
HAL Id: hal-00480190
https://hal.science/hal-00480190

Submitted on 3 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Number of hidden states and memory: a joint order
estimation problem for Markov chains with Markov

regime
Antoine Chambaz, Catherine Matias

To cite this version:
Antoine Chambaz, Catherine Matias. Number of hidden states and memory: a joint order estimation
problem for Markov chains with Markov regime. ESAIM: Probability and Statistics, 2009, 13, pp.38-
50. �10.1051/ps:2007048�. �hal-00480190�

https://hal.science/hal-00480190
https://hal.archives-ouvertes.fr


ESAIM: PS ESAIM: Probability and Statistics
Will be set by the publisher www.edpsciences.org/ps
DOI: (will be inserted later)

NUMBER OF HIDDEN STATES AND MEMORY: A JOINT ORDER
ESTIMATION PROBLEM FOR MARKOV CHAINS WITH MARKOV REGIME

Antoine Chambaz
1

and Catherine Matias
2

Abstract. This paper deals with order identification for Markov chains with Markov regime (MCMR)
in the context of finite alphabets. We define the joint order of a MCMR process in terms of the number
k of states of the hidden Markov chain and the memory m of the conditional Markov chain. We study
the properties of penalized maximum likelihood estimators for the unknown order (k, m) of an observed
MCMR process, relying on information theoretic arguments. The novelty of our work relies in the joint
estimation of two structural parameters. Furthermore, the different models in competition are not
nested. In an asymptotic framework, we prove that a penalized maximum likelihood estimator is
strongly consistent without prior bounds on k and m. We complement our theoretical work with a
simulation study of its behaviour. We also study numerically the behaviour of the BIC criterion. A
theoretical proof of its consistency seems to us presently out of reach for MCMR, as such a result does
not yet exist in the simpler case where m = 0 (that is for hidden Markov models).

Mathematics Subject Classification. 62B10, 62B15, 62M07.

Received October 17, 2006. Revised July 6, 2007.

1. Introduction 1

Markov chains with Markov regime 2

Let X = {1, . . . , k} and Y = {1, . . . , r} be two finite sets and m be some integer. Here, N� denotes the set 3

of positive integers and for any i ≤ j, we use xj
i to denote the sequence xi, xi+1, . . . , xj . We consider a process 4

{Xj, Yj}j≥1 on (X × Y)N
�

with distribution as follows. Process {Xj}j≥1 is a Markov chain with memory one 5

on X with transition matrix A = (a(i, j))1≤i,j≤k. Besides, conditionally on {Xj}j≥1, process {Yj}j≥1 is a 6

Markov chain with memory m [abbreviated to MC(m)], and the conditional distribution of Ys conditional on 7

({Xj}j≥1, {Yj}j<s) is given by b(Ys|Y s−1
s−m, Xs), for any s > m. The process has some initial distribution μ on 8

X × Ym. 9
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2 A. CHAMBAZ AND C. MATIAS

The set Πk,m denotes the set of all such probability measures P on (X × Y)N
�

formally described by, for all1

n ∈ N� and (xn
1 , yn

1 ) ∈ (X × Y)n,2

P(xn
1 , yn

1 ) = μ(x1, y
m
1 )

{
n−1∏
i=1

a(xi, xi+1)

} {
n∏

i=m+1

b(yi|yi−1
i−m; xi)

}
. (1)

Let us denote by M1(X×Ym) the set of probability measures on X×Ym. The set Πk,m is naturally parametrized3

by M1(X × Ym) × Θk,m, where4

Θk,m =

⎧⎨⎩θ = (A, B) : A = (a(i, j))1≤i,j≤k, a(i, j) ≥ 0,

k∑
j=1

a(i, j) = 1 and

B = (b(y|ym
1 ; x))y∈Y,ym

1 ∈Ym,x∈X ; b(y|ym
1 ; x) ≥ 0,

r∑
y=1

b(y|ym
1 ; x) = 1

}
. (2)

Thus, Πk,m =
{
P = Pμ,θ : (μ, θ) ∈ M1(X × Ym) × Θk,m

}
. Moreover, for stationary processes with stationary5

measure πθ on X × Ym, we use the notation Pθ = Pπθ,θ to remind that the initial probability is fixed.6

The observations consist in {Yj}1≤j≤n which is called a Markov chain with Markov regime (abbreviated to7

MCMR). Note that {Yj}j≥1 is not a Markov process. We assume that its distribution is the marginal onto Yn
8

of some Pθ0 (θ0 is the true and unknown parameter value), which is stationary, ergodic and belongs to Πk0,m09

for some unknown (k0, m0) ∈ N� × N. In other words, it is assumed that there exists a hidden stationary10

process {Xj}j≥1 such that the complete process {(Xj, Yj)}j≥1 has distribution Pθ0 ∈ Πk0,m0 . When there is no11

ambiguity, Pθ0 will abbreviate to P0. In this setup, the cardinality r of the observed alphabet is known.12

While HMMs can model the heterogeneity of a sequence by distinguishing different segments with different13

i.i.d. distributions (i.e. m = 0), MCMRs enable furthermore a Markovian modelling of each segment (m ≥ 1).14

HMMs and MCMRs are widely used in practical applications among which genomics, econometrics and speech15

recognition. We refer to [4,10] for recent and comprehensive overviews on this topic. Note that more flexibility16

could be added to these models by authorising different memory lengths for the different regimes but the choice17

of these lengths is a problem which is as delicate as the one we address here.18

When the couple (k0, m0) associated with the distribution P0 of a MCMR is a priori known, inference on the19

parameters has been investigated to a great extent (most recent results can be found in [12]). However, in many20

applications where MCMR are used as a modeling device, there is no clear indication about a good choice for21

(k0, m0). So, inference about (k0, m0) is a crucial issue, for even consistency may fail to hold in a wrong model.22

In this paper, we propose a sound definition of the order of a MCMR which we substitute to (k0, m0) as main23

quantity of interest. We explain why below.24

Defining the order of a MCMR25

Model selection for MCMRs already appears in [3]. The authors propose a reversible jump MCMC procedure26

to select the memory m as well as the number of regimes k. However, no simulations were given to establish27

the correctness of the procedure (the method was rather directly applied to real biological data) and it is still28

an open question to know whether such a procedure is consistent or not.29

Model selection for HMMs is a more widely studied subject (see for instance [11,13,18,19,23,24]). The order30

of a HMM simply is the minimal number of hidden states (here m = 0). Our approach to model selection for31

MCMRs draws its inspiration from [13].32
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One of the interesting problems raised by HMM modeling is the question of identifiability: when do two 1

different Markov chains generate the same stochastic process? This question first raised by [1] can be solved 2

for HMM using linear algebra (see [11, 15]). To our knowledge, such a complete solution does not exist in the 3

context of MCMR models. As an immediate consequence, the definition of the order of a MCMR has to be 4

clarified. 5

In the convenient case where each model Mα is characterized by α ∈ N, the order of the distribution of the 6

observations is the smallest α such that this distribution belongs to Mα This definition is motivated by the will 7

to guarantee that the statistician is looking for the most economical representation of the process (the number 8

of parameters required for its description is minimized). In contrast, the definition of the order may be more 9

involved when the above notion of minimality does not have a natural meaning anymore. Two examples follow. 10

First, order identification for autoregressive moving average ARMA(p, q) models is a well-known example 11

where the structural parameter is bivariate (see for example [14,22]). Nevertheless, this problem is very different 12

from the one studied here because there exists a minimal representation (p0, q0) thus defined as the true one. In- 13

deed, the spectral density of an ARMA process admits a unique representation of the form λ �→ |Q/P (e−iλ)|2/2π 14

where P and Q are polynomial functions with no common factors, P (z) �= 0, for all |z| ≤ 1 and Q(z) �= 0, for all 15

|z| < 1. Then the true order of the ARMA process is defined as the couple (p0, q0) of degrees of the polynomials 16

P and Q respectively. 17

Second, when dealing with model selection for context trees, the order to be selected is a tree. However, there 18

exists a natural ordering (given by the inclusion) which is not a total ordering. Csiszàr and Talata [6] establish 19

the consistency of both penalized (with Bayesian Information Criterion, alias BIC, penalization) maximum 20

likelihood and minimum description length procedures. 21

A particularity of MCMR modeling is that the sets Πk,m are not globally nested, even though {Πk,m}k≥1 22

and {Πk,m}m≥0 are nested. In general, for a given probability P ∈ ∪(k,m)∈N�×NΠk,m, there is no unique 23

(k0, m0) ∈ N� × N such that P ∈ Π(k0,m0) and P does not belong to any of its subsets (that is, for any 24

(k, m) ∈ N� × N such that (k < k0, m = m0), or (k = k0, m < m0), or (k < k0, m < m0), one has P �∈ Πk,m). 25

So, we decide to rely on the point of view of minimizing the number of parameters in order to determine which 26

of the possibly multiple representations is to be selected. Let us denote by N(k, m) the number of parameters 27

required to describe an element of Θk,m
28

N(k, m) = dim(Θk,m) = k(k − 1) + krm(r − 1). (3)

This induces an ordering of the set N� × N. For all (k1, m1), (k2, m2) ∈ N� × N, 29

(k1, m1)≺(k2, m2) if and only if {N(k1, m1) < N(k2, m2)} or {N(k1, m1) = N(k2, m2) and k1 < k2}. 30

Note that we made an arbitrary choice between k and m to get a total order. Obviously, all the results remain 31

valid when using m instead of k. In the following, a
b means b≺a and a�b means (a≺b or a = b). 32

We are now able to define the true order (k0, m0) of a probability P belonging to ∪k≥1,m≥0Πk,m as

(k0, m0) = min
{
(k, m) ∈ (N� × N,≺) : P ∈ Πk,m

}
.

Content of the paper 33

Next, we tackle the issue of estimating the true order of a MCMR by penalized maximum likelihood procedure. 34

In Section 2, we introduce our penalized maximum likelihood estimator and two others code-based estimators. 35

The two latter are not computable in practice, but their behaviour is strongly connected to that of our estimator. 36

Its strong consistency (as well as that of the two other estimators) is established in two steps in Section 3: 37

Section 3.1 is dedicated to overestimation and Section 3.2 to underestimation. We present in Section 4 the 38

results of a simulation study. 39
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2. Estimation procedure1

The general form of our estimators writes as2

(k̂, m)n = argmin
(k,m)∈(N�×N,≺)

(
− log Qk,m(Y n

1 ) + pen(n, k, m)
)
, (4)

where Qk,m is a (coding) measure on Yn and pen(n, k, m) is a penalty term. Three different coding measures3

are considered: KTk,m, NMLk,m and MLk,m defined below.4

Let us consider the distribution density νk,m on Θk,m, given for all θ ∈ Θk,m by5

νk,m(θ) =
k∏

i=1

Γ(k/2)Γ(r/2)
Γ(1/2)kΓ(1/2)r

⎛⎝ k∏
j=1

1
a(i, j)1/2

⎞⎠⎛⎝ ∏
tm
1 ∈Ym

r∏
t=1

1
b(t|tm1 ; i)1/2

⎞⎠ ,6

where Γ(z) =
∫∞
0 xz−1e−xdx.7

The Krichevsky-Trofimovmixture is the probability measure KTk,m on (X × Y)N
�

whose marginals have8

density9

(xn
1 , yn

1 ) �→
∫

θ∈Θk,m
Pμ̄X⊗μ̄Y,m,θ(xn

1 , yn
1 )νk,m(θ)dθ, (5)

where μ̄X and μ̄Y,m are the uniform distributions on X and Ym, respectively. Note that we use for simplicity10

of notation the same symbol for the probability measure and its marginals on Yn. The maximum likelihood11

(MLk,m) and the normalized maximum likelihood (NMLk,m) coding measures are defined in a natural way:12

MLk,m(yn
1 ) = sup

θ∈Θk,m
Pθ(yn

1 ),13

and if we set C(n, k, m) =
∑

yn
1 ∈Yn sup

θ∈Θk,m Pθ(yn
1 ), then14

NMLk,m(yn
1 ) = sup

θ∈Θk,m

Pθ(yn
1 )

C(n, k, m)
=

MLk,m(yn
1 )

C(n, k, m)
·15

We will use later that KTk,m and NMLk,m (but not MLk,m) are probability measures.16

The so-called penalized maximum likelihood estimator of the order that we focus on corresponds to the17

coding measure MLk,m and to a particular choice of penalty. It is computable, contrarily to the estimators18

based on KTk,m and NMLk,m (which are not computable for large sample sizes even in the HMM framework).19

Nevertheless, studying the two latter is important here because coding measures KTk,m and NMLk,m are20

strongly related to MLk,m (see Lem. 3.4). Note finally that Liu and Narayan dedicated an article [18] to the21

asymptotic study of the order estimator based on KTk,m in the HMM framework.22

3. Consistency issue23

This section is dedicated to the statement and proof of the main consistency result.24

Theorem 3.1. Let P0 be stationary, ergodic and belong to ∪k≥1,m≥0Πk,m with unknown true order (k0, m0).25

Let {Yj}1≤j≤n be a stationary process drawn from the marginal of P0 on Yn.26
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Let us denote by ϕ an increasing function which maps (N� ×N,≺) to N. Let us choose α > 1 and introduce, 1

for all n ∈ N�, k ≥ 1 and m ≥ 0, 2

τ(n, k, m) = max
(

0, log k + m log r − k log
Γ(k/2)
Γ(1/2)

− krm log
Γ(r/2)
Γ(1/2)

+
k2(k − 1)

4n
+

krm+1(r − 1)
4n

+
5k

24n
(1 + rm)

)
. (6)

Let (k̂, m)n be defined by (4), with Qk,m = MLk,m and 3

pen(n, k, m) =
∑

(k′,m′)�(k,m)

(1
2
N(k′, m′) log n + τ(n, k′, m′)

)
+ αϕ(k, m) log n. (7)

Then, P0-almost surely, (k̂, m)n = (k0, m0) eventually. 4

Put in other words, (k̂, m)n does not overestimate, nor underestimate the true order (k0, m0) eventually, 5

P0-almost surely. The proof is naturally divided accordingly: overestimation is considered in Section 3.1 and 6

underestimation in Section 3.2. Note that a simple way to choose ϕ is to set ϕ(k, m) = card{(k′, m′) ∈ N� ×N : 7

(k′, m′)�(k, m)}. 8

Remark 3.2. The theorem is valid more generally for Qk,m = KTk,m or NMLk,m with the penalty 9

pen(n, k, m) =
∑

(k′,m′)�(k,m)

(1
2
N(k′, m′) log n

)
+ αϕ(k, m) log n. 10

Note also that the precise form of the penalty is used in the non-overestimation step (see the proof of Prop. 3.3). 11

Any reader familiar with the BIC criterion will immediately interpret our penalty in terms of cumulated 12

sum of BIC penalty terms (of the form i.e. 1
2N(k, m) log n). We do not prove here the consistency of the BIC 13

procedure. We think this would be a very difficult task in our setup, and such a result does not even exist 14

in the simpler HMM case. One explanation of this lack is that no explicit expression exists for the maximum 15

likelihood estimate, turning explicit computations unfeasible. Thus our penalty is heavier than the BIC one but 16

it is inspired by the penalty studied in [13] for order estimation in the HMM framework. However, if we cannot 17

propose a theoretical study of the BIC estimator, we provide an original numerical study of the consistency of 18

both our estimator and the BIC one in Section 4. 19

3.1. No overestimation 20

In this section, we prove that, P0-almost surely, (k̂, m)n does not overestimate the true order (k0, m0) even- 21

tually. Besides, a rate of decrease to zero of the overestimation probability is also obtained. 22

Proposition 3.3. Under the assumptions and notations of Theorem 3.1, P0-almost surely, (k̂, m)n �(k0, m0)
eventually. Moreover,

P0

{
(k̂, m)n
(k0, m0)

}
= O(n−α),

where α > 1 is chosen in Theorem 3.1. 23

The proof of Proposition 3.3 heavily relies on the following 24

Lemma 3.4. Let us fix (k, m) ∈ N� × N and denote by Qk,m the coding probability KTk,m or NMLk,m. Let us
recall that τ is defined by (6). Then the following bounds hold:

0 ≤ max
yn
1 ∈Yn

{
log

MLk,m(yn
1 )

Qk,m(yn
1 )

}
≤ 1

2
N(k, m) log n + τ(n, k, m).
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Lemma 3.4 is a combination of results which essentially go back to [25] and [7]. The proof is similar to the1

proof of [18], Lemma 3.4 and thus omitted.2

Applying Lemma 3.4 allows to control the distribution of (k̂, m)n under P0 with respect to the dimensions3

of the involved models. More precisely, we have4

Proposition 3.5. Under the assumptions of Theorem 3.1, for fixed (k, m) ∈ N� × N,5

6

P0

{
(k̂, m)n = (k, m)

}
≤ exp{−pen(n, k, m) + pen(n, k0, m0)}7

×
(

exp
{

1
2
N(k0, m0) log n + τ(n, k0, m0)

}
1l{Qk,m = NMLk,m or KTk,m}8

+ exp
{

1
2
N(k, m) log n + τ(n, k, m)

}
1l{Qk,m = MLk,m}

)
.9

10

Proof of Proposition 3.5. Let Qk,m be the probability measure NMLk,m or KTk,m. Using Definition (4) of11

(k̂, m)n and Lemma 3.4 implies that12

13

P0

{
(k̂, m)n = (k, m)

}
≤ P0

{
log

Qk,m

Qk0,m0

(Y n
1 ) ≥ pen(n, k, m) − pen(n, k0, m0)

}
14

≤ P0

{
log

Qk,m

MLk0,m0

(Y n
1 ) ≥ pen(n, k, m) − pen(n, k0, m0) − 1

2
N(k0, m0) log n − τ(n, k0, m0)

}
.15

16

Because P0 ∈ Πk0,m0 , we may use that − log MLk0,m0(Y n
1 ) ≤ − log P0(Y n

1 ), P0-almost surely, hence we have,17

18

P0

{
(k̂, m)n = (k, m)

}
≤19

P0

{
log

Qk,m

P0
(Y n

1 ) ≥ pen(n, k, m) − pen(n, k0, m0) − 1
2
N(k0, m0) log n − τ(n, k0, m0)

}
20

=
∑

yn
1 ∈Yn

P0(yn
1 )1l
{

log
Qk,m(yn

1 )
P0(yn

1 )
≥ pen(n, k, m) − pen(n, k0, m0) − 1

2
N(k0, m0) log n − τ(n, k0, m0)

}
21

≤ exp
{

1
2N(k0, m0) log n + τ(n, k0, m0) − pen(n, k, m) + pen(n, k0, m0)

}× ∑
yn
1 ∈Yn

Qk,m(yn
1 ).22

23

This is the expected result, since Qk,m is a probability measure. Let us assume now that Qk,m = MLk,m.24

Similarly,25

P0

{
(k̂, m)n = (k, m)

}
≤ P0

{
log

MLk,m(Y n
1 )

MLk0,m0(Y n
1 )

≥ pen(n, k, m) − pen(n, k0, m0)
}

26

≤ P0

{
log

MLk,m(Y n
1 )

P0(Y n
1 )

≥ pen(n, k, m) − pen(n, k0, m0)
}

27

≤
∑

yn
1 ∈Yn

MLk,m(yn
1 ) exp {−pen(n, k, m) + pen(n, k0, m0)} .28

Using the bound MLk,m(yn
1 ) ≤ KTk,m(yn

1 ) exp{N(k, m)/2 · log n + τ(n, k, m)} given by Lemma 3.4 yields the29

expected result. Thus, the proof is complete. �30

The proof of Proposition 3.3 is now at hand.31
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Proof of Proposition 3.3. Let us denote by An the event {(k̂, m)n
(k0, m0)}. By virtue of the Borel-Cantelli 1

lemma, it is sufficient to prove that
∑

n≥1 P0(An) is finite in order to conclude that overestimation eventually 2

does not occur, P0-almost surely. 3

Let us assume that Qk,m =NMLk,m or KTk,m (the very similar proof in the case Qk,m = MLk,m is omitted). 4

If C0 bounds sequence {τ(n, k0, m0)}n, then 5

6

P0{An} =
∑

(k,m)
(k0,m0)

P0

{
(k̂, m)n = (k, m)

}
7

(a)

≤
∑

(k,m)
(k0,m0)

exp
{

1
2N(k, m) log n + τ(n, k0, m0) − pen(n, k, m) + pen(n, k0, m0)

}
8

(b)

≤
∑

(k,m)
(k0,m0)

exp

⎧⎨⎩−
⎡⎣ ∑

(k,m)
(k′,m′)
(k0,m0)

1
2
N(k′, m′) log n

⎤⎦+ τ(n, k0, m0) − α[ϕ(k, m) − ϕ(k0, m0)] log n

⎫⎬⎭ 9

≤ C0

∑
(k,m)
(k0,m0)

exp{−α[ϕ(k, m) − ϕ(k0, m0)] log n}. 10

11

Here, Proposition 3.5 and N(k, m) ≥ N(k0, m0) (for all (k, m)�(k0, m0)) yield (a) and (b) follows from the 12

definition of the penalty term (note that the second sum may be empty). Now ϕ : N� ×N → N increases, hence 13

P0{An} ≤ C0

∑
j≥1

exp{−αj log n} ≤ C0n
−α(1 − n−α)−1 = O(n−α). 14

Since α > 1, the sum
∑

n P0{An} is finite, and the proof is complete. � 15

3.2. No underestimation 16

In this section, we prove that, P0-almost surely, (k̂, m)n does not underestimate the true order (k0, m0) 17

eventually. 18

Proposition 3.6. Under the assumptions of Theorem 3.1, P0-almost surely, (k̂, m)n �(k0, m0) eventually. 19

The first step while proving Proposition 3.6 is to relate the distribution of (k̂, m)n with the behaviour of the 20

logarithm of the maximum likelihood ratio [log MLk,m(Y n
1 ) − log P0(Y n

1 )]. This is the purpose of Lemma 3.7, 21

whose proof is given in the appendix. From now on, “infinitely often” abbreviates to “i.o.”. 22

Lemma 3.7. Under the assumptions of Theorem 3.1, for every k ≥ 1 and m ≥ 0, there exists a sequence {εn}
of random variables that converges to zero P0-almost surely such that, for all n ≥ 1,

P0

{
(k̂, m)n = (k, m) i.o.

}
≤ P0

{
1
n

[log MLk,m(Y n
1 ) − log P0(Y n

1 )] ≥ εn i.o.

}
.

Now, Proposition 3.6 essentially relies on two properties: a) the existence of a convenient Strong Law of Large 23

Numbers for logarithms of likelihood ratios, in the spirit of the Shannon-Breiman-McMillan theorem – see 24

Lemma 3.8; b) the existence of a finite sieve for the set of all ergodic distributions in Πk,m – see Lemma 3.9. 25

Let us recall that for any probability measures P1 and P2 on the same measurable space (Ω,A) the relative 26

entropy D(P1|P2) is defined by 27

D(P1|P2) =
∫

log
dP1

dP2
dP1, 28

if P1 is absolutely continuous with respect to P2, and +∞ otherwise. 29
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Now, consider any probability measures P1 and P2 on the same sequence space (ΩN,AN), with marginals
onto (Ωn,An) denoted by Pn

1 and Pn
2 , respectively. The asymptotic relative entropy D∞(P1|P2) (or divergence

rate) is defined, when it exists, by

D∞(P1|P2) = lim
n→∞

1
n
D(Pn

1 |Pn
2 ).

Lemma 3.8 (Shannon-Breiman-McMillan). Let {Yj}j≥1 be an ergodic stationary process whose distribution P01

belongs to ∪k≥1,m≥0Πk,m. For all k ≥ 1, m ≥ 0 and any stationary ergodic Pθ ∈ Πk,m, the divergence rate2

D∞(P0|Pθ) exists and is finite. Moreover, P0-almost surely,3

lim
n→∞

1
n

[log Pθ(Y n
1 ) − log P0(Y n

1 )] = −D∞(P0|Pθ). (8)

We omit the proof of Lemma 3.8, which is a generalization of a similar classical theorem that holds for hidden4

Markov models [2, 11, 13, 17]. Lemma 3.8 notably ensures the existence of D∞(P1|P2) for stationary ergodic5

distributions P1 and P2 belonging to ∪k≥1,m≥0Πk,m.6

Stating the existence of a finite sieve involves two new subsets. For any δ > 0, let us denote by Πk,m
δ the7

subset of stationary probabilities Pθ in Πk,m such that θ has all its coordinates lower bounded by δ. Moreover,8

let Πk,m
e stand for the subset of stationary ergodic probabilities in Πk,m.9

Lemma 3.9. Let us set k ≥ 1 and m ≥ 0. For every ε > 0, there exist δ > 0, a finite set of indexes Ik,m
ε and a

finite set of stationary probabilities {Pi}i∈Ik,m
ε

included in Πk,m
δ such that, for all stationary ergodic Pθ ∈ Πk,m,

there exists some Pi (i ∈ Ik,m
ε ) which guarantees that:

sup
n∈N�

max
yn
1 ∈Yn

1
n

[log Pθ(yn
1 ) − log Pi(yn

1 )] ≤ ε.

Lemma 3.9 is a key for replacing the term log Pθ in the left-hand side of (8) by log MLk,m and the right-hand10

side term of the same equation by − infP D∞(P0|P) (for P ranging over Πk,m
e ). Its proof is given in the appendix.11

Proof of Proposition 3.6. Let us set ε > 0 such that

min
(k,m)≺(k0,m0)

inf
P∈Πk,m

e

D∞(P0|P) > ε.

Such an ε exists according to a result (whose generalization is easy and omitted in our framework) first obtained12

by [16], Propositions 1 and 2.13

Let us choose arbitrarily (k, m)≺(k0, m0) and prove that P0{(k̂, m)n = (k, m) i.o.} = 0.14

According to Lemma 3.7, there exists a sequence {εn} of random variables that converges to zero P0-almost15

surely such that16

P0

{
(k̂, m)n = (k, m) i.o.

}
≤ P0

{
1
n

[log MLk,m(Y n
1 ) − log P0(Y n

1 )] ≥ εn i.o.

}
.17

Now, Lemma 3.9 guarantees the existence of a finite set {Pi}i∈Ik,m
ε

of stationary probability measures which18

belong to Πk,m
δ ⊂ Πk,m such that19

P0

{
(k̂, m)n = (k, m) i.o.

}
≤ P0

{
1
n

[
max

i∈Ik,m
ε

log Pi(Y n
1 ) − log P0(Y n

1 )
]
≥ (−ε + εn) i.o.

}
20

≤
∑

i∈Ik,m
ε

P0

{
1
n

[log Pi(Y n
1 ) − log P0(Y n

1 )] ≥ (−ε + εn) i.o.

}
.21
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Table 1. The four smallest dimensions N(k, m) of MCMR of order (k, m) when r = 4.

(m)
1 26
0 8 15 24

2 3 4 (k)

Finally, Lemma 3.8 yields the convergence of n−1[log Pi(Y n
1 ) − log P0(Y n

1 )] to −D∞(P0|Pi), P0-almost surely, 1

for all i ∈ Ik,m
ε . The choice of ε then ensures that 2

P0

{
(k̂, m)n = (k, m) i.o.

}
= 0. 3

Since (k, m)≺(k0, m0) was chosen arbitrarily, the previous equation implies that 4

P0

{
(k̂, m)n≺(k0, m0) i.o.

}
= 0 5

or, put in other words, that P0-almost surely, (k̂, m)n�(k0, m0) eventually. Thus, the proof is complete. � 6

4. Simulation study 7

In this section, we choose to discard the case k = 1. Indeed, this case corresponds to Markov models and 8

thus, to a data dependency structure which is very different from that of the case where there are at least 9

two regimes. This distinction does not appear in the theoretical part of this article. However, all results (and 10

their proofs) can be easily adapted to that slightly different framework. Finally note that in practice, MCMR 11

modelling with at least two different regimes (k ≥ 2) is used for data with no finite memory. MCMR with one 12

regime (Markov models) poorly fit such data. 13

Our theoretical study is motivated by application to biology and more precisely, to genome analysis. Choos- 14

ing a good model within a prescribed family is a very sensitive task. In [20], MCMR order selection (not 15

identification) is performed for mining Bacillus subtilis chromosome heterogeneity. After fitting all models with 16

k ∈ {2, . . . , 8} and m ∈ {0, 1, 2, 3}, the authors select (by eyeball and using biological considerations) a MCMR 17

of order (k, m) = (3, 2) for detecting atypical segments of length approximately 25 kb (1 kb equals 1, 000 nu- 18

cleotides) upon the 4, 200 kb long chromosome. In this framework, Y stands for the nucleotides set {A, C, G, T } 19

(r = 4). In particular, the four smallest dimensions of MCMR are given in Table 1. 20

In order to illustrate our work, we undertake a simple simulation study in the framework described above. 21

Evaluation of MLk,m(yn
1 ) is processed by Expectation-Maximization (EM) algorithm [4, 8]. We run EM with 22

multiple random initializations, and select the final result presenting the highest value. We use the package 23

SHOW [21], where SHOW stands for Structured HOmogeneities Watcher. It is a set of executable programs that 24

implements different uses of MCMR models for DNA sequences. The source code of SHOW is freely available. 25

The software is protected by the GNU Public Licence. 26

We arbitrarily decide to consider only MCMR of dimension at most 26. The corresponding orders (k, m) 27

appear in Table 1. Set M = {Πk,m : (k, m) ∈ N�×N, N(k, m) ≤ 26}. For each model M0 ∈ M (line 1 in Fig. 1), 28

we repeat 10 times (line 2) the following: we choose P0 ∈ M0 (line 3), then simulate a chain yn
1 (n = 100 000) 29

with distribution P0 (line 4), next for each model M ∈ M (line 5), for each ñ ∈ {25 000; 50 000; 100 000} (line 6), 30

we evaluate supP∈M P(yñ
1 ) (line 7). Afterwards, identifying the order boils down to applying (4) for a particular 31

choice of penalty term. Before discussing this final step, let us go into details about the way we choose P0 ∈ M0 32

(line 3). Because this simulation study is motivated by [20], we choose the final distribution obtained by fitting 33

the same segment [3 450 001; 3 475 000] of length 25 kb of the Bacillus Subtilis chromosome than used in [20], 34

Figure 1. For each repetition, a possibly slightly different distribution P0 is thus selected (EM is run with 35

multiple random initializations). 36



10 A. CHAMBAZ AND C. MATIAS

1 foreach (M0 ∈ M) {
2 repeat (10 times) {
3 choice of a distribution P0 in model M0

4 simulation of a chain yn
1 with distribution P0

5 foreach (M ∈ M) {
6 foreach (ñ ∈ {25 000; 50 000; 100 000}) {
7 EM-evaluation of sup

P
P(yñ

1 ) for P ranging over M
8 }
9 }
10 }
11}

Figure 1. Evaluation of MLk,m(yñ
1 ) for various models index (k, m) and simulated observations

yn
1 (ñ ∈ {25 000; 50 000; 100 000}, n = 100 000).

This simulation study validates Theorem 3.1: when ñ = 50 000 and ñ = 100 000, (k̂, m)ñ = (k0, m0) ten times1

out of ten for each true underlying model of order (k0, m0). Interestingly, this numerical evidence of consistency2

for very large values of ñ does not include the case ñ = 25 000. Indeed consistency then fails: (k̂, m)ñ = (k0, m0)3

ten times out of ten when (k0, m0) = (2, 0), (k̂, m)ñ = (k0, m0) eight times out of ten when (k0, m0) = (3, 0)4

[(2, 0) otherwise], (k̂, m)ñ = (k0, m0) two times out of ten when (k0, m0) = (4, 0) [(3, 0) otherwise], and finally5

(k̂, m)ñ = (3, 0) �= (k0, m0) ten times out of ten when (k0, m0) = (2, 1). Each time (k̂, m)ñ differs from (k0, m0),6

one has N((k̂, m)ñ) ≤ N(k0, m0). In other words, our penalty is too heavy for that sample size, and the7

asymptotic regime is arguably not reached yet when ñ = 25 000 whereas it is when ñ ≥ 50 000.8

We emphasized earlier that our penalty is heavier than the BIC penalty (i.e. 1
2N(k, m) log n). How does the9

BIC estimator behave? For every sample size ñ ∈ {25 000; 50 000; 100 000} and every true underlying model,10

the BIC estimator coincides ten times out of ten with the true order. For this estimator, the asymptotic regime11

is already reached when ñ = 25 000. Note that a slight modification of our penalty function yields another12

estimator which performs as well as the BIC one: if we replace pen(ñ, k, m) as defined in (7) by 1
2pen(ñ, k, m),13

then the new estimator equals the true order ten times out of ten for every sample size ñ and every true14

underlying model. One may finally wonder for which sample size the BIC criterion reaches its asymptotic regime.15

If the BIC estimator behaviour is still perfect when ñ = 25 000, it actually fails when ñ = 15 000. Denote by16

(k̃, m)n the BIC estimator: (k̃, m)n = (k0, m0) ten times out of ten when (k0, m0) = (2, 0), (k̃, m)n = (k0, m0)17

eight times out of ten when (k0, m0) = (3, 0) [(2, 0) otherwise], (k̃, m)n = (k0, m0) ten times out of ten when18

(k0, m0) = (4, 0), and finally (k̃, m)n = (k0, m0) nine times out of ten when (k0, m0) = (2, 1) [(3, 0) otherwise].19

Again, each time (k̃, m)n differs from (k0, m0), one has N((k̃, m)n) ≤ N(k0, m0). It is even worse when20

ñ = 10 000, where we obtain (k̃, m)n = (k0, m0) ten times out of ten when (k0, m0) = (2, 0), (k̃, m)n = (k0, m0)21

eight times out of ten when (k0, m0) = (3, 0) [(2, 0) otherwise], (k̃, m)n = (k0, m0) eight times out of ten when22

(k0, m0) = (4, 0) [(3, 0) otherwise], and finally (k̃, m)n = (k0, m0) nine times out of ten when (k0, m0) = (2, 1)23

[(3, 0) otherwise].24

In conclusion, we apply the BIC criterion to the original sequence of Bacillus Subtilis: the resulting order25

estimator equals (2, 1) (results are reported in Tab. 2). Our estimator equals (3, 0).26

A. Appendix A. Proof of Lemma 3.727

Let us set k ≥ 1 and m ≥ 0. The proof is straightforward when Qk,m = MLk,m. Indeed,28

P0

{
(k̂, m)n = (k, m) i.o.

}
≤ P0

{
1
n

[log MLk,m(Y n
1 ) − log P0(Y n

1 )] ≥ −pen(n, k0, m0)
n

i.o.

}
29
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Table 2. EM-evaluated maximum likelihood of the original sequence (length n = 25 000)
for models MCMR of order (k, m) and BIC penalty 1

2N(k, m) log n. The resulting BIC order
estimator equals (2, 1).

(k, m) (2, 0) (3, 0) (4, 0) (2, 1)
log MLk,m(yn

1 ) −34372.5 −34197.2 −34075.9 −33984.3
BIC penalty 40.5 75.9 121.5 131.6
pen(n, k, m) 43.5 124.3 251.8 391.3

and pen(n, k0, m0) = o(n). 1

Let us assume that Qk,m = NMLk,m or KTk,m. Since pen(n, k, m) is non negative, the definition of (k̂, m)n 2

readily yields that 3

P0

{
(k̂, m)n = (k, m) i.o.

}
≤ P0

{
log MLk,m(Y n

1 ) − log P0(Y n
1 ) 4

≥ log
MLk,m(Y n

1 )
Qk,m(Y n

1 )
− log

P0(Y n
1 )

Qk0,m0(Y n
1 )

− pen(n, k0, m0) i.o.
}
. 5

Then, by virtue of Lemma 3.4, it holds that: 6

1
n

∣∣∣∣∣ max
yn
1 ∈Yn

{
log

MLk,m(yn
1 )

Qk,m(yn
1 )

}∣∣∣∣∣ −→n→∞ 0, (9)

1
n

max
yn
1 ∈Yn

{
log

P0(yn
1 )

Qk0,m0(yn
1 )

}
≤ 1

n
max

yn
1 ∈Yn

{
log

MLk0,m0(yn
1 )

Qk0,m0(yn
1 )

}
−→

n→∞ 0. (10)

The final step is a variant of the so-called Barron’s lemma [11], Theorem 4.4.1: a smart application of the 7

Borel-Cantelli lemma yields that, P0-almost surely, 8

lim inf
n→∞

1
n

log
P0(Y n

1 )
Qk0,m0(Y n

1 )
≥ lim inf

n→∞
−2 logn

n
= 0. (11)

Now, combining (9,10,11) with pen(n, k, m) = o(n) ensures the existence of a sequence {εn} of random variables 9

that converge to zero P0-almost surely such that 10

P0

{
(k̂, m)n = (k, m) i.o.

}
≤ P0

{
1
n

[log MLk,m(Y n
1 ) − log P0(Y n

1 )] ≥ εn i.o.

}
. 11

This concludes the proof of Lemma 3.7. 12

B. Appendix B. Proof of Lemma 3.9 for the existence of finite sieves 13

Let us set k ≥ 1 and m ≥ 0 and recall that the cardinality of Y is denoted by r. The proof of Lemma 3.9 is 14

a straightforward consequence of the two lemmas below. 15

Lemma B.1. For all δ > 0, the set of functions θ �→ Pθ(yn
1 ) indexed by n ∈ N� and yn

1 ∈ Yn is equicontinuous 16

over Θk,m
δ . 17

Lemma B.2. For every θ ∈ Θk,m
e and δ > 0 small enough, there exists θδ ∈ Θk,m

δ such that, for all n ∈ N�
18

and yn
1 ∈ Yn, the following bound holds: 19

1
n

[log Pθ(yn
1 ) − log Pθδ

(yn
1 )] ≤ 2(k2 + r2)δ. 20
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Lemma B.1 is a simple generalization of a result of Liu and Narayan [18] (Lem. 2.6), so we omit its proof. The1

proof of Lemma B.2 is also adapted from [18] (see their Ex. 2). The details are postponed after the proof of2

Lemma 3.9.3

Proof of Lemma 3.9. Let us set ε > 0. According to Lemma B.1, for each θδ ∈ Θk,m
δ , there exists an open ball4

B(θδ) ⊂ Θk,m
δ such that, for every θ ∈ B(θδ),5

sup
n∈N�

max
yn
1 ∈Yn

1
n
|log Pθ(yn

1 ) − log Pθδ
(yn

1 )| ≤ ε/2.6

Since Θk,m
δ is a compact set, the Borel-Lebesgue property ensures the existence of a finite subset {θi

δ : i ∈ Iε}7

of Θk,m
δ such that ∪i∈IεB(θi

δ) = Θk,m
δ . Let us denote by Pi the probability measure Pθi

δ
(for each i ∈ Iε). In8

summary, for all θδ ∈ Θk,m
δ , there exists i ∈ Iε such that9

sup
n∈N�

max
yn
1 ∈Yn

1
n
|log Pθδ

(yn
1 ) − log Pi(yn

1 )| ≤ ε/2. (12)

Let us set δ ≤ ε/[4(k2 + r2)]. By virtue of Lemma B.2, for every θ ∈ Θk,m
e , there exists θδ ∈ Θk,m

δ such that10

sup
n∈N�

max
yn
1 ∈Yn

1
n

[log Pθ(yn
1 ) − log Pθδ

(yn
1 )] ≤ 2(k2 + r2)δ ≤ ε/2. (13)

Combining (12,13) concludes the proof. �11

Proof of Lemma B.2. Set θ = (A, B) ∈ Θk,m
e (see Definition 2 for the decomposition of parameter θ) and δ > 0.12

The parameter θδ is constructed in the following way.13

For each row i ∈ {1, . . . , k} of matrix A, replace the maximal coefficient a(i, jmax) by a(i, jmax)−(k−1)δ, then14

add δ to the other coefficients of this row. This yields the new parameter Aδ. Moreover, for each fixed “row”15

(tm; x) ∈ Ym×X , replace the maximal coefficient of matrix B, namely b(jmax|tm; x), by b(jmax|tm; x)− (r−1)δ,16

then add δ to the other coefficients.17

It is easily checked that the constructed parameter θδ = (Aδ, Bδ) belongs to Θk,m
δ for δ ≤ 1/ max(k2, r2).18

Besides, it is also readily seen that, for all i, j ∈ {1, . . . , k} and (tm; x) ∈ Ym ×X ,19

a(i; j) ≤ aδ(i; j)
(1 − k2δ)

and b(j|tm; x) ≤ bδ(j|tm; x)
(1 − r2δ)

·20

Therefore, for all n ∈ N� and yn
1 ∈ Yn,21

Pθ(yn
1 ) ≤ Pθδ

(yn
1 )(1 − k2δ)−n(1 − r2δ)−n,22

hence
1
n

[log Pθ(yn
1 ) − log Pθδ

(yn
1 )] ≤ − log(1 − k2δ) − log(1 − r2δ).

This concludes the proof, because − log(1 − u) ≤ 2u for any u small enough. �23

Acknowledgements. We want to thank the associate editor and a referee, whose comments led to important improvements24

of this paper.25



ORDER ESTIMATION FOR MARKOV CHAINS WITH MARKOV REGIME 13

References 1

[1] D. Blackwell and L. Koopmans, On the identifiability problem for functions of finite Markov chains. Ann. Math. Stat. 28 2

(1957) 1011–1015. 3

[2] S. Boucheron and E. Gassiat, Order estimation and model selection, in Inference in hidden Markov models, Olivier Cappé, 4
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