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Introduction

We are interested in the relationship between a survival time T and a covariate Z described by the conditional hazard function of T given Z = z intuitively dened by

R(t|z) = lim ∆t↓0 1 ∆ t P(t ≤ T < t + ∆ t |T ≥ t, Z = z).
In this paper we consider a parametric proportional hazard model, R(t, θ 0 |Z) = η γ 0 (t)f β 0 (Z), conditional on a time-independent covariate Z with unknown density g. The proportional hazard model is often used to describe a covariate eect on a survival time. Under the condition f β (0) = 1, η γ 0 (t) is the baseline hazard function, that is the conditional hazard function of T given Z = 0. The function f β 0 is the relative risk, and the conditional failure rates associated with any two values of the covariate Z is proportional. Here we assume that the functions η γ and f β both belong to parametric families and θ 0 = (β 0 , γ 0 ) belongs to the interior of a compact set Θ = B × Γ ⊂ R m+p . To ensure that the hazard function is a nonnegative function, we assume that η γ (t) ≥ 0 for all γ ∈ Γ and for all t ∈ [0, τ ], τ < ∞, and also that f β (Z) ≥ 0 for all β ∈ B and Z with density g. The parametric modelling of the hazard function has some advantages. In particular, the coecients can be clinically meaningful and tted values from the model can provide estimates of survival time.

Among the best known parametric models are exponential models where R(t, θ|Z) = γf (β Z), Weibull models with R(t, θ|Z) = γ 1 t γ2 f (β Z), models with a piecewise constant baseline function and Gomperz-Makeham models with R(t, θ|Z) = (γ 1 + γ 2 (γ 3 ) t )f (β Z). This latter is commonly used in analysis of mortality data (see [START_REF] Tyurin | Testing a model of aging in animal experiments[END_REF]). We refer to [START_REF] Andersen | Statistical models based on counting processes[END_REF][START_REF] Cox | Analysis of survival data[END_REF][START_REF] Hosmer | Applied survival analysis. Regression modeling of time to event data[END_REF] for discussions on parametric survival time models and their advantages.

Suppose we observe the covariate Z in a cohort of n individuals. For each individual, we would observe a triplet (X i , D i , Z i ), where X i = min(T i , C i ) is the minimum between the failure time T i and the censoring time C i , D i = 1 I Ti≤Ci denotes the failure indicator, and Z i is the value of the covariate. In this context, one usual way is to estimate θ 0 = (β 0 , γ 0 ) by the maximum likelihood estimator. We refer for instance to [START_REF] Aitkin | The tting of exponential, Weibull and extreme value distributions to complex censored survival data using GLIM[END_REF][START_REF] Borgan | Correction to: Maximum likelihood estimation in parametric counting process models, with applications to censored failure time data[END_REF][START_REF] Borgan | Maximum likelihood estimation in parametric counting process models, with applications to censored failure time data[END_REF][START_REF] Hjort | On inference in parametric survival data models[END_REF] for related results.

In this paper we consider that the covariate Z is mismeasured. For example, the covariate Z could be a stage of a disease, which may be misdiagnosed, or Z could be a dose of ingested pathogenic agent not correctly evaluated, such that the error range between the unknown dose and the evaluated dose is sizeable. We observe a cohort of n individuals during a xed time interval [0, τ ] with τ < ∞. For each individual, the available observation is thus the triplet ∆ i = (X i , D i , U i ) where U i = Z i + ε i , and where the sequences of random variables

(ε i ) i=1,••• ,n
and (Z i , T i , C i ) i=1,••• ,n are independent. The density of ε is known and is denoted by f ε . Our aim is to estimate the parameter θ 0 = (β 0 , γ 0 ) from the n-sample of independent and identically distributed random variables (∆ 1 , . . . , ∆ n ), in the presence of the completely unknown density g of the unobservable covariate Z, where g is viewed as a nuisance parameter belonging to a functional space G. Hence this model belongs to the class of the so-called semiparametric models.

Our results

We propose an estimation procedure based on the least square criterion estimation using deconvolution methods. The least square criterion is dened by

S θ 0 ,g (θ) = E (f 2 β W )(Z) τ 0 Y (t)η 2 γ (t)dt -2E (f β W )(Z) τ 0 η γ (t)dN (t) (1.1)
where W is a nonnegative weight function to be chosen, N (t) = 1 I X≤t,D=1 and Y (t) = 1 I X≥t . Since the intensity of the censored process N (t) with respect to F t = σ{Z, U, N (s), 1 I X≥s , 0 ≤ s ≤ t ≤ τ } is equal to λ(t, θ 0 , Z) = η γ 0 (t)Y (t)f β 0 (Z), we can rewrite S θ 0 ,g (θ) as

S θ 0 ,g (θ) = τ 0 E η γ (t)f β (Z) -η γ 0 (t)f β 0 (Z) 2 Y (t)W (Z) -E η γ 0 (t)f β 0 (Z) 2 Y (t)W (Z) dt. (1.2)
This shows that S θ 0 ,g (θ) is minimum if θ = θ 0 as soon as W is a nonnegative function. We propose to estimate S θ 0 ,g (θ) for all θ ∈ Θ by a quantity S n,1 (θ), which depends on the error density f ε , on the observations

∆ 1 , • • • , ∆ n , with ∆ i = (X i , D i , U i )
, and where g is replaced with a deconvolution kernel estimator. The parameter θ 0 is then estimated by minimizing S n,1 (θ). We refer to [START_REF] Van Der Vaart | Weak convergences and empirical processes[END_REF] for properties of M -estimators and to [START_REF] Reynaud | Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities[END_REF] for other results on the estimation of intensity processes using the least square criterion.

Under classical smoothness and identiability assumptions and for a W suitably chosen such that f β W has the best smoothness properties, the estimator θ 1 = arg min θ∈Θ S n,1 (θ) converges to arg min θ∈Θ S θ 0 ,g (θ) = θ 0 which ensures the consistency of θ 1 . Its rate of convergence depends on the smoothness of f ε and on the smoothness of (f β W )(z) as a function of z. More precisely, if we denote by ϕ (t) = e itx ϕ(x)dx the Fourier transform of an integrable function ϕ, the rate of convergence of θ 1 depends on the behavior of the ratios of the Fourier transforms (f β W ) * (t)/f * ε (-t) and (f 2 β W ) * (t)/f * ε (-t) as t tends to innity. We give an upper bound of the quadratic risk E θ 1 -θ 0 2 and radiation dose which is always mismeasured (see [START_REF] Martin-Magniette | Nonparametric estimation of the hazard function by using a model selection method: estimation of cancer deaths in Hiroshima atomic bomb survivors[END_REF][START_REF] Prentice | Covariate measurement errors and parameter estimation in a failure time regression model[END_REF]).

By construction our estimation procedure is related to the problem of the estimation of S θ 0 ,g (θ). For some particular relative risks, S θ 0 ,g (θ) can be estimated at the parametric rate without deconvolution methods.

In these special cases we propose a second estimator θ 2 which is always a √ n-consistent and asymptotically Gaussian estimator of θ 0 .

Previous results and ideas

Models with measurement errors have been thoroughly studied since the 1950s with the rst papers studying regression models with errors-in-variables (see, e.g. [START_REF] Kiefer | Consistency of the maximum likelihood estimator in the presence of innitely many nuisance parameters[END_REF][START_REF] Reiersøl | Identiability of a linear relation between variables which are subject to error[END_REF]). We refer to [START_REF] Carroll | Measurement error in nonlinear models[END_REF][START_REF] Fuller | Measurement error models[END_REF] for a presentation of such models and results related to measurement error models. It is well known that in regression models, the measurement errors on the explanatory variables make the estimation of the regression function much more dicult, even if the regression function has a parametric form. For recent results and illustration of such diculties, we refer to [START_REF] Butucea | New M -estimators in semiparametric regression with errors in variables[END_REF][START_REF] Taupin | Semi-parametric estimation in the nonlinear structural errors-in-variables model[END_REF] for parametric regression functions, and to [START_REF] Comte | Nonparametric estimation of the regression function in an errors-in-variables model[END_REF][START_REF] Fan | Nonparametric regression with errors in variables[END_REF] for nonparametric regression functions.

Interest in survival models when covariates are subject to measurement errors is more recent. To our knowledge, there are no results on consistent estimation of the hazard function (for any type of modelling) in the case of general parametric relative risk with a mismeasured covariate. All the previously known results are obtained in the semiparametric Cox model. Let us specify the related methods: to take into account the fact that the covariate Z is measured with error, one idea is simply to replace Z with the observation U in the partial likelihood. This idea, usually called naive method, provides biased estimators (see for instance [START_REF] Nakamura | Corrected score function for errors-in-variables models: methodology and application to generalized linear models[END_REF][START_REF] Nakamura | Proportional hazards model with covariates subject to measurement error[END_REF]).

One can also cite [START_REF] Li | Survival analysis with heterogeneous covariate measurement error[END_REF] who study the resulting bias in case of heterogeneous covariate measurement error. A second idea, related to calibration methods, is to propose corrections of the estimation criterion, for instance by replacing Z i with an approximation of E(Z i |U i ). The third idea, proposed by [START_REF] Prentice | Covariate measurement errors and parameter estimation in a failure time regression model[END_REF][START_REF] Tsiatis | Modeling the relationship of survival to longitudinal data measured with error. Application to survival and cd4 counts in patients with aids[END_REF][START_REF] Xie | A risk set calibration method for failure time regression by using a covariate reliability sample[END_REF] is to approximate the partial log-likelihood related to the ltration generated by the observations E t = σ{U, N (s), 1 I X>s , 0 ≤ s ≤ t}.

All these methods provide biased estimators of the parameters in the semiparametric Cox model and also in general proportional hazard models. The last idea, extensively used in the semiparametric Cox model, is to correct the partial score function where the mismeasured Z i 's have been replaced with the observations U i 's.

By denition, the partial score function is (see [START_REF] Gill | Cox's regression model for counting processes : a large sample study[END_REF])

L (1) n (β, Z (n) ) = 1 n n i=1 τ 0 f (1) 
β (Z i )/f β (Z i ) - n j=1 Y j (t)f (1) 
β (Z j ) / n j=1 Y j (t)f β (Z j ) dN i (t), with N i (t) = 1 I Xi≤t,Di=1 , Y i (t) = 1 I Xi≥t , Z (n) = (Z 1 , . . . , Z n ), and with f (1)
β the rst derivative of f β with respect to β. The β such that L

(1)

n ( β, U (n) ) = 0 is not consistent but, in the Cox model, one can exhibit corrections of L (1)
n (β, Z (n) ) ensuring the consistency. Among those who have used related methods, one can cite [START_REF] Buzas | Unbiased scores in proportional hazards regression with covariate measurement error[END_REF]1820,[START_REF] Kong | Adjusting regression attenuation in the Cox proportional hazards model[END_REF][START_REF] Kong | Consistent estimation in Cox proportional hazards model with covariate measurement errors[END_REF][START_REF] Nakamura | Corrected score function for errors-in-variables models: methodology and application to generalized linear models[END_REF][START_REF] Nakamura | Proportional hazards model with covariates subject to measurement error[END_REF][START_REF] Stefanski | Unbiaised estimation of a nonlinear function of a normal mean with application to measurement error models[END_REF] and [START_REF] Augustin | An exact corrected log-likelihood function for Cox's proportional hazards model under measurement error and some extensions[END_REF], and more recently [START_REF] Li | Inference on survival data with covariate measurement error -An imputation-based approach[END_REF]. These corrections strongly depend on the exponential form of the relative risk of the Cox model. Indeed, if

U = Z +ε, with Z independent of ε, then lim n→∞ E[L (1) n (β, Z (n) )] only depends on E(Z) and on E[exp(βZ)], with E(Z) = E(U ) and E[exp(βU )] = E[exp(βZ)]E[exp(βε)].
Extension of such methods to other relative risks have not been conclusive. For instance, in the semiparametric model of excess relative risk where

f β (Z) = (1 + βZ), easy calculations give that lim n→∞ E[L (1) n (β, Z (n) )] depends on E[Z/(1 + βZ)] whereas lim n→∞ E[L (1) n (β, U (n) )] depends on E[U/(1 + βU )]. Since the error model U = Z + ε does not provide any expression of E[Z/(1 + βZ)] in terms of E[U/(1 + βU )],
a correction analogous to the ones proposed in the Cox model cannot be exhibited. In other words, it seems impossible to nd a function Ψ n (β, U ) that is independent of the unknown density g and that satises

lim n→∞ E(Ψ n (β, U )) = E[Z/(1 + βZ)].
The paper is organized as follows. Section 2 presents the model and the assumptions. In Sections 3 and 4 we present the main estimator and its asymptotic properties. In Section 5 we extend our estimation procedure and propose a second estimator. In Section 6 we give detailed examples. The proofs are given in Sections 7 and 8.

Model, assumptions and notations

Notation: For two complex-valued functions u and v in L 2 (R)∩L 1 (R), we dene u * (x) = e itx u(t)dt, u v(x) = u(y)v(x -y)dy, and < u, v >= u(x)v(x)dx with z the conjugate of a complex number z. We also 

use u 1 = |u(x)|dx, u 2 2 = |u(x)| 2 dx, u ∞ = sup x∈R |u(x)|, and for θ ∈ R d , θ 2 2 = d k=1 θ 2 k . For a map (θ, u) → ϕ θ (u) from Θ × R to R,
θ (•) = ϕ (1) θ,j (•) j with ϕ (1) θ,j (•) = ∂ϕ θ (•) ∂θ j for j ∈ {1, • • • , m + p} and ϕ (2) θ (•) = ϕ (2) θ,j,k (•) j,k with ϕ (2) θ,j,k (•) = ∂ 2 ϕ θ (•) ∂θ j θ k , for j, k ∈ {1, • • • , m + p}.
Throughout the paper P, E and Var denote respectively the probability, the expectation, and the variance when the underlying and unknown true parameters are θ 0 and g. Finally, a -denotes the negative part of a, which is equal to a if a ≤ 0 and 0 otherwise.

Model assumptions:

For all γ ∈ Γ, η γ is nonnegative and

τ 0 η 2 γ (t)dt < ∞. (A 1 )
For all β ∈ B and for all g ∈ G, if Z has density g, f β (Z) ≥ 0.

(A 2 )
Conditional on Z and U, the failure time T and the censoring time C are independent. (A 3 )

The conditional distribution of the failure time T given (Z, U ) does not depend on U.

(A 4 )
The conditional distribution of the censoring time C given (Z, U ) does not depend on U.

(A 5 )
These assumptions are common in most of the frameworks dealing with survival data analysis and covariates measured with error (see [START_REF] Andersen | Statistical models based on counting processes[END_REF][START_REF] Gong | Censored survival data with misclassied covariates: A case study of breast-cancer mortality[END_REF][START_REF] Prentice | Covariate measurement errors and parameter estimation in a failure time regression model[END_REF][START_REF] Prentice | Asymptotic distribution theory for Cox-type regression models with general relative risk form[END_REF][START_REF] Tsiatis | Modeling the relationship of survival to longitudinal data measured with error. Application to survival and cd4 counts in patients with aids[END_REF]). Concerning (A 2 ), as is mentioned in [START_REF] Prentice | Asymptotic distribution theory for Cox-type regression models with general relative risk form[END_REF], a sucient requirement would be to assume that f β (z) ≥ 0 for all z ∈ R. But this condition is too strong in general, and does not allow one to consider regression forms of particular interest, such as linear form f β (z) = 1 + βz. We only assume in (A 2 ) that f β (z) ≥ 0 for all z in the support of the density g of the covariate Z and for all β ∈ B.

Assumption (A 3 ) states that a general censorship model is considered. Assumption ( A 4 ) and (A 5 ) state that both the failure time and the censoring time are independent of the observed covariate when the observed and true covariates are both given, i.e. the measurement error is not prognostic.

Smoothness assumptions

The functions β → f β and γ → η γ admit continuous derivatives up to order 3 (A 6 )

with respect to β and γ respectively.

We denote by S

θ 0 ,g (θ) and S

(2) θ 0 ,g (θ) the rst and second derivatives of S θ 0 ,g (θ) with respect to θ. For all t in [0, τ ], let S

(2) θ 0 ,g (θ, t) be the second derivative of S θ 0 ,g when the integral is taken over [0, t] in (1.2), with the convention that S

(2) 

θ 0 ,g (θ) = S (2) θ 0 ,g (θ, τ ).

Identiability and moment assumptions

γ 0 ,j | 3 (t)η γ 0 (t)dt < ∞. (A 9 ) For γ ∈ Γ and j = 1, • • • , p, E( τ 0 η γ (t)dN (t)) 2 < ∞ and E( τ 0 η (1) 
γ 0 ,j (t)dN (t)) 2 < ∞. (A 10 ) sup g∈G f β 0 g 2 2 ≤ C 1 (f β 0 ), sup g∈G f 2 β 0 g 2 2 ≤ C 2 (f 2 β 0 ). (A 11 )
The function W is such that for all β ∈ B and g

∈ G, E[(f 2 β W )(Z)] is nite . (A 12 )
The function W is such that for all g ∈ G and for j = 1,

• • • , m, E[(f 6 β 0 W )(Z)] (A 13 )
and

E[(|f (1) 
β 0 ,j | 3 |f β 0 W )(Z)|] are nite.
We can use the equality (1.2), to see see that S θ 0 ,g (θ) is minimum at θ = θ 0 . Assumptions (A 7 ) and (A 8 )

ensure that θ 0 is the unique minimum. The density g and the parameter β vary over sets G and B, such that (A 2 ), (A 7 ), (A 8 ), (A 10 ) and (A 11 ) hold.

Estimation procedure

If the Z i 's were observed, S θ 0 ,g (θ) would be estimated by

Sn (θ) = - 2 n n i=1 (f β W )(Z i ) τ 0 η γ (t)dN i (t) + 1 n n i=1 (f 2 β W )(Z i ) τ 0 η 2 γ (t)Y i (t)dt.
Since the Z i 's are not observable we estimate S θ 0 ,g by

S n,1 (θ) = 1 n n i=1 (f 2 β W ) K n,Cn (U i ) τ 0 η 2 γ (t)Y i (t)dt -2(f β W ) K n,Cn (U i ) τ 0 η γ (t)dN i (t)
where

K n,Cn (•) = C n K n (C n •
) is a deconvolution kernel dened through a kernel K, f ε and a sequence C n via:

K * n (t) = K * (t)/f * ε (-tC n ). The kernel K is such that K * is compactly supported satisfying |1 -K * (t)| ≤ 1 I |t|≥1 , K(t)dt = 1, and C n → ∞ as n → ∞.
By construction, the deconvolution kernel K n,Cn also satises

K * n,Cn (t) = K * Cn (t)/f * ε (-t) = K * (t/C n )/f * ε (t).
For the construction of S n,1 (θ) we require that the density f ε belongs to

L 2 (R) ∩ L ∞ (R) and for all x ∈ R, f * ε (x) = 0. (N 1 )
The key ideas for this construction are the following: For any integrable function Φ,

lim n→∞ n -1 n i=1 Φ K n,Cn (U i ) = E(Φ(Z)). Hence we estimate E(Φ(Z)) by n -1 n i=1 Φ K n,Cn (U i ) instead of n -1 n i=1 Φ(Z i )
which is not available. Similarly, for any ψ ∈ L 1 (R) and Φ such that E(Φ(Z)) < ∞,

lim n→∞ n -1 n i=1 ψ(X i )Φ K n,Cn (U i ) = E(ψ(X)Φ(Z)).
Indeed, if f X,U,Z is the joint distribution of (X, U, Z), Assumptions (A 4 )-(A 5 ) and the independence between The weight function W is chosen such that

Z and ε imply that f U = g f ε and f X,U,Z (x, u, z) = f X,Z (x, z)f ε (u -z).
sup β∈B (W f β ), W and sup β∈B (W f 2 β ) belong to L 1 (R). (A 14 ) sup β∈B (W f (1) 
β ) and sup

β∈B (W f β f (1) β ) belong to L 1 (R). (A 15 )
We say that a function ψ ∈ L 1 (R) satises (4.2) if for a sequence C n we have

min q=1,2 ψ * (K * Cn -1) 2 q +n -1 min q=1,2 ψ * K * Cn f * ε 2 q = o(1). (4.2) 
We note that for any integrable function ψ, one can always nd C n such that (4.2) hold. 1) For all the sequences C n such that W f β and W f 2 β and their rst derivatives with respect to β satisfy (4.2),

E( θ 1 (C n ) -θ 0 2 2 ) = o(1)
as n → ∞, and

θ 1 = θ 1 (C n ) is consistent. 2)
Assume moreover that for all β ∈ B, f β W and f 2 β W and their derivatives up to order 3 with respect to β satisfy (4.2). Then

E( θ 1 -θ 0 2 2 ) = O(ϕ 2 n ) with ϕ 2 n = (ϕ n,j ) 2 2 , ϕ 2 n,j = B 2 n,j (θ 0 ) + V n,j (θ 0 )/n, B 2 n,j (θ 0 ) = min{B [1] n,j (θ 0 ), B [2] n,j (θ 0 )}, V n,j (θ 0 ) = min{V [1] n,j (θ 0 ), V [2] n,j (θ 0 )}, j = 1, • • • , m where B [q] n,j (θ 0 ) = (f 2 β 0 W ) * (K * Cn -1) 2 q + (f β 0 W ) * (K * Cn -1) 2 q + f (1) 
β 0 ,j W * (K * Cn -1) 2 q + f (1) 
β 0 ,j f β 0 W * (K * Cn -1)
and

V [q] n,j (θ 0 ) = (f 2 β 0 W ) * K * Cn f * ε 2 q + (f β 0 W ) * K * Cn f * ε 2 q + f (1) β 0 ,j W * K * Cn f * ε 2 q + f (1) 
β 0 ,j f β 0 W * K * Cn f * ε 2 q .
The terms B 2 n,j and V n,j are the squared bias and variance terms, respectively. As usual, the bias is the smallest for the smoothest functions 

(W f β )(z) and ∂(f β W )(z)/∂β,
(f β W )(z)/∂β and ∂(f 2 β W 2 )(z)
/∂β as functions of z, whereas the rate for estimating γ 0 depends on the smoothness properties of (f β W )(z) and

(f 2 β W )(z)
as functions of z. In both cases, the smoothness properties of η γ , as a function of t, do not inuence the rate of convergence. The parametric rate of convergence is achieved as soon as (f β W ) and (f 2 β W ) and their derivatives, as functions of z, are smoother than the error density f ε .

Sucient conditions for √ n-consistency

We say that (C 1 )-(C 3 ) hold if there exists a weight function W such that the functions (C 1 )

sup β∈B (f β W ) * /f * ε and sup β∈B (f 2 β W ) * /f * ε belong to L 1 (R) ∩ L 2 (R); the functions sup β∈B f (1) 
β W * /f * ε and sup β∈B f (1) 
β f β W * /f * ε belong to L 1 (R) ∩ L 2 (R); (C 2 ) for all β ∈ B, f (2) 
β W * /f * ε and ∂ 2 (f 2 β W ) ∂β 2 * /f * ε belong to L 1 (R) ∩ L 2 (R). (C 3 )
Theorem 4.2. Under the assumptions of Theorem 4.1 and under (C 1 )-(C 3 ), one can nd C n such that

θ 1 = θ 1 (C n ) dened by (3.1) is a √ n-consistent estimator of θ 0 . Moreover √ n( θ 1 -θ 0 ) L -→ n→∞ N (0, Σ 1 ),
where

Σ 1 equals E -2 τ 0 ∂ 2 ((f β W )(Z)η γ (s)) ∂θ 2 | θ=θ 0 dN (s) + τ 0 ∂ 2 ((f 2 β W )(Z)η 2 γ (s)) ∂θ 2 | θ=θ 0 Y (s)ds -1 × Σ 0,1 × E -2 τ 0 ∂ 2 ((f β W )(Z)η γ (s)) ∂θ 2 | θ=θ 0 dN (s) + τ 0 ∂ 2 ((f 2 β W )(Z)η 2 γ (s)) ∂θ 2 | θ=θ 0 Y (s)ds -1 with Σ 0,1 = E -2 τ 0 ∂(R β,fε,1 (U )η γ (s)) ∂θ | θ=θ 0 dN (s) + τ 0 ∂(R β,fε,2 (U )η 2 γ (s)) ∂θ | θ=θ 0 Y (s)ds × -2 τ 0 ∂(R β,fε,1 (U )η γ (s)) ∂θ | θ=θ 0 dN (s) + τ 0 ∂(R β,fε,2 (U )η 2 γ (s)) ∂θ | θ=θ 0 Y (s)ds    , R β,fε,1 (U ) = (2π) -1 (W f β ) * (t) e -itU f * ε (t) dt and R β,fε,2 (U ) = (2π) -1 (W f 2 β ) * (t) e -itU f * ε (t) dt.
Conditions (C 1 )-(C 3 ) ensure the existence of the functions R β,fε,j for j = 1, 2 and hence the √ n-consistency.

Nevertheless it is not always possible to nd W such that (C 1 )-(C 3 ) hold.

Rates for general smoothness classes

We now specify the asymptotic properties of θ 1 when f * ε and (W f β ) * satisfy assumptions (N 2 ) and (R 1 )

given below.

There exist positive constants C(f ε ), C(f ε ), and nonnegative δ, α, u 0 and ρ ≤ 2

(N 2 ) such that C(f ε ) ≤ |f * ε (u)| |u| α exp (δ |u| ρ ) ≤ C(f ε ) for all |u| ≥ u 0 .
When ρ = 0 = δ in (N 2 ), with the convention that δ = 0 if and only if ρ = 0, f ε is called " ordinary smooth ".

An example of an ordinary smooth density is the double exponential (also called Laplace) distribution with ρ = 0 = δ and α = 2. The square integrability of f ε in (N 1 ) requires that α > 1/2 when ρ = 0 in (N 2 ). When δ > 0 and ρ > 0, f ε is innitely dierentiable and is called " super smooth ". The standard examples for super smooth densities are the Gaussian and Cauchy distributions. The smoothness of f β W is described by :

A function f satises (R 1 ) if f belongs to L 1 (R ∩ L 2 (R) and if there exist a, d, (R 1 ) u 0 , r ≥ 0 such that 0 < L(f ) ≤ |f * (u)||u| a exp(d|u| r ) ≤ L(f ) < ∞ for all |u| ≥ u 0 ,
with the convention that d = 0 if and only if r = 0.

Corollary 4.1. Under the assumptions of Theorem 4.1, assume that f ε satises (N 2 ) and that for all β ∈ B,

(f β W ), (f 2 β W )
and their derivatives with respect to β j , j = 1, . . . , m up to order 3, satisfy (R 1 ). Consider the sequences C n such that

C (2α-2a+1-ρ)+(1-ρ)- n exp{-2dC r n + 2δC ρ n }/n = o(1) as n → +∞. (4.3)
Then θ 1 is a consistent estimator of θ 0 and E( θ 1 -θ 0 2

2 ) = O(ϕ 2 n ) with ϕ 2 n as in Table 1.

fε ρ = 0 in (N 2 ) ρ > 0 in (N 2 )
ordinary smooth super smooth

W f β 0 d = r = 0 in (R 1 )Sobolev a < α + 1/2 n -2a-1 2α a ≥ α + 1/2 n -1 (log n) -2a-1 ρ r > 0 in (R 1 ) C ∞ n -1 r < ρ (log n) A(a,r,ρ) exp  -2d " log n 2δ " r/ρ ff r = ρ d < δ (log n) A(a,r,ρ)+2αd/(δr) n -d/δ d = δ, a < α + 1/2 (log n) (2α-2a+1)/r n -1 d = δ, a ≥ α + 1/2 n -1 d > δ n -1 r > ρ n -1
where A(a, r, ρ) = (-2a + 1 -r + (1 -r) -)/ρ. Our estimation procedure requires the estimation of the two following linear functionals of the density g,

E[ τ 0 (f β W )(Z)dN (t)] and E[ τ 0 (f 2 β W )(Z)Y (t)dt]
. We now study the particular cases in which these linear functionals can be directly estimated without using a kernel deconvolution plug-in.

We say that conditions (C 4 )-(C 6 ) hold if there exist a weight function W and two functions Φ β,fε,1 and Φ β,fε,2 not depending on g, such that for all β ∈ B and for all g

E τ 0 (f β W )(Z)dN (t) = E τ 0 Φ β,fε,1 (U )dN (t) , E τ 0 (f 2 β W )(Z)Y (t)dt = E τ 0 Φ β,fε,2 (U )Y (t)dt ; (C 4 ) for k = 0, 1, 2 and for j = 1, 2, E[sup β∈B Φ (k) β,fε,j (U ) 2 ] < ∞; (C 5 )
for j = 1, 2 and for all β ∈ B, E Φ

β,fε,j (U ) 2 

S n,2 (θ) = - 2 n n i=1 τ 0 Φ β,f ε,1 (U i )η γ (t)dN i (t) + 1 n n i=1 τ 0 Φ β,f ε,2 (U i )η 2 γ (t)Y i (t)dt. (5.1)
The main diculty for nding such functions Φ β,fε,1 and Φ β,fε,2 lies in the constraint that they must not depend on the unknown density g. We refer to Section 5.2 for the construction of such functions. 

estimator of θ 0 . Moreover √ n( θ 2 -θ 0 ) L -→ n→∞ N (0, Σ 2 )
, where Σ 2 is equal to

E -2 τ 0 ∂ 2 (Φ β,fε,1 (U )η γ (s)) ∂θ 2 | θ=θ 0 dN (s) + τ 0 ∂ 2 (Φ β,fε,2 (U )η 2 γ (s)) ∂θ 2 | θ=θ 0 Y (s)ds -1 × Σ 0,2 E -2 τ 0 ∂ 2 (Φ β,fε,1 (U )η γ (s)) ∂θ 2 | θ=θ 0 dN (s) + τ 0 ∂ 2 (Φ β,fε,2 (U )η 2 γ (s)) ∂θ 2 | θ=θ 0 Y (s)ds -1 with Σ 0,2 = E -2 τ 0 ∂(Φ β,fε,1 (U )η γ (s)) ∂θ | θ=θ 0 dN (s) + τ 0 ∂(Φ β,fε,2 (U )η 2 γ (s)) ∂θ | θ=θ 0 Y (s)ds × -2 τ 0 ∂(Φ β,fε,1 (U )η γ (s)) ∂θ | θ=θ 0 dN (s) + τ 0 ∂(Φ β,fε,2 (U )η 2 γ (s)) ∂θ
| θ=θ 0 Y (s)ds .

Comments:

Let us briey compare conditions (C 1 )-(C 3 ) and

(C 4 )-(C 6 ). It is noteworthy that conditions (C 4 )-(C 6 ) are more general. For instance, condition (C 4 ) does not require that f β W , f 2 β W belong to L 1 (R) (as for instance in the Cox Model with W ≡ 1). Moreover (C 1 ) implies (C 4 ), with Φ β,fε,j = R β,fε,j . Indeed, under (C 1 )-(C 3 ), if we dene Φ * β,fε,1 = (W f β ) * /f * ε and Φ * β,fε,2 = (W f 2 β ) * /f * ε , we have E[Y (t)Φ β,fε,2 (U )] = 1 I x≥t f X,Z (x, z) 1 2π (W f 2 β ) * (s) f * ε (s) e -isz f * ε (s)ds dx dz = E[Y (t)(W f 2 β )(Z)].
Consequently,

E τ 0 Φ β,fε,2 (U )η 2 γ (t)Y (t)dt = E τ 0 (f 2 β W )(Z)η 2 γ (t)dt ,
and analogously

E τ 0 Φ β,fε,1 (U )η γ (t)dN (t) = E τ 0 (f β W )(Z)η γ (t)dN (t) . Hence Condition (C 4 ) holds and Σ 0,1 = Σ 0,2 with Σ 0,1 dened in Theorem 4.2.
The choice of W is very important, as illustrated in Example 4 where we consider

f β (z) = 1 -β + β/(1 + z 2 )
and f ε is the Gaussian density. In this case, when W ≡ 1 it seems impossible to nd a function Φ β,fε,2

such that E[Y (t)Φ β,fε,2 (U )] = E[Y (t)f 2 β (Z)]. Whereas (C 1 )-(C 3 ) and (C 4 )-(C 6 ) hold by taking W (z) = (1 + z 2 ) 4 exp(-z 2 /(4δ))
where δ is as (N 2 ).

To summarize: θ 1 always exists and is consistent under mild regularity conditions, though θ 1 's rate of convergence is not always √ n. By judicious choice of W the parametric rate of convergence can be achieved in some cases. In contrast, the computation of θ 2 is more straightforward than the computation of θ 1 since it does not require deconvolution estimators, but θ 2 does not always exist.

Case without errors

If the covariates are measured without errors, that is U i = Z i and ε i = 0 for i = 1, • • • , n, then the procedure still works by taking f * ε ≡ 1 in the previous formulae. More precisely, in this context S n,1 (θ) becomes

S we n,1 (θ) = 1 n n i=1 (f 2 β W ) K Cn (U i ) τ 0 η 2 γ (t)Y i (t)dt -2(f β W ) K Cn (U i ) τ 0 η γ (t)dN i (t)
where

K Cn (•) = C n K(C n •), K * Cn (t) = K * (t/C n )
and the kernel K is as in Section 3. Under the previous assumptions, easy calculations show that S we n,1 (θ) converges to S θ 0 ,g (θ) for all θ ∈ Θ since for any integrable function Φ we have

n -1 n i=1 Φ K Cn (U i ) = n -1 n i=1 Φ K Cn (Z i ) P -→ n→∞ E (Φ(Z) .
In this context θ we 1 = arg min θ∈Θ S we n,1 (θ) is a consistent estimator of θ 0 . Moreover it is easy to nd W such that conditions (C 1 )-(C 3 ) hold when f * ε ≡ 1. It follows that θ we 1 is a √ n-consistent and asymptotically Gaussian estimator of θ 0 . We can analogously dene θ we 2 and show that it is a √ n-consistent and asymptotically Gaussian estimator of θ 0 .

Examples

In this section, we illustrate the asymptotic properties of θ 1 and θ 2 for various relative risks. In all of these examples, K * (t) = 1 I |t|≤1 , the baseline function has a nonspecied parametric form and f ε satises (N 1 ) and

(N 2 ) with 0 ≤ ρ ≤ 2.
The rst example considers the Cox model. We show that our estimation procedure, based on a nonparametric deconvolution method, provides a √ n-consistent and asymptotically Gaussian estimator of β 0 . The aim of this example is to show that we recover the √ n-consistency in a slightly dierent model (parametric baseline function), and using estimators quite dierent from the ones proposed by [START_REF] Augustin | An exact corrected log-likelihood function for Cox's proportional hazards model under measurement error and some extensions[END_REF][START_REF] Kong | Consistent estimation in Cox proportional hazards model with covariate measurement errors[END_REF][START_REF] Nakamura | Proportional hazards model with covariates subject to measurement error[END_REF]. The other examples show that our estimation procedure provides consistent estimators, and even sometimes √ n-consistent estimators for general parametric hazard functions.

Example 1. Exponential relative risk (Cox model).

Let f β be of the form f β (z) = exp(βz) and assume that E(exp(βU

)) < ∞ for all β in B. Let W (z) =
exp{-z 2 /(4δ)} where δ is as in (N 2 ). Then conditions (C 1 )-(C 3 ) as well as conditions (C 4 )-(C 6 ) are satised.

Hence the estimators θ 1 and θ 2 are √ n-consistent and asymptotically Gaussian estimators of θ 0 , with the same asymptotic variance.

One could also choose W ≡ 1 and use the independence between Z and ε to nd that and their derivatives with respect to β innitely dierentiable functions in z. This choice of W ensures the √ n-consistency of θ 1 whenever f ε satises (N 2 ) with 0 < ρ < 1. Even if ρ ≥ 1, the rate of θ 1 is much faster with our choice of W than it would be for W ≡ 1. Let us specify the choice of W . Set

E[exp(βZ)] = E[exp(βU )]/E[exp(βε)]. Consequently, if we choose Φ β,fε,1 (U ) = exp(2βU )/E[exp(2βε)] and Φ β,fε,2 (U ) = exp(βU )/E[exp(βε)] we get that E[Φ β,fε,1 (U )] = E[f 2 β (Z)] and also that E[Y (t)Φ β,fε,2 (U )] = E[Y (t)f β (Z)].
Ψ A,B,R (z) = exp -(z -A) -R (B -z) -R I [A,B] (z), (6.1) 
where -∞ < A < B < ∞ are xed and R > 0. According to [START_REF] Fedoryuk | Asimptotika: integraly i ryady. Asymptotics: Integrals and Series[END_REF][START_REF] Lepski | Adaptive minimax estimation of innitely dierentiable functions[END_REF], p. 346, Theorem 7.3,

|Ψ * A,B,R (u)| ≤ c exp(-C|u| R/(R+1)
), as |u| → ∞ and c, C are positive constants. We propose to take W equal to Ψ 0,100,R or Ψ -100,0,R or their sum. This choice of W ensures that f β W , f 2 β W and their derivatives with respect to β up to order 3 satisfy (R 1 ) with d > 0 and r = R/(R + 1) closer to 1 as R comes larger.

If f ε satises (N 2 ) with 0 ≤ ρ < 1, we choose R large enough such that r = R/(R + 1) > ρ. Hence, conditions (C 1 )-(C 3 ) as well as conditions (C 4 )-(C 6 ) are satised. Consequently, the estimators θ 1 and θ 2 are √ n-consistent and asymptotically Gaussian estimators of θ 0 , with the same asymptotic variance.

If ρ ≥ 1, for this choice of W , the functions W f β and W f 2 β and their derivatives with respect to β up to order 3, satisfy (R 1 ) with r = R/(R + 1). Hence, according to Table 1,

E θ 1 -θ 0 2 2 = O(1) log n 1-2a-r ρ exp{-2d(log n/(2δ)) r/ρ }.
Example 6. Irregular relative risk. Consider f β with f β (z) = 1 + β 2 a -+ β 1 z + β 2 (z -a)1 I z≥a with β and g in B and G such that f β (Z) is nonnegative for Z ∼ g. For example G could consist of all densities with support included in [0, +∞) and B could be a compact set included in [0, +∞). This relative risk is C ∞ except at point a where it is not dierentiable. We suggest to use the smoothing weight function in (6.1) as follows. For R > 0, let W (z) = Ψ a-100,a,R (z). In that way, W f β and W f 2 β and their derivatives with respect to β satisfy (R 1 ) with 0 < r = R/(R + 1) < 1 as close to 1 as needed.

If f ε satises (N 2 ) with 0 ≤ ρ < 1, then we take R large enough such that r = R/(R + 1) > ρ and thus conditions (C 1 )-(C 3 ) as well as conditions (C 4 )-(C 6 ) are satised. Consequently, the estimators θ 1 and θ 2 are √ n-consistent and asymptotically Gaussian estimators of θ 0 , with the same asymptotic variance.

If ρ ≥ 1 in (N 2 ), the functions W f β and W f 2 β and their derivatives with respect to β up to order 3, satisfy (R 1 ) with 0 < r = R/(R + 1) < 1 as close to 1 as needed. According to Table 1

E θ 1 -θ 0 2 2 = O(1) log n 1-2a-r ρ exp{-2d(log n/(2δ)) r/ρ }.
Comments on Examples 5 and 6.

In these examples, f β W satises (R 1 ) with r < 1. Hence θ 1 is √ n-consistent provided that f ε is ordinary smooth or super smooth with an exponent ρ < 1. For example, when the ε is Gaussian, it seems impossible to nd W such that (W f β ) * /f * ε belongs to L 1 (R). This comes from the fact that for these relative risks, the least square criterion S θ 0 ,g (θ) cannot be estimated with the parametric rate of convergence and hence probably cannot provide a √ n-consistent estimator of θ 0 . Nevertheless, even in cases where √ n-consistency does not seem achievable, the resulting rate of the risk of θ 1 is clearly much faster than the predicted logarithmic rate that we could have with W ≡ 1 (see Table 1).

In survival data analysis the relative risks f β are often of the form f β (z) = f (βz) (see for instance [START_REF] Prentice | Asymptotic distribution theory for Cox-type regression models with general relative risk form[END_REF]). Let us present some examples of this type.

Example 7. Polynomial relative risk 2. Let f β be of the form f (βz) with f (z) = 1 + m k=1 a k z k with known a k 's and with β and g in B and G such that for Z ∼ g, f (βZ) is nonnegative. For example G could consist of all densities having support included in R + and B could be a compact set included in (R + ) m . Let W (z) = exp{-z 2 /(4δ)} where δ is as in (N 2 ). Then conditions (C 1 )-(C 3 ) as well as conditions (C 4 )-(C 6 ) are satised. Hence the estimators θ 1 and θ 2 are √ n-consistent and asymptotically Gaussian estimators of θ 0 , with the same asymptotic variance.

Example 8. Cauchy relative risk 2. Consider f β of the form f (βz) with f (z) = 1/(1 + z 2 ). in this example G could consist of all densities and B could be a compact set of R m . Let W (z) = (1 + z 2 ) 4 exp{-z 2 /(4δ)} with δ as in (N 2 ) or W ≡ 1. With these choices of W , the functions f β W , f 2 β W and their derivatives with respect to β up to order 3 satisfy (R 1 ) with a = 0, d = 1/β and r = 1. According to Table 1

, if f ε satises (N 2 )
with 0 ≤ ρ < 1, then θ 1 and θ 2 are √ n-consistent and asymptotically Gaussian estimators of θ 0 , with the same asymptotic variance. If f ε satises (N 2 ) with ρ ≥ 1, then θ 1 is consistent with a rate that depends on β 0 . Let us be more precise. The proof of Theorem 4.1 implies that the terms B 2 n,j (θ 0 ) are of order exp(-2C n /β 0 ) and the terms V n,j (θ 0 )/n are of order C 2α+(1-ρ)+(1-ρ-) n exp(-2C n /β 0 + 2δC ρ n )/n, for j = 1, . . . , m + p.

Choose C * n that provides the best compromise between the squared bias and the variance terms. It is independent of β 0 and is given by

C * n = (log n)/(2δ) -(2α + (1 -ρ) -)/(2δρ) log log n/(2δ) 1/ρ .
This choice yields the rate

ϕ 2 n = max n -1 , exp - 2 β 0 log n 2δ - 2α + (1 -ρ) - 2δρ log log n 2δ 1/ρ (log n) (1-ρ)/ρ . In other words, if ρ = 1, then E θ 1 -θ 0 2 2 = O(1) max n -1 , n -1/(β 0 δ) (log n) 2α/(β 0 δ) and if ρ > 1, then E θ 1 -θ 0 2 2 = O(1) exp -2(β 0 ) -1 log n/(2δ) 1/ρ .

Proofs

From now C denotes any numerical constant and C A indicates that it depends on A. We point out that the value of C may vary from a line to the other. 1-For all θ ∈ Θ,

E[S n,1 (θ) -S θ 0 ,g (θ)] 2 = o(1) as n → ∞, with S θ 0 ,g (θ) dened in (1.2), 2-If ω(n, ρ) denotes ω(n, ρ) = sup |S n,1 (θ) -S n,1 (θ )| : θ -θ 2 ≤ ρ , there exists ρ k going to 0, such that E[ω(n, ρ k )] 2 = O(ρ 2 k ) as n → ∞ ∀k ∈ N.
Proof of 1-We will break

E[S n,1 (θ) -S θ 0 ,g (θ)] 2 into its corresponding bias |E[S n,1 (θ)] -S θ 0 ,g (θ)| 2 and variance E[{S n,1 (θ) -E[S n,1 (θ)]} 2 ]
components and then show each term is asymptotically o p (1). For the study of both terms, we repeatedly use the two following versions of Hölder's Inequality

| < ϕ 1 , ϕ 2 > | ≤ ϕ 1 2 ϕ 2 2 , (7.1) 
and

| < ϕ 1 , ϕ 2 > | ≤ ϕ 1 ∞ ϕ 2 1 . (7.2)
Study of the bias.

Under Assumptions (A 1 )-(A 5 ) and using that (Z i , U i , N i (s), D i , Y i (s)) i=1,••• ,n are independent, the intensity of the censored process N i (t) = 1 I Xi≤t,Di=1 with respect to

F t = σ{Z i , U i , N i (s), 1 I Xi≥s , 0 ≤ s ≤ t ≤ τ, i = 1, • • • , n} is equal to λ i (t, θ 0 , Z i ) = η γ 0 (t)Y i (t)f β 0 (Z i ). (7.3)
We use (7.3) and Lemma 8.1 to write

E S n,1 (θ) = τ 0 E (f 2 β W ) K Cn (Z)η 2 γ (t)Y (t) -2(f β W ) K Cn (Z)η γ (t)f β 0 (Z)η γ 0 (t)Y (t) dt,
and hence

E S n,1 (θ) -S θ 0 ,g (θ) = τ 0 η 2 γ (t)1 I x≥t f X,Z (x, •), (f 2 β W ) K Cn -f 2 β W dx dt -2 τ 0 η γ 0 (t)η γ (t)1 I x≥t f β 0 (•)f X,Z (x, •), (f β W ) K Cn -f β W dx dt.
If we apply (7.1) we obtain the rst bound

E(S n,1 (θ)) -S θ 0 ,g (θ) ≤ τ 0 η 2 γ (t)dt f X,Z 2 (f 2 β W ) K Cn -(f 2 β W ) 2 + 2 τ 0 η γ (t)η γ 0 (t)dt f β 0 (•)f X,Z (x, •) 2 dx (f β W ) K Cn -f β W 2 .
Now, Parseval's formula gives

E(S n,1 (θ)) -S θ 0 ,g (θ) ≤ (2π) -1 τ 0 η 2 γ (t)dt f X,Z 2 (f 2 β W ) * (K * Cn -1) 2 +(π) -1 τ 0 η γ (t)η γ 0 (t)dt f β 0 (•)f X,Z (x, •) 2 dx (f β W ) * (K * Cn -1) 2
that is

E(S n,1 (θ)) -S θ 0 ,g (θ) ≤ C γ,γ 0 ,f β 0 (f 2 β W ) * (K * Cn -1) 2 + (f β W ) * (K * Cn -1) 2 . (7.4) 
We apply (7.2), to get that E(S n,1 (θ)) -S θ 0 ,g (θ) is also bounded by

(f 2 β W ) K Cn -(f 2 β W ) ∞ f X,Z (x, •) 1 dx τ 0 η 2 γ (t)dt + (f β W ) K Cn -(f β W ) ∞ 2 f β 0 (•)f X,Z (x, •) 1 dx τ 0 η γ (t)η γ 0 (t)dt
which is also less than

(f 2 β W ) * (K * Cn -1) 1 (2π) -1 f X,Z 1 τ 0 η 2 γ (t)dt + (f β W ) * (K * Cn -1) 1 π -1 f β 0 (•)f X,Z (x, •) 1 dx τ 0 η γ (t)f β 0 η γ 0 (t)dt .
This implies

E(S n,1 (θ)) -S θ 0 ,g (θ) ≤ C γ,γ 0 ,f β 0 (f β W ) * (K * Cn -1) 1 + (f 2 β W ) * (K * Cn -1) 1 . (7.5)
If we combine bounds (7.4) and (7.5) we get

E(S n,1 (θ)) -S θ 0 ,g (θ) ≤ C γ,γ 0 ,f β 0 × min (f β W ) * (K * Cn -1) 2 + (f 2 β W ) * (K * Cn -1) 2 , (f β W ) * (K * Cn -1) 1 + (f 2 β W ) * (K * Cn -1) 1 . (7.6)
We apply Lemma 8.2 and obtain E(S n,1 (θ)) -S θ 0 ,g (θ)

2 = O C -2a+1-r+(1-r)- n exp(-2dC r n ) = o(1).
Study of the variance. Since we consider independent and identically distributed random variables, we obtain the variance Var[S n,1 (θ)] = (2 + o(1))n -1 (A 1 + A 2 ), with

A 1 = E (f 2 β W ) K n,Cn (U ) τ 0 η 2 γ (t)Y (t)dt 2 , A 2 = 4E (f β W ) K n,Cn (U ) τ 0 η γ (t)dN (t) 2 .
We apply (7.2) and Lemma 8.1 to obtain that A 1 is less than

τ 0 η 2 γ (t)dt 2 f X,Z (x, •) f ε , ((f 2 β W ) K n,Cn ) 2 dx ≤ τ 0 η 2 γ (t)dt 2 f X,Z (x, •) f ε ∞ dx (f 2 β W ) K n,Cn 2 2
and hence

A 1 ≤ (2π) -1 τ 0 η 2 γ (t)dt 2 f ε ∞ f X,Z 1 (f 2 β W ) * K * Cn f * ε 2 2 .
We now give a rst bound for A 2 . If we denote ϕ(X, Z) = τ 0 η γ (t)dN (t) and apply Lemma 8.1 and (7.2), we obtain that A 2 is bounded by

4 (ϕ 2 (x, •)f X,Z (x, •)) f ε , ((f β W ) K n,Cn ) 2 dx ≤ 4 (ϕ 2 (x, •)f X,Z (x, •)) f ε ∞ dx (f β W ) K n,Cn 2 2 . 
Since

ϕ 2 (x, •)f X,Z (x, •) 1 dx = E τ 0 η γ (t)dN (t) 2 , we get ϕ 2 (x, •)f X,Z (x, •)) f ε ∞ dx ≤ f ε ∞ E τ 0 η γ (t)dN (t) 2 .
Consequently,

A 2 ≤ 4(2π) -1 E τ 0 η γ (t)dN (t) 2 f ε ∞ (f β W ) * K * Cn f * ε 2 2 ,
and

Var[S n,1 (θ)] ≤ C θ 0 , fε ∞ n -1 (f β W ) * K * Cn f * ε 2 2 + (f 2 β W ) * K * Cn f * ε 2 2 . (7.7)
We apply (7.2) and obtain that A 1 is also less than

τ 0 η 2 γ (t)dt 2 f X,Z (x, •) f ε , ((f 2 β W ) K n,Cn ) 2 dx ≤ τ 0 η 2 γ (t)dt 2 f X,Z (x, •) 1 dx (f 2 β W ) K n,Cn 2 ∞ .
Similarly, A 2 is less than

4 (ϕ 2 (x, •)f X,Z (x, •)) f ε , ((f β W ) K n,Cn ) 2 dx ≤ 4 (ϕ 2 (x, •)f X,Z (x, •)) f ε 1 dx (f β W ) K n,Cn 2 ∞
where ϕ(X, Z) is still dened by ϕ(X, Z) = τ 0 η γ (t)dN (t). Once again, since

(ϕ 2 (x, •)f X,Z (x, •)) f ε 1 dx = E τ 0 η γ (t)dN (t) 2 , Var[S n,1 (θ)] ≤ C θ 0 n -1 (f β W ) * K * Cn f * ε 2 1 + (f 2 β W ) * K * Cn f * ε 2 1 . (7.8)
We combine (7.7) and (7.8) and have

Var[S n,1 (θ)] ≤ C θ 0 , fε ∞ n min (f β W ) * K * Cn f * ε 2 2 + (f 2 β W ) * K * Cn f * ε 2 2 , (f β W ) * K * Cn f * ε 2 1 + (f 2 β W ) * K * Cn f * ε 2 1 . (7.9)
We apply Lemma 8.2 and obtain Var[S n,1

(θ)] = O C 2(α-a)+1-ρ+(1-ρ)- n exp(-2dC r n + 2δC ρ n )/n , and hence under (4.3), E S n,1 (θ) -S θ 0 ,g (θ) 2 = o(1), as n → ∞. Proof of 2-By denition S n,1 (θ) -S n,1 (θ ) is equal to - 2 n τ 0 (f β W ) K n,Cn (U i )η γ (t) -(f β W ) K n,Cn (U i )η γ (t) dN i (t) + 1 n τ 0 (f 2 β W ) K n,Cn (U i )η 2 γ (t) -(f 2 β W ) K n,Cn (U i )η 2 γ (t) Y i (t)dt.
Under (A 6 ), (A 14 ), (A 15 ), (N 2 ) and (R 1 ), for C n satisfying (4.3), and since θ -θ 2 ≤ ρ k , we get E(|S n,1 (θ)-

S n,1 (θ )| 2 ) = O(ρ 2 
k ). Hence 2follows. 

n,1 (θ) and S

n,1 (θ) the rst and second derivatives of S n,1 (θ) with respect to θ. We use classical

Taylor expansion and the consistency of θ 1 to get 0 = S

n,1 ( θ 1 ) = S

n,1 (θ 0 ) + S

n,1 (θ 0 )( θ 1 -θ 0 ) + R n ( θ 1 -θ 0 ), with R n dened by R n = 1 0 [S (2) 
n,1

(θ 0 + s( θ 1 -θ 0 )) -S (2) 
n,1 (θ 0 )]ds.

This implies

θ 1 -θ 0 = -[S (2) 
n,1

(θ 0 ) + R n ] -1 S (1) 
n,1 (θ 0 ).

Consequently, we have to verify the four following points

i) E S (1) 
n,1 (θ 0 )) -S

θ 0 ,g (θ 0 ) S (1) 
n,1 (θ 0 )) -S

θ 0 ,g (θ 0 ) = O[ϕ n ϕ n ], with ϕ n dened in Theorem 4.1. ii) E S (1) 
n,1 (θ 0 ) -S

θ 0 ,g (θ 0 ) 2 = o(1), iii) R n dened in (7.10) satises E( R n 2 2 ) = o(1) as n → ∞. iv) E θ 1 -θ 0 2 2 ≤ C m,p E (S (2) 
n,1 (θ 0 )) S

n,1

(θ 0 ) + o(ϕ 2 n ).
The rate of convergence of θ 1 is thus given by the order of S

n,1 (θ 0 ).

Proof of i)

Once again we decompose E S

n,1 (θ 0 ))-S

θ 0 ,g (θ 0 ) S (1) 
n,1 (θ 0 ))-S

θ 0 ,g (θ 0 ) in its bias and variance components and study the order of each component. To be specic, we rst show that for j = 1,

• • • m E ∂S n,1 (θ)/(∂β j ) | θ=θ 0 2 ≤ C θ 0 × min q=1,2 (f (1) 
β 0 ,j W ) * (K * Cn -1) 2 q + (f (1) 
β 0 ,j f β 0 W ) * (K * Cn -1) 2 
q , (7.12)

and for j = 1, • • • p E ∂S n,1 (θ)/(∂γ j ) | θ=θ 0 2 ≤ C θ 0 × min q=1,2 (f β 0 W ) * (K * Cn -1) 2 q + (f 2 β 0 W ) * (K * Cn -1) 2 q . (7.13) 
Secondly, we will show that for j = 1,

• • • , m Var(∂S n,1 (θ)/(∂β j ) | θ=θ 0 ) ≤ C θ 0 ,j min q=1,2 (f 2 β 0 W ) * K * Cn f * ε 2 q + min q=1,2 (f 2 β 0 W ) * K * Cn f * ε 2 q + min q=1,2 (f (1) 
β 0 ,j W ) * K * Cn f * ε 2 q + min q=1,2 (f β 0 W ) * K * Cn f * ε 2 q . (7.14)
Study of the bias By denition S (1) n,1 (θ 0 ) is equal to

2 n n i=1     - τ 0 (f (1) 
β 0 W ) K n,Cn (U i )η γ 0 (t)dN i (t) + τ 0 (f β 0 f (1) 
β 0 W ) K n,Cn (U i )η 2 γ 0 (t)Y i (t)dt - τ 0 (f β 0 W ) K n,Cn (U i )η (1) 
γ 0 (t)dN i (t) + τ 0 (f 2 β 0 W ) K n,Cn (U i )η γ 0 (t)η (1) 
γ 0 (t)Y i (t)dt     .
Easy calculations give that E(∂S n,1 (θ)/∂β) θ=θ 0 equals

-2E τ 0 (f (1) 
β 0 W ) K n,Cn (U 1 )η γ 0 (t)dN 1 (t) + 2E τ 0 (f β 0 f (1) 
β 0 W ) K n,Cn (U 1 )η 2 γ 0 (t)Y 1 (t)dt .
Hence, Lemma 8.1 implies

E ∂S n,1 (θ)/(∂β) | θ=θ 0 = -2E f β 0 (Z 1 )(f (1) 
β 0 W ) K Cn (Z 1 ) τ 0 η 2 γ 0 (t)Y 1 (t)dt +2E (f β 0 f (1) 
β 0 W ) K Cn (Z 1 ) τ 0 η 2 γ 0 (t)Y 1 (t)dt . Since ∂S θ 0 ,g (θ)/(∂β) | θ=θ 0 is equal to -2E f β 0 (Z 1 )(f (1) 
β 0 W )(Z 1 ) τ 0 η 2 γ 0 (t)Y 1 (t)dt + 2E (f β 0 f (1) 
β 0 W )(Z 1 ) τ 0 η 2 γ 0 (t)Y 1 (t)dt = 0,
we get E ∂S n,1 (θ)/∂β| θ=θ 0 = E ∂S n,1 (θ)/∂β| θ=θ 0 -∂S θ 0 ,g (θ)/(∂β) | θ=θ 0 which also equals

-2 f β 0 (•)f X,Z (x, •), [(f (1) 
β 0 W ) K Cn -(f (1) 
β 0 W )] τ 0 η 2 γ 0 (t)1 I x≥t dt dx + 2 f X,Z (x, •), [(f β 0 f (1) 
β 0 W ) K Cn -(f β 0 f (1) 
β 0 W )] τ 0 η 2 γ 0 (t)1 I x≥t dt dx.
Similarly, Lemma 8.1 implies

E ∂S n,1 (θ)/(∂γ) | θ=θ 0 = -2E f β 0 (Z 1 )(f β 0 W ) K Cn (Z 1 ) τ 0 η (1) 
γ 0 (t)η γ 0 (t)Y 1 (t)dt +2E (f 2 β 0 W ) K Cn (Z 1 ) τ 0 η (1) 
γ 0 (t)η γ 0 (t)Y 1 (t)dt .
We use that ∂S θ 0 ,g (θ)/(∂γ) | θ=θ 0 equals

-2E f β 0 (Z 1 )(f β 0 W )(Z 1 ) τ 0 η (1) 
γ 0 η γ 0 (t)Y 1 (t)dt + 2E (f 2 β 0 W )(Z 1 ) τ 0 η (1) 
γ 0 (t)η γ 0 (t)Y 1 (t)dt = 0, we obtain E ∂S n,1 (θ)/(∂γ) | θ=θ 0 = E ∂S n,1 (θ)/∂γ | θ=θ 0 -∂S θ 0 ,g (θ)/(∂γ) | θ=θ 0 equals -2 f β 0 (•)f X,Z (x, •), [(f β 0 W ) K Cn -(f β 0 W )] τ 0 η (1) 
γ 0 (t)η γ 0 (t)1 I x≥t dt dx +2 f X,Z (x, •), [(f 2 β 0 W ) K Cn -(f 2 β 0 W )] τ 0 η (1) 
γ 0 (t)η γ 0 (t)1 I x≥t dt dx.

Hence we obtain that for j = 1,

• • • , m (1/2)E ∂S n,1 (θ)/∂β j | θ=θ 0 is less than (f (1) 
β 0 ,j W ) K Cn -(f (1) 
β 0 ,j W ) 2 f β 0 (•)f X,Z (x, •) 2 dx τ 0 η 2 γ 0 (t)dt + (f (1) 
β 0 ,j f β 0 W ) K Cn -(f (1) 
β 0 ,j f β 0 W ) 2 f X,Z (x, •) 2 dx τ 0 η 2 γ 0 (t)dt ≤ (f (1) 
β 0 ,j W ) * (K * Cn -1) 2 (2π) -1 f β 0 (•)f X,Z (x, •) 2 dx τ 0 η 2 γ 0 (t)dt + (f (1) 
β 0 ,j f β 0 W ) * (K * Cn -1) 2 (2π) -1 f X,Z (x, •) 2 dx τ 0 η 2 γ 0 (t)dt .
Similarly, (1/2)E ∂S n,1 (θ)/∂γ j | θ=θ 0 is less than

(f β 0 W ) * (K * Cn -1) 2 (2π) -1 f β 0 (•)f X,Z (x, •) 2 dx τ 0 η (1) 
γ 0 ,j (t) η γ 0 (t)dt + (f 2 β 0 W ) * (K * Cn -1) 2 (2π) -1 f X,Z (x, •) 2 dx τ 0 η (1) 
γ 0 ,j (t) η γ 0 (t)dt .

Consequently,

E ∂S n,1 (θ)/(∂β j ) | θ=θ 0 -∂S θ 0 ,g (θ)/(∂β j ) | θ=θ 0 ≤ C θ 0 (f (1) 
β 0 ,j W ) * (K * Cn -1) 2 + (f (1) 
β 0 ,j f β 0 W ) * (K * Cn -1) 2 , (7.15) 
and

E ∂S n,1 (θ)/(∂γ j ) | θ=θ 0 -∂S θ 0 ,g (θ)/(∂γ j ) | θ=θ 0 ≤ C θ 0 (f β 0 W ) * (K * Cn -1) 2 + (f 2 β 0 W ) * (K * Cn -1) 2 . (7.16)
We can also write that (1/2)E ∂S n,1 (θ)/∂β j | θ=θ 0 is bounded by

(f (1) 
β 0 ,j W ) K Cn -(f (1) 
β 0 ,j W ) ∞ f β 0 (•)f X,Z (x, •) 1 dx τ 0 η 2 γ 0 (t)dt + (f (1) 
β 0 ,j f β 0 W ) K Cn -(f (1) 
β 0 ,j f β 0 W ) ∞ f X,Z (x, •) 1 dx τ 0 η 2 γ 0 (t)dt
which is less than

(f (1) 
β 0 ,j W ) * (K * Cn -1) 1 (2π) -1 f β 0 (•)f X,Z (x, •) 1 dx τ 0 η 2 γ 0 (t)dt + (f (1) 
β 0 ,j f β 0 W ) * (K * Cn -1) 1 (2π) -1 f X,Z (x, •) 1 dx τ 0 η 2 γ 0 (t)dt .
Similarly, (1/2) E ∂S n,1 (θ)/∂γ j | θ=θ 0 is bounded by

(f β 0 W ) * (K * Cn -1) 1 (2π) -1 f β 0 (•)f X,Z (x, •) 1 dx τ 0 η (1) 
γ 0 ,j (t) η γ 0 (t)dt + (f 2 β 0 W ) * (K * Cn -1) 1 (2π) -1 f X,Z (x, •) 1 dx τ 0 η (1) 
γ 0 ,j (t) η γ 0 (t)dt .

Consequently,

E ∂S n,1 (θ)/(∂β j ) | θ=θ 0 -∂S θ 0 ,g (θ)/(∂β j ) | θ=θ 0 ≤ C θ 0 (f (1) 
β 0 ,j W ) * (K * Cn -1) 1 + (f (1) 
β 0 ,j f β 0 W ) * (K * Cn -1) 1 , (7.17) 
and

E ∂S n,1 (θ)/(∂γ j ) | θ=θ 0 -∂S θ 0 ,g (θ)/(∂γ j ) | θ=θ 0 ≤ C θ 0 ,j (f β 0 W ) * (K * Cn -1) 1 + (f 2 β 0 W ) * (K * Cn -1) 1 . (7.18)
We combine (7.15), (7.16), (7.17) and (7.18) to obtain (7.12) and (7.13).

Study of the variance We proceed as in the proof of the consistency and write Var(∂S n,1 (θ)/(∂β j )

| θ=θ 0 ) = (8 + o(1))n -1 [V 1,j + V 2,j ], with V 1,j = E[(f (1) 
β 0 ,j f β 0 W ) K n,Cn (U 1 ) τ 0 η 2 γ 0 (t)Y 1 (t)dt] 2 and V 2,j = E[(f (1) 
β 0 ,j W ) K n,Cn (U 1 ) τ 0 η γ 0 (t)dN 1 (t)] 2 .
Similarly, Var(∂S n,1 (θ)/(∂γ j )) = (8 + o(1))n -1 [V 3,j + V 4,j ], with

V 3,j = E[(f 2 β 0 W ) K n,Cn (U 1 ) τ 0 η (1) 
γ 0 ,j (t)η γ 0 (t)Y 1 (t)dt] 2 and V 4,j = E[(f β 0 W ) K n,Cn (U 1 ) τ 0 η (1) 
γ 0 ,j (t)dN 1 (t)] 2 . Lemma 8.1 implies that V 1,j ≤ τ 0 η 2 γ 0 (t)dt 2 f X,Z (x, •) f ε , (f (1) 
β 0 ,j f β 0 W ) K n,Cn 2 dx and V 3,j ≤ τ 0 η (1) 
γ 0 ,j (t)η γ 0 (t)dt 2 f X,Z (x, •) f ε , (f 2 β 0 W ) K n,Cn 2 dx.
We apply inequalities (7.1) and (7.2) and obtain

V 1,j ≤ τ 0 η 2 γ 0 (t)dt 2 max( f ε ∞ , 1) min q=1,2 (f (1) 
β 0 ,j f β 0 W ) * K * Cn f * ε 2 q , (7.19) 
and

V 3,j ≤ τ 0 η (1) 
γ 0 ,j (t)η γ 0 (t)dt 2 max( f ε ∞ , 1) min q=1,2 (f 2 β 0 W ) * K * Cn f * ε 2 q . (7.20)
Now, we apply Lemma 8.1 and have

V 2,j ≤ ϕ 2 2 (x, •)f X,Z (x, •) f ε , (f (1) 
β 0 ,j W ) K n,Cn 2 dx and V 4,j ≤ ϕ 2 4,j (x, •)f X,Z (x, •) f ε , (f β 0 W ) K n,Cn 2 dx, where ϕ 2 (X, Z) = τ 0 η γ 0 (t)dN (t) and ϕ 4,j (X, Z) = τ 0 η (1) 
γ 0 ,j (t)dN (t). We apply inequalities (7.1) and (7.2) to get

V 2,j ≤ E τ 0 η γ 0 (t)dN (t) 2 max( f ε ∞ , 1) min q=1,2 (f (1) 
β 0 ,j W ) * K * Cn f * ε 2 q , (7.21) and V 4,j ≤ E τ 0 η (1) 
γ 0 ,j (t)dN (t)) 2 max( f ε ∞ , 1) min q=1,2 (f β 0 W ) * K * Cn f * ε 2 q . ( 7.22) 
The bound (7.14) follows by combining the bounds (7. [START_REF] Hu | Cox regression with covariate measurement error[END_REF]), (7.20), (7.21) and (7.22) on the V k,j 's for k = 1, . . . , 4.

Proof of ii)

By denition of S n,1 , S

n,1 (θ 0 ) =

∂ 2 S n,1 (θ 0 ) ∂θ 2 =    (S (2) 
n,1 ) 1,1 (S

n,1 ) 1,2 (S (2) 
n,1 ) 1,2 (S (2) 
n,1 ) 2,2    , with (S (2) 
n,1 ) 1,2 = -

2 n n i=1 (f (1) 
β 0 W ) K n,Cn (U i ) τ 0 (η (1) 
γ 0 (t)) dN i (t) + 1 n n i=1 f (1) 
β 0 f β 0 W K n,Cn (U i ) τ 0 (η (1) 
γ 0 (t)) η γ 0 (t)Y i (t)dt, (S (2) 
n,1 ) 1,1 = -

2 n n i=1 (f (2) 
β 0 W ) K n,Cn (U i ) τ 0 η γ 0 (t)dN i (t) + 1 n n i=1 ∂ 2 (f 2 β W ) ∂β 2 | θ=θ 0 K n,Cn (U i ) τ 0 η 2 γ 0 (t)Y i (t)dt and (S (2) 
n,1 ) 2,2 (θ) = -

2 n n i=1 (f β 0 W ) K n,Cn (U i ) τ 0 η (2) 
γ 0 (t)dN i (t) + 1 n n i=1 (f 2 β 0 W ) K n,Cn (U i ) τ 0 ∂ 2 η 2 γ (t) ∂γ 2 | θ=θ 0 Y i (t)dt. Under (R 1 ), for C n satisfying (4.3), E[S (2) n,1 (θ 0 ) -S (2) θ 0 ,g (θ 0 )] 2 = o(1) and ii) is proved. Proof of iii)
The proof of iii) follows by using the smoothness of β → W f β and β → W f 2 β up to order 3, the smoothness of γ → η γ and γ → η 2 γ and by using the consistency of θ 1 .

Proof of iv)

Let us introduce the random event E n = ∩ j,k E n,j,k , where

E n,j,k = ω such that ∂ 2 S θ 0 ,g (θ) ∂θ j ∂θ k - ∂ 2 S n,1 (θ, ω) ∂θ j ∂θ k + (R n ) j,k (ω) θ=θ 0 ≤ 1 2 ∂ 2 S θ 0 ,g (θ) ∂θ j ∂θ k | θ=θ 0 .
Now, we decompose E θ 1 -θ 0 2 2 on the event E n and its complementary event in the following way

E θ 1 -θ 0 2 2 = E[ θ 1 -θ 0 2 2 1 I En ] + E[ θ 1 -θ 0 2 2 1 I E c n ].
We use that θ 1 and θ 0 belong both to a compact set and get

E θ 1 -θ 0 2 2 ≤ E[ θ 1 -θ 0 2 2 1 I En ] + 2 sup θ∈Θ θ 2 2 P(E c n ).
Hence, the main part of the proof lies in proving that

E θ 1 -θ 0 1 I En 2 2 ≤ C m,p,θ 0 E (S (1) 
n,1 (θ 0 )) S

n,1 (θ 0 ) and

P(E c n ) = o(ϕ 2 n ). (7.23) 
We use (7.10) and (7.11) to write

E[ θ 1 -θ 0 2 2 1 I En ] ≤ E (S (1) 
n,1 (θ 0 )) [(S (2) 
n,1

(θ 0 ) + R n ) -1 ] (S (2) 
n,1

(θ 0 ) + R n ) -1 S (1) n,1 (θ 0 )1 I En ≤ C m,p sup j,k ∂ 2 S θ 0 ,g (θ) ∂θ j ∂θ k | θ=θ 0 -2 E (S (1) 
n,1 (θ 0 )) S

n,1 (θ 0 ) .

It thus remains to show that P(E c n ) = o(ϕ 2 n ). We start by writing that P(E c n ) ≤ m+p j=1 m+p k=1 P(E c n,j,k ), and then apply Markov's inequality for q > 2, to obtain

P(E c n,j,k ) ≤ 1 2 ∂ 2 S θ 0 ,g (θ) ∂θ j ∂θ k | θ=θ 0 q -1 E ∂ 2 (S θ 0 ,g (θ) -S n,1 (θ)) ∂θ j ∂θ k | θ=θ 0 + (R n ) j,k q . Since |a + b| q ≤ 2 q-1 (|a| q + |b| q ), 0.5 ∂ 2 S θ 0 ,g (θ)/(∂θ j ∂θ k ) | θ=θ 0 q P(E c n,j,k ) is less than 2 q-1 ∂ 2 S θ 0 ,g (θ) ∂θ j ∂θ k | θ=θ 0 -E ∂ 2 S n,1 (θ) ∂θ j ∂θ k | θ=θ 0 q +2 2q-2 E E ∂ 2 S n,1 (θ) ∂θ j ∂θ k | θ=θ 0 - ∂ 2 S n,1 (θ) ∂θ j ∂θ k | θ=θ 0 q + 2 2q-2 E|(R n ) j,k | q .
Now, we apply Rosenthal's inequality (see Rosenthal (1970), Petrov (1995)) to the sum of variables

∂ 2 S n,1 (θ)/(∂θ j ∂θ k ) | θ=θ 0 -E ∂ 2 S n,1 (θ)/(∂θ j ∂θ k ) | θ=θ 0 := n -1 n i=1 W n,i,j,k
and write

E n -1 n i=1 W n,i,j,k q ≤ C q n 1-r E|W n,1,j,k | q + n -q/2 E q/2 |W n,1,j,k | 2 .
Take q = 4 to get

E ∂ 2 S n,1 (θ) ∂θ j ∂θ k | θ=θ 0 -E ∂ 2 S n,1 (θ) ∂θ j ∂θ k | θ=θ 0 4 ≤ C 4 n -3 E|W n,1,j,k | 4 + n -2 E 2 |W n,1,j,k | 2 .
Therefore under the conditions ensuring that

E ∂ 2 S θ 0 ,g (θ) ∂θ j θ k | θ=θ 0 - ∂ 2 S n,1 (θ) θ j θ k | θ=θ 0 2 = o(1),
we have

E ∂ 2 S θ 0 ,g (θ) ∂θ j θ k | θ=θ 0 - ∂ 2 S n,1 (θ) θ j θ k | θ=θ 0 4 = O(ϕ 4 n ) = o(ϕ 2 n ).
Now, we use the denition of R n and the smoothness properties of the derivatives of (W f β ) and (W f 2 β ) with respect to β, up to order 3 and get 

E((R n ) 4 j,k ) = o( θ 1 -θ 0 4 2 ). Thus P(E c n ) = o(ϕ 2 n )+o(E[ θ 1 -θ 0 4 2 ]) = o(ϕ 2 
H n,i (s) =    -2 √ n (f (1) 
β 0 W ) K n,Cn (U i )η γ 0 (s) -2 √ n -(f β 0 W ) K n,Cn (U i )η (1) 
γ 0 (s)    , H n,i (s) =    -2 √ n (f (1) 
β 0 W )(Z i )η γ 0 (s) -2 √ n (f β 0 W )(Z i )η (1) 
γ 0 (s)    , G n,i (s) =    2 √ n (f β 0 f (1) 
β 0 W ) K n,Cn (U i )η 2 γ 0 (s) 2 √ n (f 2 β 0 W ) K n,Cn (U i )η (1) 
γ 0 (s)η γ 0 (s)    , G n,i (s) =    2 √ n (f β 0 f (1) 
β 0 W )(Z i )η 2 γ 0 (s) 2 √ n (f 2 β 0 W )(Z i )η (1) 
γ 0 (s)η γ 0 (s)    .
Since λ i (t, θ 0 , Z i ) dened in (7.3) is the intensity of the process N i (t) with respect to the ltration F t , the associated compensator of the process

N (t) is Λ i (t) = t 0 λ i (s, θ 0 , Z i )ds and the process M i (t) = N i (t) - Λ i (t, θ 0 , Z i ) is a local square integrable martingale. Consequently, we get √ n S (1) n 
,1 (θ 0 ) = n i=1 τ 0 H n,i (s)dN i (s) + n i=1 τ 0 G n,i (s)Y i (s)ds = A 1 + A 2 + A 3 + A 4 with A 1 = n i=1 τ 0 H n,i (s)dM i (s), A 2 = n i=1 τ 0 [ H n,i (s) -H n,i (s)]dM i (s), A 3 = n i=1 τ 0 [ H n,i (s) -H n,i (s)]dΛ i (s, θ 0 , Z i ) and A 4 = n i=1 τ 0 [ G n,i (s) -G n,i (s)]Y i (s)ds.

Study of A 1

The term A 1 is a linear combination of stochastic integrals of locally bounded and predictable processes, H n,i , with respect to nite variation and local square integrable martingales, M i (•). Consequently, E(A 1 ) = 0.

Denoting by < M > the predictable variation process of M , we have to satisfy the two following conditions for all t in [0, τ ] (see [START_REF] Andersen | Statistical models based on counting processes[END_REF] page 68) :

L1) n i=1 t 0 H n,i (s)(H n,i (s)) d < M i > (s) P -→ n→∞ Σ 2 1 (t), with Σ 2 1 (t) a positive covariance matrix dened by Σ2 1 (t) = 4E     t 0    (f (1) 
β 0 W )(Z i )η γ 0 (s) (f β 0 W )(Z i )η (1) γ 0 (s)       (f (1) β 0 W )(Z i )η γ 0 (s) (f β 0 W )(Z i )η (1) γ 0 (s)    η γ 0 (s)Y i (s)ds     L2) For all > 0, n i=1 t 0 H n,i (s)(H n,i (s)) 1 I Hn,i(s) 2 ≥ d < M i > (s) = o p (1) . Proof of L1). Since < M i > (•) = Λ i (•, θ 0 , Z i ) with Λ i (s, θ 0 , Z i ) dened in (7.
3), we have to prove that for all t ∈ [0, τ ],

n i=1 t 0 H n,i (s)(H n,i (s)) Y i (s)f β 0 (Z i )η γ 0 (s)ds P -→ n→∞ Σ 2 1 (t).
We apply the following Lemma, which is a straightforward consequence of the fact that the set of functions [START_REF] Van Der Vaart | Weak convergences and empirical processes[END_REF]).

I t = {x → 1 I x≥t } is a P-Glivenko Cantelli class (see
Lemma 7.1.

For j = 1, • • • , m sup 0≤t≤τ 1 n n i=1 Y i (t)f β 0 ,j (Z i )(f (1) 
β 0 ,j W )(Z i ) -E[Y (t)f β 0 (Z)(f (1) 
β 0 ,j W )(Z)] a.s. -→ n→∞ 0, sup 0≤t≤τ 1 n n i=1 Y i (t)(f 2 β 0 W )(Z i ) -E[Y (t)(f 2 β 0 W )(Z)] a.s. -→ n→∞ 0 sup 0≤t≤τ 1 n n i=1 Y i (t)f β 0 (Z i )|(f (1) 
β 0 ,j W )(Z i )| 3 -E[Y (t)f β 0 (Z)|(f (1) 
β 0 ,j W )(Z)| 3 ] a.s.
-→ n→∞ 0, and sup 0≤t≤τ

1 n n i=1 Y i (t)|(f β 0 W )(Z i )| 3 -E[Y (t)|(f β 0 W )(Z)| 3 ] a.s.
-→ n→∞ 0.

Thus L1) is veried.

Proof of L2). We have to verify that for all j = 1, . . . , m

1 n E n i=1 t 0 (f (1) 
β 0 ,j W )(Z i )η γ 0 (s) 2 1 I |(f (1) β 0 ,j W )(Zi)η γ 0 (s)|≥ √ n f β 0 (Z i )η γ 0 (s)Y i (s)ds = o(1)
and that for all j = 1, . . . , p

1 n E n i=1 t 0 (f 2 β 0 W )(Z i )η (1) 
γ 0 ,j (s)

2 1 I |(f 2 β 0 W )(Zi)η (1) γ 0 ,j (s)|≥ √ n f β 0 (Z i )η γ 0 (s)Y i (s)ds = o(1).
This is a straightforward consequence of Lemma 7.2 by writing that for j

= 1, • • • , m 1 n E n i=1 t 0 (f (1) 
β 0 ,j W )(Z i )η γ 0 (s) 2 1 I |(f (1) β 0 ,j W )(Zi)η γ 0 (s)|≥ √ n f β 0 (Z i )η γ 0 (s)Y i (s)ds ≤ 1 n √ n E n i=1 t 0 |(f (1) 
β 0 ,j W )(Z i )η γ 0 (s)| 3 f β 0 (Z i )η γ 0 (s)Y i (s)ds = o(1)
and for j = 1, • • • , p

1 n E n i=1 t 0 (f 2 β 0 W )(Z i )(η (1) 
γ 0 ,j (s) 

Y i (t)f β 0 (Z i )(f (1) 
β 0 ,j W ) K n,Cn (U i ) -E[Y (t)f β 0 (Z)(f (1) 
β 0 ,j W )(Z)] a.s.

-→ n→∞ 0, and

sup 0≤t≤τ 1 n n i=1 Y i (t)f β 0 (Z i )(f β 0 W ) K n,Cn (U i ) -E[Y (t)(f 2 β 0 W )(Z)]
a.s.

-→ n→∞ 0.

Study of A 3

The term A 3 can be viewed as triangular arrays of row-wise independent centered random, by writing By denition, A 3 is equal to 

- 2 √ n n i=1 τ 0    (f (1) 
β 0 W ) K n,Cn (U i ) -(f (1) 
β 0 W )(Z i )η γ 0 (s) (f β 0 W ) K n,Cn (U i ) -(f β 0 W )(Z i )η
β 0 W ) K n,Cn (U i ) -(f (1) 
β 0 W ) K n,Cn (U i ) -(f β 0 W )(Z i )η (1) 
γ 0 (s)Y i (s)f β 0 (Z i )η γ 0 (s)ds = O(1).

It follows that v-a) is veried.

We now come to the bias term and write that E(A 3 ) is equal to

-2 √ n    E (f (1) 
β 0 W ) K n,Cn (U ) -(f (1) 
β 0 W )(Z) f β 0 (Z i ) τ 0 η 2 γ 0 (s)Y (s)ds E (f β 0 W ) K n,Cn (U i ) -(f β 0 W )(Z i ) f β 0 (Z i ) τ 0 η (1) 
γ 0 (s)η γ 0 (s)Y (s)ds    .

Lemma 8.1 implies

E(A 3 ) = -2 √ n    E (f (1) 
β 0 W ) K Cn (Z) -(f (1) 
β 0 W )(Z) f β 0 (Z) τ 0 Y (s)η 2 γ 0 (s)ds E (f β 0 W ) K Cn (Z) -(f β 0 W )(Z) f β 0 (Z) τ 0 Y (s)η (1) 
γ 0 (s)η γ 0 (s)ds   
that is E(A 3 ) is equal to

-2 √ n    (f (1) 
β 0 W ) K Cn (z) -(f (1) 
β 0 W )(z), f β 0 (z)f X,Z (x, z) τ 0 1 I x≥s η 2 γ 0 (s)ds dx (f β 0 W ) K Cn (z) -(f β 0 W )(z), f β 0 (z) τ 0 1 I x≥s η (1) 
γ 0 (s)η γ 0 (s)ds dx    .

For j = 1, . .

β 0 ,j W ) K Cn (z) -(f . , m (f (1) 
β 0 ,j W )(z), f β 0 (z)f X,Z (x, z) 

β 0 ,j W ) K Cn (z) -(f (1) 
β 0 ,j W )(z), f β 0 (z)f X,Z (x, z) dx.

We apply (7.1) and get that it is also less than τ 0 η 2 γ 0 (s)ds min (f

β 0 ,j W ) K Cn -(f (1) 
β 0 ,j W ) 2 f β 0 (•)f X,Z (x, •) 2 dx, (f (1) 
β 0 ,j W ) K Cn -(f (1) 
β 0 ,j W ) ∞ f β 0 (•)f X,Z (x, •) 1 dx (1) 
which is less than

(2π) -1 τ 0 η 2 γ 0 (s)ds min (f (1) 
β 0 ,j W ) * (K * Cn -1) 2 f β 0 (•)f X,Z (x, •) 2 dx, (f (1) 
β 0 ,j W ) * (K * Cn -1) ∞ f β 0 (•)f X,Z (x, •) 1 dx .
Similarly, we obtain that for j = 1, . . . , p In order to verify v-c) (Lindeberg condition) we write that for j = 1, • • • , m

(f β 0 W ) K Cn (z) -(f β 0 W )(z), f β 0 (z)
1 n E n i=1 t 0 (f (1) 
β 0 ,j W ) K n,Cn (U i )η γ 0 (s) 

Study of A 4

The study of A 4 , quite similar to the study of A 3 is omitted. The end of the proof follows by choosing C n , that provides the best trade-o between the squared bias and the variance. We refer to Butucea and Taupin [START_REF] Butucea | New M -estimators in semiparametric regression with errors in variables[END_REF] for details on a such trade-o. e-mail : marie-luce.taupin@univ-paris5.fr

  the rst and second derivatives with respect to θ are denoted by ϕ[START_REF] Aitkin | The tting of exponential, Weibull and extreme value distributions to complex censored survival data using GLIM[END_REF] 
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( 1 ) 8 )

 18 θ 0 ,g (θ) = 0 if and only if θ = θ 0 . (A 7 )For all t ∈]0, τ ], the matrix S(2) θ 0 ,g (θ 0 , t) exists and is positive denite.(A For all j = 1, • • • , p,

Theorem 4 . 1 .

 41 Let (A 1 )-(A 15 ) and (N 1 ) hold. Let θ 1 = θ 1 (C n ) be dened by (3.1).

2 <

 2 ∞. (C 6 ) Under (C 4 )-(C 6 ), we estimate θ 0 by θ 2 = arg min θ∈Θ S n,2 (θ) where

1 and θ 2

 12 It follows that conditions (C 4 )-(C 6 ) hold and the criterion S n,2 dened by (5.1) exists. In this case θ 2 is still a √ n-consistent and asymptotically Gaussian estimator of θ 0 . Example 2. Excess relative risk model. Let f β be of the form f β (z) = 1 + βz with β and g in B and G such that for Z ∼ g, 1 + βZ is nonnegative. For example G could consist of densities having support included in [0, +∞) and B could be a compact set included in [0, ∞), or G could consist of densities having support included in [-1, +1] and B could be a compact set included in [-1, +1]. Let W (z) = exp{-z 2 /(4δ)} where δ is as in (N 2 ). Then conditions (C 1 )-(C 3 ) as well as conditions (C 4 )-(C 6 ) are satised. Hence the estimators θ are √ n-consistent and asymptotically Gaussian estimators of θ 0 , with the same asymptotic variance. Example 3. Polynomial relative risk 1. Let f β be of the form f β (z) = 1 + m k=1 β k z k with m ≥ 1, and with β and g in B and G such that f β (Z) is nonnegative for Z ∼ g. For example G could consist of densities having support included in [0, +∞) and B could be a compact set included in [0, ∞) m , or G could consist of densities having support included in [-1, +1] and B could be a compact set included in the set {β = (β k ) 1≤k≤m ∈ R m such that m k=1 |β k | ≤ 1}. Let W (z) = exp{-z 2 /(4δ)} where δ is as in (N 2 ). Then conditions (C 1 )-(C 3 ) as well as conditions (C 4 )-(C 6 ) are satised. Hence the estimators θ 1 and θ 2 are √ nconsistent and asymptotically Gaussian estimators of θ 0 , with the same asymptotic variance. One can also choose W ≡ 1, provided that E(|U | m ) < ∞ and that the kernel K has nite absolute moments of order m and satises u r K(u)du = 0, for r = 1, . . . , m. With this choice of W , θ 1 remains a √ n-consistent and asymptotically Gaussian estimator of θ 0 . Example 4. Cauchy relative risk 1. Consider f β of the form f β (z) = 1 -β + β/(1 + z 2 ) with β and g in B and G such that f β (Z) is nonnegative for Z ∼ g. For example G could consist of all densities and B could be a compact set included in ]0, 1[ or (-∞, 0[. The relative risk f β has the regularity of z → 1/(1 + z 2 ) which satises (R 1 ) with a = 0, d = 1/2 and r = 1. Let W (z) = (1 + z 2 ) 4 exp{-z 2 /(4δ)} where δ is as in (N 2 ). The functions f β W , f 2 β W and their derivatives with respect to β up to order 3 satisfy (R 1 ) with ρ < r = 2 or ρ = r = 2 and d > δ. Consequently, conditions (C 1 )-(C 3 ) as well as conditions (C 4 )-(C 6 ) are satised and the estimators θ 1 and θ 2 are √ n-consistent and asymptotically Gaussian estimators of θ 0 , with the same asymptotic variance. This example underlines the importance of the choice of smoothing weight function W in the construction of θ 1 or θ 2 . Indeed, with W ≡ 1, Theorem 4.1 predicts a much slower rate of convergence. For example, if ε is a Gaussian random variable and W ≡ 1, the predicted rate is of order exp(-2 √ log n) . Example 5. Laplace relative risk. Consider f β of the form f β (z) = 1+βf (z) with f (z) = exp(-|z|/2)-1 and with β and g in B and G such that f β (Z) is nonnegative for Z ∼ g. For example G could consist of all densities and B could be a compact set included in ]0, 1[ or (-∞, 0[. The Fourier transform of z → (z) = exp(-|z|/2) equals * (t) = 4/(1 + 4t 2 ) decays slowly. Hence, if we choose W ≡ 1, the estimator θ 1 is not √ n-consistent as soon as |f * ε (u)| ≤ o(|u| -2 ) with |u| → ∞. A closer look shows that f β and its derivative with respect to β are C ∞ except at the point z = 0. Therefore, a proper choice of W can smooth out at 0 and make W f β , W f 2 β

7. 1 .

 1 Proof of Theorem 4.1 7.1.1. Consistency It follows from (A 7 ) and (A 8 ) and the two points :

2 7. 1 . 2 .

 212 Rate of convergenceDenote by S

  √ n f β 0 (Z i )η γ 0 (s)Y i (s)ds )(Z i )| 3 |η (1) γ 0 ,j (s)| 3 f β 0 (Z i )η γ 0 (s)Y i (s)ds = o(1). Thus L2) is veried. Study of A 2Since E(A 2 ) = 0, we use the following lemma and conclude that A 2 = o p (1). Lemma 7.2. Under (N 2 ) and (R 1 ), for C n satisfying (4.3) then for j = 1, • • • , m

A 3 =

 3 n i=1 V n,i + E(A 3 ), with n i=1 V n,i = A 3 -E(A 3 ). Consequently, the asymptotic normality follows if we verify that v-a) n i=1 E[(V n,i ) 2 ] -→ n→∞ Σ 2 3 ; v-b) E(A 3 ) = o p (1); v-c) for all > 0, n i=1 E[(V n,i ) 2 1 I Vn,i 2 ≥ ] -→ n→∞ 0 (Lindeberg Condition).

  i (s)f β 0 (Z i )η γ 0 (s)ds.Let us start with the study of the variance (v-a). Under (C 1 )-(C 3 )

β 0 W

 0 )(Z i )η γ 0 (s)Y i (s)f β 0 (Z i )η γ 0 (s)ds = O(1),

τ 0 1 I

 1 x≥s η(1) γ 0 (s)η γ 0 (s)ds dx j (s)|ds min (fβ 0 W ) * (K * Cn -1) 2 f β 0 (•)f X,Z (x, •) 2 dx, (f β 0 W ) * (K * Cn -1) ∞ f β 0 (•)f X,Z (x, •) 1 dx . Consequently, under (R 1 ), E(A 3 ) = O( √ nC -a+(1-r)/2+(1-r)-/2 exp(-dC r n ) n ). Under (C 1 )-(C 3 ), Var(A 3 ) = O(1)and hence C n can be chosen such that E(A 3 ) = o(1) and v-b) is veried.

2 1 I

 1 |(f (1) β 0 ,j W ) K n,Cn (Ui)η γ 0 (s)|≥ √ n f β 0 (Z i )η γ 0 (s)Y i (s)ds j W ) K n,Cn (U i )η γ 0 (s)| 3 f β 0 (Z i )η γ 0 (s)Y i (s)ds = o(1)and for j = 1,• • • , p ) K n,Cn (U i )η(1)γ 0 ,j (s)2 1 I |(f 2 β 0 W ) K n,Cn (Ui)η (1) γ 0 ,j (s)|≥ √ n f β 0 (Z i )η γ 0 (s)Y i (s)ds ) K n,Cn (U i )| 3 |η(1)γ 0 ,j (s)| 3 f β 0 (Z i )η γ 0 (s)Y i (s)ds = o(1).

2

 2 

7. 3 .

 3 Proof of Corollary 4.1 :For the proof of Corollary 4.1, we apply Lemma 8.2 to the bias bounds (7.12) and (7.13) and obtainE ∂S n,1 (θ)/(∂β j ) | θ=θ 0 2 = O C -2a+1-r+(1-r)- n exp(-2dC r n ) ,andE ∂S n,1 (θ)/(∂γ j ) | θ=θ 0 2 = O C -2a+1-r+(1-r)- n exp(-2dC r n ) .We apply Lemma 8.2 to the variance bounds (7.[START_REF] Hu | Cox regression with covariate measurement error[END_REF]), (7.20), (7.21),(7.22) and getVar ∂S n,1 (θ)/(∂γ j ) = O C 2(α-a)+1-ρ+(1-ρ)- n exp(-2dC r n + 2δC ρ n ))/n .

  up to the parametric rate in many cases. Specic choices for W ensure that θ 1 from the Cox model and the excess relative risk model is √ n-consistent and asymptotically Gaussian. No consistent estimators for the excess relative risk model with mismeasured covariate have been found previously. Moreover, the previous methods developped for the parameter estimation in the Cox model do not apply in the excess relative risk model. Furthermore, from an application point of view, this result is promising since the excess relative risk model is commonly used in radioprotection research to investigate the relationship between cancer occurence

2 where θ 2 2 = m+p k=1 θ 2 k , for various relative risks and various types of error density, and we derive sucient conditions ensuring √ n-consistency and asymptotic normality. Through these examples, we also show that a simple choice of W can signicantly improve the rate of convergence of θ 1 ,

  as functions of z. As in density deconvolution, or for regression function estimation in errors-in-variables models, the biggest variances are obtained for the smoothest error density f ε . Hence, the slowest rates are obtained for the smoothest error density f

ε , for instance for Gaussian ε's. Consequently, a good choice of W can improve θ 1 's rate of convergence by smoothing W f β . The rate for estimating β 0 depends on the smoothness properties of ∂

Table 1 .

 1 Rates of convergence ϕ 2

n of θ 1 5. Extension of the estimation procedure : a second estimator θ 2

  Let H n,i , H n,i , G n,i , and G n,i be the processes dened for all t ∈ [0, τ ] by

		n ),
	and (7.23) is proved.	2
	7.2. Proof of Theorem 4.2 : asymptotic normality	

Theorem 4.1, its proof, and conditions (C 1 )-(C 3 ) imply that V n,j (θ 0 ) = O(1) and the asymptotic normality of θ 1 follows if we verify that √ n S

(1)

n,1 (θ 0 ) L -→ n→∞ N (0, Σ 1 ), with Σ 1 dened in Theorem 4.2.
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Proof of Theorem 5.1 :

The proof of Theorem 5.1, which is quite classical, is omitted.

and

Proof of Lemma 8.1 : We apply Parseval's formula and write