∑

l=1

(al,k − al)
k∑

j=0

ajσ(l − j).7

We then remark that (27) is equal to the opposite of (27). Hence it follows that:8

k∑

l=0

al,k

+∞∑

j=0

(aj − aj,k)σ(l − j) =
k∑

l=1

(al,k − al)
k∑

j=1

(aj − aj,k)σ(l − j)

+2
k∑

l=1

(al,k − al)
+∞∑

j=k+1

ajσ(l − j)

+
k∑

l=0

al

+∞∑

j=k+1

ajσ(l − j). (28)

In a similar way we can rewrite the third term of the sum in (28) using Fubini’s Theorem and then the Yule-9

Walker equations:10
k∑

l=0

al

+∞∑

j=k+1

ajσ(l − j) = −
+∞∑

l=k+1

+∞∑

j=k+1

ajalσ(l − j).11
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This third term is therefore equal to the forecast error due to the truncation (12). 1

In order to compare the prediction error when truncating the Wiener-Kolmogorov predictor and when pro- 2

jecting onto the finite past for a fractionally integrated process, we need the sign of all the components of the 3

sum in (28). For a fractionally integrated noise, we know the explicit formula for aj and σ(j): 4

∀j > 0, aj =
Γ(j − d)

Γ(j + 1)Γ(−d)
< 0 and ∀j ≥ 0, σ(j) =

(−1)jΓ(1 − 2d)
Γ(j − d + 1)Γ(1 − j − d)

σ2
ε > 0. 5

In order to get the sign of al,k − al we use the explicit formula given in [5] and we easily obtain that al,k − al is 6

negative for all l ∈ �1, k�. 7

al − al,k =
Γ(l − d)

Γ(l + 1)Γ(−d)
− Γ(k + 1)Γ(l − d)Γ(k − d − l + 1)

Γ(k − l + 1)Γ(l + 1)Γ(−d)Γ(k − d + 1)

= −al

(
−1 +

Γ(k + 1)Γ(k − d − l + 1)
Γ(k − l + 1)Γ(k − d + 1)

)

= −al

(
k...(k − j + 1)

(k − d)...(k − d − j + 1)
− 1
)

> 0 (29)

since ∀j ∈ N
∗, aj < 0. To give an asymptotic equivalent for the prediction error, we use the sum given in (28). 8

We have the sign of the three terms: the first is negative, the second is positive and the last is negative. Moreover 9

the third is equal to the forecast error by truncation and we have proved that this asymptotic equivalent has 10

order O(k−1). The prediction error when projecting converges faster to 0 than the error by truncation only 11

if the second term is equivalent to Ck−1, with C constant. Consequently, we search for a bound for al − al,k 12

using (29): 13

al − al,k = −al

(
l−1∏

m=0

(
1 − m

k

1 − m+d
k

)
− 1

)
14

= −al

(
l−1∏

m=0

(
1 +

d
k

1 − d+m
k

)
− 1

)
. 15

Then we use the following inequality: 16

∀x ∈ R, 1 + x ≤ exp(x) 17

which gives: 18

al − al,k ≤ −al

(
exp

(
l−1∑

m=0

d
k

1 − d+m
k

)
− 1

)
19

≤ −al

(
exp

(
d

l−1∑

m=0

1
k − d − m

)
− 1

)
20

≤ −al exp

(
d

l−1∑

m=0

1
k − d − m

)
· 21
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According to the previous inequality, we have:1

k∑

l=1

(al − al,k)
+∞∑

j=k+1

−ajσ(l − j) =
k−1∑

l=1

(al − al,k)
+∞∑

j=k+1

−ajσ(l − j)2

+(ak − ak,k)
+∞∑

j=k+1

−ajσ(k − j)3

≤
k−1∑

l=1

−al exp

(
d

j−1∑

m=0

1
k − d − m

)
+∞∑

j=k+1

−ajσ(l − j)4

+(−ak) exp

(
d

k−1∑

m=0

1
k − d − m

)
+∞∑

j=k+1

−ajσ(k − j).5

As the function x �→ 1
k−d−x is increasing, we can bound the series by the integrals.6

k∑

l=1

(al − al,k)
+∞∑

j=k+1

−ajσ(l − j) ≤
k−1∑

l=1

−al exp

(
d

∫ l

0

1
k − d − m

dm

)
+∞∑

j=k+1

−ajσ(l − j)7

+(−ak) exp

(
d

∫ k−1

m=0

1
k − d − m

dm

)
+∞∑

j=k+1

−ajσ(k − j).8

We now search a bound for exp
(
d
∫ k−1

m=0
1

k−d−mdm
)
. We have:9

∫ k−1

m=0

1
k − d − m

dm ∼ ln(k)10

≤ 3
2

ln(k)11

for k large enough. Therefore there exists K such that for all k ≥ K:12

k∑

l=1

(al − al,k)
+∞∑

j=k+1

−ajσ(l − j) ≤
k−1∑

l=1

−al exp
(

d ln
(

k − d

k − d − l

)) +∞∑

j=k+1

−ajσ(l − j)13

−akk
3
2 d

+∞∑

j=k+1

−ajσ(0)14

≤ C(k − d)d
k−1∑

l=1

l−d−1(k − d − l)−d
+∞∑

j=k+1

j−d−1(j − l)2d−1
15

+Ck−d−1k
3
2 dk−d

16

≤ C

(k − d)2

∫ 1

1/(k−d)

l−d−1(1 − l)−d

(∫ +∞

1

j−d−1(j − 1)2d−1dl

)
dj17

+Ck− 1
2d−1

18

≤ C′(k − d)−2+d + Ck− 1
2d−1

19
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Figure 2. Ratio r(k), d ∈ ]0, 1/2[ defined in (30).

and so the positive term has a smaller asymptotic order than the forecast error made by truncating. Therefore 1

we have proved that in the particular case of fractionally integrated processes, the two prediction errors are 2

equivalent to Ck−1 with C constant. � 3

The two approaches to next-step prediction, by truncation to k terms or by projection on the last k ob- 4

servations have consequently a prediction error with the same rate of convergence k−1. So it is interesting to 5

study how the second approach improves the prediction and if the improvement is negligible with respect to 6

the prediction error due to the truncation. In this aim, we define the following quotient: 7

r(k) :=

(
σ̃2

k − σ2
ε

)− (σ̂2
k − σ2

ε

)

σ̃2
k − σ2

ε

(30)

which is the ratio of the difference between the two prediction errors (prediction error due to the truncation (12) 8

and prediction error due to the projection (26)) and the prediction error due to the truncation. By (28), we 9

obtain: 10

r(k) =

∑k
j=1(aj,k − aj)

∑k
l=1(al − al,k)σ(j − l) + 2

∑k
j=1(aj,k − aj)

∑+∞
l=k+1 alσ(j − l)

∑+∞
j=k+1 aj

∑+∞
l=k+1 alσ(j − l)

· 11

We evaluate this ratio in the particular case of a fractionally integrated noise defined in (17). Figure 2 shows 12

that the prediction by truncation incurs a larger performance loss when d → 1/2. The improvement reaches 13

50 percent when d > 0.3 and k > 20. 14

4. The multistep predictors 15

After obtaining an asymptotic equivalent for the next step predictor, we will generalise the two methods to 16

h-step prediction and aim to obtain their asymptotic behaviour as k → +∞ but also as h → +∞. 17

4.1. The Wiener-Kolmogorov predictor 18

Since we assume that the process (Xn)n∈Z has an autoregressive representation (2) and moving average 19

representation (1), the linear least-squares predictor, X̃k(h), of Xk+h based on the infinite past (Xj , j ≤ k) is 20
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given by:1

X̃k(h) =
+∞∑

j=h

bjεk+h−j2

(see for example Th. 5.5.1 of [6]). The corresponding mean squared error of prediction is:3

E

[(
X̃k(h) − Xk+h

)2
]

= σ2
ε

h−1∑

j=0

b2
j .4

As the prediction step h tends to infinity, the mean-squared prediction error converges to σ2
ε

∑+∞
j=0 b2

j = σ(0),5

which is the the variance of the process (Xn)n∈Z. But if the mean-squared prediction error is equal to σ(0), we6

have no more interest in the prediction method since its error is equal to the error of predicting the future by 0.7

The convergence of the mean-squared error to σ(0) is slower in the long-memory case than in the short-memory8

case since the sequence bj decays more slowly to 0. More precisely in the case of a long-memory process under9

the assumption (7) we can explicit the asymptotic behaviour of the mean-squared error. We have as h tends to10

infinity:11

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

= σ2
e

+∞∑

j=h

b2
j

∼
+∞∑

j=h

j2d−2L′2(j)

∼
∫ +∞

h

j2d−2L′2(j)dj

∼
h→+∞

1
1 − 2d

h2d−1L′2(h) (31)

according to Proposition 1.5.10 of [4].12

On the contrary, for short memory processes we can obtain an exponential rate of convergence of13

E

[(
X̃k(h) − Xk+h

)2
]

to the variance of the process σ(0). Consider the classical ARMA processes (see for14

example [6]). The moving average coefficients bj are bounded by:15

|bj | ≤ Cjm−1ρ−j
16

where ρ verifies |ρ| < 1 and m is a non negative integer (see for example [6] p. 92). Thus the mean-squared17

prediction error is equivalent to:18

σ(0) − E

[(
X̃k(h) − Xk+h

)2
]

∼
h→+∞

σ2
εC

+∞∑

j=h

j2m−2ρ−2j
19

∼
h→+∞

σ2
εC (2 log(ρ))1−2m (2 log(ρ)h)2m−2 exp (2 log(ρ)h).20

We obtain that the rate of convergence is exponential. The mean-squared prediction error goes faster to σ(0)21

when the predicting process is ARMA than when the process is a long-memory process.22

The h-step prediction is then more interesting for the long-memory process than for the short-memory process,23

having observed the infinite past. We now consider the truncating effect and the projection effect.24
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4.2. Truncated Wiener-Kolmogorov predictor and the linear least-squares predictor 1

In practice, we only observe a finite number k of data (X1, . . . , Xk) so we cannot evaluate the 2

Wiener-Kolmogorov predictor. We first study what happens when we truncate the series which defines this 3

predictor. 4

We define the h-step truncated Wiener-Kolmogorov of order k by induction as: 5

X̃ ′
k(h) = −

h−1∑

j=1

ajX̃ ′
k(h − j) −

k∑

j=1

ah−1+jXk+1−j . (32)

The following proposition describes the asymptotic behaviour of the mean-squared error of the predictor (32). 6

Proposition 4.1. Let (Xn)n∈Z be a linear stationary process defined by (1), (2) and verifying (3) and (4). We 7

can approximate the mean-squared prediction error of X̃ ′
k(h) by: 8

∀δ > 0, E

[
X̃ ′

k(h) − Xk+h

]2
= σ2

ε

h−1∑

l=0

b2
l + R(h, k) (33)

where R(h, k) ≥ 0 and where for all h and k,

R(h, k) ≤ Ch2d+δk−1+δ

with C a constant independent of (h, k). 9

Proof. First we write the difference between the predicted random variable and its predictor: 10

X̃ ′
k(h) − Xk+h = −

h−1∑

j=1

ajX̃ ′
k(h − j) −

k∑

l=1

ah−1+jXk+1−j − εk+h +
+∞∑

j=1

ajXk+h−j 11

= −εk+h +
h−1∑

j=1

aj

(
Xk+h−j − X̃ ′

k(h − j)
)

+
k∑

j=1

ah−1+j (Xk+1−j − Xk+1−j) 12

+
+∞∑

j=k+1

ah−1+jXk+1−j 13

= −εk+h +
h−1∑

j=1

aj

(
Xk+h−j − X̃ ′

k(h − j)
)

+
+∞∑

j=k+1

ah−1+jXk+1−j . 14

We proceed by induction on h to show that 15

X̃ ′
k(h) − Xk+h = −

h−1∑

l=0

⎛

⎝
∑

j1+j2+...+jh=l

(−1)card({i,ji �=0})aj1aj2 . . . ajh

⎞

⎠ εk+h−l

+
+∞∑

j=k+1

(
∑

i1+i2+...+ih=h−1

(−1)card({l>1,il �=0})aj+i1ai2 . . . aih

)
Xk+1−j .

For h = 2, we have for example 16

X̃ ′
k(2) − Xk+2 = −(a0εk+2 − a1εk+1) +

+∞∑

j=k+1

(−a1aj + aj+1)Xk+1−j . 17
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Denote A(z) = 1+
∑+∞

j=1 ajz
j and B(z) = 1+

∑+∞
j=1 bjz

j. Since we have A(z) = B(z)−1, we obtain the following1

conditions on the coefficients:2

b1 = −a13

b2 = −a2 + a2
14

b3 = −a3 + 2a1a2 − a3
15

. . .6

So we obtain:7

X̃ ′
k(h) − Xk+h = −

h−1∑

l=0

blεk+h−l +
+∞∑

j=k+1

h−1∑

m=0

aj+mbh−1−mXk+1−j . (34)

Since the process (εn)n∈Z is uncorrelated, the two terms of the sum (34) are orthogonal. We can rewrite the8

mean-squared error:9

E

[
X̃ ′

k(h) − Xk+h

]2
=

h−1∑

l=0

b2
l σ

2
ε + E

⎡

⎣
+∞∑

j=k+1

(
h−1∑

m=0

aj+h−1−mbm

)
Xk+1−j

⎤

⎦
2

. (35)

The first part of the error (35) is due to the prediction method and the second (35) due to truncating the10

predictor. We now approximate the error term (35) by using (3) and (4). We obtain the following upper bound:11

∀δ > 0,

∣∣∣∣∣

h−1∑

m=0

aj+h−1−mbm

∣∣∣∣∣ ≤
h−1∑

m=1

|aj+h−1−mbm| + |b0aj+h−1|

≤ C1C2

∫ h

0

(j + h − 1 − l)−d−1+δld−1+δdl + C1(j + h)−d−1

≤ C1C2h
−1+2δ

∫ 1

0

(
j

h
+ 1 − l

)−d−1+δ

ld−1+δdl + C1(j + h)−d−1

≤ C1C2h
−1+2δj−d−1+δ

∫ 1

0

(
1
h

+
1 − l

j

)−d−1+δ

ld−1+δdl + C1(j + h)−d−1

≤ C1C2h
d+2δj−d−1+δ

∫ 1

0

ld−1+δdl + C1(j + h)−d−1

∣∣∣∣∣

h∑

m=0

aj+h−mbm

∣∣∣∣∣ ≤ C1C2
hd+2δ

d
j−d−1+δ (36)

where the constants C1 and C2 are independent of (h, j). We then obtain by (36):12

E

⎡

⎣
+∞∑

j=k+1

(
h−1∑

m=0

aj+h−1−mbm

)
Xk+1−j

⎤

⎦
2

≤
+∞∑

j=k+1

+∞∑

l=k+1

(
h−1∑

m=0

aj+h−1−mbm

)(
h−1∑

m=0

al+h−1−mbm

)
σ(j − l)

≤
(

C1C2
hd+2δ

d

)2 +∞∑

j=k+1

+∞∑

l=k+1

j−d−1+δl−d−1+δσ(j − l). (37)

The series in (37) is independent of h and using Theorem 2.1 we have that it is bounded by Ck−1+δ with C13

independent of k. This concludes the proof. �14
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Remark 4.2. Gathering all the above results about the truncated h-step predictor X̃ ′
k(h), the variance of

prediction error is

E(Xk+h − X̃ ′
k(h))2 = σ(0) − σ2

ε

+∞∑

l=h

b2
l + R(h, k)

where σ(0) − σ2
ε

+∞∑

l=h

b2
l is the optimal mean-squared error of linear prediction while R(h, k) quantifies the trun- 1

cating effect. Truncation always increases the variance of forecasting error but it is possible to keep it’s effect 2

as small as possible. Indeed, taking (31) into account, the condition 3

h2dk−1 = o(h2d−1), (38)

which is satisfied if h = o(k), insures that the truncating effect is negligible with respect to the quality of the 4

optimal linear predictor X̃k(h). 5

In other words, long-step prediction in a long-memory context is interesting when the prediction is based on 6

a sufficiently large sample (X1, . . . , Xk). 7

We can compare the prediction error of the truncated Wiener-Kolmogorov predictor with the least-squares 8

predictor defined as the projection on the finite past (X1, . . . , Xk). Let X̂k(h) the predictor of Xk+h. It then 9

can be written as: 10

X̂k(h) = −
k∑

j=1

cj,kXk+1−j , 11

where the vector (cj,k)1≤j≤k minimises the mean-squared error: 12

E

[
X̂k(h) − Xk+h

]2
. 13

Thus the coefficients (cj,k)1≤j≤k satisfy the following relation: 14

(cj,k)1≤j≤k = −Σ−1
k (σh−1+j)1≤j≤k (39)

where Σk is the autocovariance matrix of the vector (X1, . . . , Xk) i.e. 15

Σk =

⎛

⎜⎝
σ(0) σ(1) . . . σ(k − 1)

...
...

. . .
...

σ(k − 1) σ(k − 2) . . . σ(0)

⎞

⎟⎠. 16

By construction of X̂k(h), the mean-squared error of prediction is lower than σ(0) for any k and h. Howewer it 17

can be interesting to search a condition on k and h to have the prediction error due to the projection negligible 18

with respect to the information (31) given by the Wiener-Kolmogorov predictor. 19

As X̂k(h) is the projection of Xk+h onto (X1, . . . , Xk), the mean-squared prediction error is also lower than 20

the prediction error of the truncated Wiener-Kolmogorov predictor (see Fig. 3). The mean-squared error of 21

prediction due to the projection onto the span of (X1, . . . , Xk) tends at least as fast to zero as the mean-squared 22

error due to truncation of the least-squares predictor. We obtain that under the assumptions of Proposition 4.1 23

and condition (38), the prediction error due to the projection is negligible with respect to the information (31) 24

given by the Wiener-Kolmogorov predictor. In Figure 3, we show that the comportments of the truncated 25

predictor and of the least-squares predictor are similar. In the both cases, the prediction error due to the 26

prediction method is sufficiently small with respect to the available information (31) to obtain a good predictor 27

in the case the fractionally integrated noise defined in (17) with k = 80 and h ∈ [1, 150]. 28
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Figure 3. Mean-squared error of X̃k(h) (MMSE), X̃ ′
k(h) (TPMSE) and X̂k(h) (LLSPE) for

d = 0.4 and k = 80 for fractionally integrated noise defined in (17).

5. Appendix: Proof of Proposition 2.71

We have to find an asymptotic equivalent of
+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j). First we replace the coefficients and2

the autocovariances by their asymptotic expressions given in (21) and (22). We obtain:3

+∞∑

j=k+1

+∞∑

l=k+1

ajalσ(l − j) =
+∞∑

j=k+1

a2
jσ(0) + 2

+∞∑

j=k+1

j−1∑

l=k+1

ajalσ(l − j)

=
+∞∑

j=k+1

[(
cos[(j − d)ν + (dπ/2)]

Γ(−d) sin−d(ν)

)2(2
j

)2+2d

+ O
(
j−7/2−d

)]
σ(0)

+
24σ(0)σ2

ε sin(dπ)Γ(1 − 2d)
π (Γ(−d))2

+∞∑

j=k+1

j−1∑

l=k+1

Bj,l (40)

where Bj,l is:4

Bj,l = cos
[
(j − d)ν +

dπ

2

]
cos
[
(l − d)ν +

dπ

2

]
cos((j − l)ν)(jl)−1−d Γ(j − l + 2d)

Γ(j − l + 1)
5

×
(
1 + O(jd−1/2)

)(
1 + O(ld−1/2)

) (
1 + O((j − l)−1)

)
.6
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The first term (40) is bounded by O(k−2d−1) and thus negligible with respect to k−1. For the second term (40): 1

+∞∑

j=k+1

j−1∑

l=k+1

Bj,l

=
+∞∑

j=k+1

j−1∑

l=k+1

cos
[
(j − d)ν +

dπ

2

]
cos
[
(l − d)ν +

dπ

2

]
cos((j − l)ν)(jl)−1−d Γ(j − l + 2d)

Γ(j − l + 1)

+
+∞∑

j=k+1

j−1∑

l=k+1

cos
[
(j − d)ν +

dπ

2

]
cos
[
(l − d)ν +

dπ

2

]
cos((j − l)ν)(jl)−1−d Γ(j − l + 2d)

Γ(j − l + 1)
O(jd−1/2)

+
+∞∑

j=k+1

j−1∑

l=k+1

cos
[
(j − d)ν +

dπ

2

]
cos
[
(l − d)ν +

dπ

2

]
cos((j − l)ν)(jl)−1−d Γ(j − l + 2d)

Γ(j − l + 1)
O(ld−1/2)

+
+∞∑

j=k+1

j−1∑

l=k+1

cos
[
(j − d)ν +

dπ

2

]
cos
[
(l − d)ν +

dπ

2

]
cos((j − l)ν)(jl)−1−d Γ(j − l + 2d)

Γ(j − l + 1)
O((j − l)−1).(41)

We first prove that the terms (41), (41) and (41) are bounded by O(kd−3/2) and thus negligible with respect to 2

k−1. For example, we study (41): 3

4∣∣∣∣∣∣

+∞∑

j=k+1

j−1∑

l=k+1

cos
[
(j − d)ν +

dπ

2

]
cos
[
(l − d)ν +

dπ

2

]
cos((j − l)ν)(jl)−1−d Γ(j − l + 2d)

Γ(j − l + 1)
O(jd−1/2)

∣∣∣∣∣∣
≤ 5

C

+∞∑

j=k+1

j−1∑

l=k+1

j−3/2l−1−d(j − l)2d−1 = O
(
kd−3/2

)
. 6

7

The calculations for (41) and (41) have the same form. The dominant term of (40) is then (41). (41) can be 8

broken into three parts: 9

+∞∑

j=k+1

j−1∑

l=k+1

cos
[
(j − d)ν +

dπ

2

]
cos
[
(l − d)ν +

dπ

2

]
cos((j − l)ν)(jl)−1−d Γ(j − l + 2d)

Γ(j − l + 1)
=

1
2

+∞∑

j=k+1

j−1∑

l=k+1

(jl)−1−d Γ(j − l + 2d)
Γ(j − l + 1)

+
1
2

+∞∑

j=k+1

j−1∑

l=k+1

cos(2(j − l)ν)(jl)−1−d Γ(j − l + 2d)
Γ(j − l + 1)

+
1
4

+∞∑

j=k+1

j−1∑

l=k+1

[cos [(2j − 2d)ν + dπ] + cos [(2l − 2d)ν + dπ]] (jl)−1−d Γ(j − l + 2d)
Γ(j − l + 1)

·(42)

We have proved in Proposition 2.4 that (42) is equivalent to Ck−1. And it is easy to show (by Abel transfor- 10

mations), that (42) and (42) are negligible with respect to (42). This concludes the proof. 11
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