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Abstract. This paper investigates the influence of static magnetic field exposure on blood flow. We mainly

focus on steady flows in a rigid vessel and review the existing theoretical solutions, each based on some

simplifying hypothesis. The results are developed, examined and compared, showing how the magnetohy-

drodynamic interactions reduce the flow rate and generate electric voltages across the vessel walls. These

effects are found to be moderate for magnetic fields such as those used in magnetic resonance imaging. In

this case, a very simplified solution, formulated by neglecting the walls conductivity as well as the induced

magnetic fields, is proven suitable.

PACS. 41.20.-q Electromagnetism – 47.63.-b Biological fluid dynamics – 47.65.-d Magnetohydrodynamics

and electrohydrodynamics

1 Introduction

Studying the effects of magnetic fields on human physi-

ology has raised great interests over the past years, es-

pecially now that the wide medical use of Magnetic Reso-

nance Imaging (MRI) [1] is constantly increasing the expo-

sures to strong static fields. Besides some subtle biological

effects upon cell division at very high field [2], documented

experiments have shown that the manifested biological ef-

fects of a static magnetic field are mostly due to blood
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flow in the large arteries. When the body is subjected

to a magnetic field, the positively and negatively charged

blood particles, flowing transversally to the field, get de-

flected by the Lorentz force in opposite directions. This

induces electrical currents and voltages across the vessel

walls and in the surrounding tissues, strong enough to be

detected at the surface of the thorax in the electrocar-

diogram (ECG) [3]. In the cardiac MRI gating context,

where the R peaks of the simultaneously recorded ECG

are used to trigger the image acquisition sequences, these
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voltages can be particularly hindering for synchronization

as they might lead to incorrect peak detections [4,5]. Fur-

thermore, the interactions between the induced currents

and the applied magnetic field can cause a reduction of

flow rate and, hence, a reactive compensatory increase in

blood pressure in order to retain a constant volume flow

rate [6].

Magnetic field interactions with blood flow have been demon-

strated by multiple authors throughout in vitro experi-

ments as well as in vivo studies. Keltner et al.[7] and Tasu

et al. [8] measured pressure and flow rate using in vitro

experimental setups. Gaffey et al. [9] and Tenforde et al.

[10] observed animal ECG alterations, manifested mainly

as T wave elevations. Weikl et al. [11] measured changes

due to superimposed voltages on animal and human ECG.

More recently, Abi Abdallah et al. [12] characterized tem-

poral and spectral alterations of human ECG, measuring

T wave amplitudes, and showing a signal energy increase

and a spectral shift toward low frequencies. Jehenson et

al. [13] observed variations of heart frequency at 2T and

indicated that the sinus node might be affected. Subse-

quent studies [11], [14] reported no such changes of heart

rates in static fields up to 8T. Chakeres et al. [14] assessed

the effects of magnetic fields on human vital signs and es-

sentially noted an arterial pressure increase. Holden [15]

in his study of the heart sensitivity to induced potentials

predicted notable effects on pacemaker rate for static fields

greater than 8T.

Theoretical magnetohydrodynamic blood flow calculations

have, however, been addressed much earlier and go back

as far as the early sixties. Korchevskii et al.[16] proposed a

velocity profile solution for blood flow between two parallel

plates under a constant pressure gradient with a perpen-

dicular magnetic field, under the assumption that blood

is newtonian. Other studies focused on flow in a rigid cir-

cular tube with non conducting walls placed in a trans-

verse magnetic field, in order to offer a more realistic

model for blood flow in vessels. In this case, the most

complete solution of the magnetohydrodynamic equations

of a conducting fluid was proposed by Gold [17]. Setting

a constant pressure gradient, Gold derived expressions for

the velocity profile as well as for the induced magnetic

field. Vardanyan [6] subsequently published an approxi-

mate steady solution where the velocity profile and flow

rate were calculated by neglecting the induced fields. More

recent studies have been essentially based on these found-

ing works, such as the study of Keltner et al. [7], where

a comparison was established between the results of Gold

and Vardanyan to assess the consequences of neglecting

the inductions. With the same hypothesis as Vardanyan,

Sud et al. [18] later dealt with a sinusoidal pressure gradi-

ent to describe the pulsed nature of blood flow in arteries,

and recently, Abi Abdallah et al. [19] proposed a more re-

alistic arterial flow solution using a physiological pressure

gradient model. Both solutions, however, assumed the ar-

teries to be rigid vessels. In a follow-up to their first paper,

Sud et al. [20] took into account the compliant nature of

large arteries and studied the flow in an elastic tube where

they calculated expressions for the velocity profiles and

pressure waves. The hypothesis of conducting walls was
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only introduced by Kinouchi et al. [21] who included in-

ductions in the vessel and the surrounding tissues, in the

steady flow case, to evaluate the ECG superimposed volt-

ages, using finite elements.

In this paper we review the steady magnetohydrodynam-

ics solutions in a rigid vessel. We analyze the exact solu-

tion presented by Gold for which we show new illustrations

and interpretations, and then develop it further to show

the separation of charges across the vessel walls. After-

ward, we consider the approximate solution of Vardanyan

and complete it with induced potential calculations. These

solutions are then compared to each other and to the re-

sults of Kinouchi et al., obtained for conducting walls, in

order to discuss the influence of the simplifying assump-

tions on calculations.

2 General equations

The flow of a newtonian , incompressible, conducting fluid

in an externally applied magnetic field is governed by the

laws of magnetohydrodynamics. It is defined by a coupling

of Maxwell’s quasi-static electromagnetic equations and

Ohm’s law, on the one hand,

∇ ·E =
ρe

ǫ
, (1)

∇∧ E = −
∂B

∂t
, (2)

∇ ·B = 0 , (3)

∇∧ B = µj , (4)

j = σ (E + u ∧ B) , (5)

and the Navier-Stokes and conservation equations on the

other,

ρ

(
∂u

∂t
+ (u · ∇)u

)

= −∇p + η∆u + j ∧ B , (6)

∇ · u = 0 . (7)

Where u and p represent the fluid velocity (m/s) and pres-

sure (Pa), B and E are the magnetic (T ) and electric

(V/m) fields, and j is the electric current density (A/m2).

With ǫ the electric permittivity (F/m), ρe the charge den-

sity (C/m3), µ the magnetic permeability (H/m) and η,

σ, ρ respectively the fluid viscosity (Pa.s), conductivity

(S/m) and density (kg/m3).

By substituting j with its expression given in (4), the

Navier-Stokes equation yields,

ρ

(
∂u

∂t
+ (u · ∇)u

)

= −∇p+η∆u+
1

µ
(∇ ∧ B)∧B . (8)

Moreover, by calculating the curl of (5), then using (2)

and (4), we can establish the induction equation,

∂B

∂t
= ∇ ∧ (u ∧B) −

1

σµ
∇ ∧ (∇ ∧ B) ,

which can also be written as,

∂B

∂t
= ∇ ∧ (u ∧B) +

1

σµ
∆B , (9)

using the formula a ∧ (b ∧ c) = (a · c)b − (a · b) c , with

∇ · B = 0.

Thus, characterizing the magnetohydrodynamic flow of a

newtonian, incompressible, conducting fluid sums up to

the resolution of the following system of equations,







ρ
(

∂u
∂t + (u · ∇)u

)
= −∇p + η∆u + 1

µ (∇ ∧ B) ∧ B ,

∂B
∂t = ∇ ∧ (u ∧B) + 1

σµ∆B .

(10)
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Assuming that the blood is newtonian, in what follows

we consider the case of a unidirectional flow of blood in

a rigid circular vessel, under the influence of a transverse

magnetic field (figure 1). The velocity and magnetic field

are expressed as,

u = (0, 0, u(t, r, θ)) andB = (B0 cos θ,−B0 sin θ, BI(t, r, θ)) ,

with BI << B0. The induced magnetic field is parallel to

the flow and ensures ∇·B = 0. In fact, the charge separa-

tion is expected to occur in a plane that is perpendicular

to the velocity, thus producing an electric field oriented in

that same plane. Therefore, ∇∧E which is equal to −∂B
∂t

would be parallel to Oz.

The projection of (10) on ez , written in cylindrical coor-

dinates, gives,






ρ∂u
∂t = −∂p

∂z + η∆u + B0

µ

(
cos θ ∂BI

∂r − sin θ
r

∂BI

∂θ

)
,

∂BI

∂t = B0

(
cos θ ∂u

∂r − sin θ
r

∂u
∂θ

)
+ 1

σµ∆BI ,

(11)

supposing that the pressure gradient is only z-dependent.

This equation system might be expressed in a non-dimen-

sional form by introducing the Hartmann, the Reynolds,

and the magnetic Reynolds numbers,

Ha = B0a
√

σ
η , Re = ρu0a

η , Rm = au0σµ ,

and performing substitutions such as,

Ũ = u
u0

, r̃ = r
a , B̃ = BI

B0

, τ = tu0

a , G = − a2

ηu0

∂p
∂z ,

where a represents the vessel radius, and u0 is some char-

acteristic mean velocity.

Equations (11) thus become,






Re
∂Ũ
∂τ = G + ∆Ũ +

H2

a

Rm

[

cos θ ∂B̃
∂r̃ − sin θ

r̃
∂B̃
∂θ

]

,

Rm
∂B̃
∂τ = ∆B̃ + Rm

[

cos θ ∂Ũ
∂r̃ − sin θ

r̃
∂Ũ
∂θ

]

.

(12)

For a steady magnetohydrodynamic flow, the non-dimen-

sional system can be formulated [17] as,






∆Ũ +
H2

a

Rm

[

cos θ ∂B̃
∂r̃ − sin θ

r̃
∂B̃
∂θ

]

= −G ,

∆B̃ + Rm

[

cos θ ∂Ũ
∂r̃ − sin θ

r̃
∂Ũ
∂θ

]

= 0 .

(13)

3 Exact solution

Gold [17] established an exact solution for (13) while con-

sidering non conducting vessel walls. This hypothesis con-

stitutes a good approximation since, as stated by [7], the

vascular tissues are about 6 times more resistive than

blood. After decoupling the two equations, Gold resolved

the problem using Fourier series, with boundary condi-

tions such as Ũ(1, θ) = 0 and B̃(1, θ) = 0 , and for-

mulated the following expressions for the velocity and in-

duced magnetic field,

Ũ(r̃, θ) =
G

2Ha

[

e−
Ha
2

r̃ cos θ
∞∑

n=0

ǫn

I ′n
(

Ha

2

)

In

(
Ha

2

)In

(
Ha

2
r̃

)

cosnθ

+ e
Ha
2

r̃ cos θ
∞∑

n=0

(−1)nǫn

I ′n
(

Ha

2

)

In

(
Ha

2

)In

(
Ha

2
r̃

)

cosnθ

]

,

(14)

B̃(r̃, θ) =
RmG

2H2
a

[

e−
Ha
2

r̃ cos θ
∞∑

n=0

ǫn

I ′n
(

Ha

2

)

In

(
Ha

2

)In

(
Ha

2
r̃

)

cosnθ

− e
Ha
2

r̃ cos θ
∞∑

n=0

(−1)nǫn

I ′n
(

Ha

2

)

In

(
Ha

2

)In

(
Ha

2
r̃

)

cosnθ

− 2r̃ cos θ

]

, (15)

where In is the nth order modified Bessel function of the

first kind, and

ǫn =







1 for n = 0 ,

2 for n > 0 .

Note that expanding (14) for small values of Ha gives,

Ũ(r̃) = G
4

(
1 − r̃2

)
, when Ha → 0. Reverting to dimen-

sional values we get, uz(r) = −
∂p/∂z

4η

(
a2 − r2

)
, which is



Dima Abi Abdallah et al.: Effects of Static Magnetic Field Exposure on Blood Flow 5

none other than the classical Poiseuille flow profile, ob-

tained in the absence of magnetic fields.

The non-dimensional mean velocity, defined as the ratio of

the flow rate, q =
∫∫

A
udS to the cross section, A = πa2,

is given by,

¯̃U =
1

π

∫ 2π

0

∫ 1

0

Ũ r̃ dr̃dθ .

Integrating (14) yields,

¯̃U =G

∞∑

n=0

(−1)nǫn

I ′n(Ha

2 )

HaIn

(
Ha

2

)

[(

1 +
n2

(
Ha

2

)2

)

I2
n

(
Ha

2

)

−I
′2
n (

Ha

2
)

]

. (16)

Using the velocity and magnetic fields formulas, we can

then draw up expressions for the induced current, electric

field and voltage.

Equation (4) gives,

j(r̃, θ) =
1

µ
∇ ∧ B =

1

µ

B0

a

(

1

r̃

∂B̃

∂θ
er −

∂B̃

∂r̃
eθ

)

.

Defining j0 = 1
µ

B0

a , we write in a non-dimensional form,

j̃(r̃, θ) =
j(r̃, θ)

j0
=

1

r̃

∂B̃

∂θ
er −

∂B̃

∂r̃
eθ . (17)

Likewise, the electric field can be retrieved from (5),

E(r̃, θ) =
j

σ
− u ∧ B

= B0u0

[(

1

r̃Rm

∂B̃

∂θ
− Ũ sin θ

)

er

−

(

1

Rm

∂B̃

∂r̃
+ Ũ cos θ

)

eθ

]

.

With E0 = B0u0 , we write,

Ẽ(r̃, θ) =

(

1

r̃Rm

∂B̃

∂θ
− Ũ sin θ

)

er

−

(

1

Rm

∂B̃

∂r̃
+ Ũ cos θ

)

eθ .

(18)

The charge density can be calculated from (1), (4), and

(5)

ρe = −ǫ∇ · (u ∧ B)

⇒ ρe(r̃, θ) = −ǫ
B0u0

a

(

sin θ
∂Ũ

∂r̃
+

cos θ

r̃

∂Ũ

∂θ

)

. (19)

Setting ρe0
= ǫB0u0

a = ǫE0

a , we write the dimensionless

charge density as,

ρ̃e(r̃, θ) = −

(

sin θ
∂Ũ

∂r̃
+

cos θ

r̃

∂Ũ

∂θ

)

. (20)

The electric potential, induced on the vessel walls, can

be evaluated by integrating the radial component of the

electric field for a given value of θ. The highest voltage

amplitude is attained for θ = π/2,

V = 2

∫ a

0

Er(r, π/2) dr = 2u0B0a

∫ 1

0

Ẽr(r̃, π/2) dr̃ .

With V0 = 2u0B0a , we get,

Ṽ =

∫ 1

0

Ẽr(r̃, π/2) dr̃ , (21)

where,

Ẽr(r̃, π/2) =
1

r̃Rm

∂B̃

∂θ

]

θ=π/2

− Ũ(r̃, π/2) .

Using the expressions of B̃ and Ũ given by (14) and (15),

Ẽr(r̃, π/2) can be calculated as,

Ẽr(r̃, π/2) = −
G

Ha

[

1

2

∞∑

k=0

(−1)kǫk

I ′2k

(
Ha

2

)

I2k

(
Ha

2

)I2k

(
Ha

2
r̃

)

−
1

Ha

+
2

r̃Ha

∞∑

k=0

(−1)k(2k + 1)
I ′2k+1

(
Ha

2

)

I2k+1

(
Ha

2

)I2k+1

(
Ha

2
r̃

)]

.

(22)

The results illustrated hereafter are computed in Matlab

using the numerical parameters shown in Table 1. In this

case, the Hartmann number would relate to the static

magnetic field intensity by B0 ≈ 9 Ha.
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3.1 Velocity profiles

In this section we present some illustrations of velocity

results. Figures 2 and 3 compare the 3D profiles and con-

tours for various intensities of B0. They show that the

presence of an external magnetic field tends to reduce the

blood flow and flatten the velocity profile. For typical MRI

fields (up to 8T ) the retardation and flattening effects are

almost indiscernible (figures 2(b) and 2(c)). At 1.5T the

peak velocity is reduced by 0.09% only, and at 8T the re-

duction is slighter than 2.5%. Contrarily, for B0 = 20T ,

30T and 40T a clear reduction of the velocity amplitude

can be noted in figures 2(d), 2(e) and 2(f), where the pro-

file is flattened while being stretched parallel to the di-

rection of B0 (figures 3(d), 3(e) and 3(f)). By comparing

figures 2(a) and 2(f) we can observe a peak velocity re-

duction of 34.5%. This agrees very well with the calcula-

tions of Keltner et al. [7] who noted a 30% reduction for

Ha = 4.

Figure 4 shows the velocity profiles plotted versus r̃ for

θ = 0, and θ = π/2, using various Ha values. For Ha = 0

we recognize the Poiseuille profile plots, which are iden-

tical in both planes. Then, as noted above, when Ha in-

creases, the velocity is reduced and the curve is flattened.

For high field intensities the flattening is more significant

in the plane θ = 0, i.e. parallel to B0, whereas for small

Ha the axial symmetry is almost preserved. Figure 5 plots

the decrease of the mean velocity as Ha augments. For

Ha = 4.47, for example, we get a 25% reduction, while, as

mentioned earlier, the peak velocity is cut down by 34.5%.

This can only confirm the flattening process.

Using conducting walls, Kinouchi et al. [21] evaluated a

4.93% mean velocity decrease for Ha = 1, whereas here

the mean velocity is reduced by only 2%. This is almost

equivalent to the authors’ computed reduction when the

walls conductivity is divided by 10 (a reduction inferior

to 2.6% was reported). In fact, contrarily to the case of

conducting walls where the current exits the vessel and is

conducted to the neighboring tissues, the insulating walls

would capture the induced currents and force them to cir-

culate on the inner side of the vessel, generating current

loops [21]. Currents circulating in the opposite direction

to the charge separation, induce a compensating Lorentz

force which leads to an underestimation of flow retarda-

tion. This underestimation gap widens as Ha increases

(figure 5).

Note that for a Poiseuille flow, the mean velocity is given

by ¯̃Upois = a2

8ηu0

∆P
L , thus,

¯̃Upois

G = 1
8 . This is the exact

value traced in figure 5 when Ha = 0.

3.2 Induced magnetic fields

Figures 6 and 7 show the induced magnetic fields inten-

sities for three values of B0. The plots present two lobes

on each side of the main current line : one in the same

direction as the flow, and another opposite to the flow

(the charge separation happens along Oy, perpendicular

to both the flow and the static field). The shapes are

somewhat identical for low and high intensities, but the

lobe magnitude increases with the applied field. It remains

however very weak , even for B0 = 40T it does not ex-
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ceed 4 × 10−7T (lower than earth’s magnetic field which

amounts to 5 × 10−5T ).

Figure 8, matching Gold’s figure 3, plots the non-dimen-

sional induced field versus r̃ in the plane θ = 0 (BI = 0

in θ = π/2), for several values of Ha. The induced field

increases as we move away from the center, to attain a

maximum, then decreases to become null on the insulat-

ing walls. This is consistent with the lobe shape traced

in figure 6. It can be noticed that the induced field value

is not proportional to the applied field. In fact, when B0

increases, the flow is retarded further, therefore reducing

the inductions. This can be confirmed by observing the

evolution of the induced field as B0 changes in figure 9.

For small applied intensities, the induction augments with

B0 then peaks around B0 = 50T (Ha ≈ 5.5). Beyond that,

flow reductions become very considerable and the induced

fields weaken.

3.3 Induced current densities

Figure 10 shows the j̃r and j̃θ components of the induced

current density. In the vessel center, j̃r is predominant

along the Oy direction and j̃θ is small, whereas in the

vicinity of the walls j̃θ is prominent and j̃r is null. This

indicates that the current flows mainly in the center par-

allel to Oy, once its comes near the walls it loops down-

ward (figure 11), thus conforming to the hypothesis of non

conducting walls: the current is unable to exit the vessel

and circulates in a closed loop on the inner side of the

walls [7]. As for the current amplitude, it is proportional

to B0, as shown in figure 12. Using the parameters of Ki-

nouchi et al. [21] (η = 5 · 10−3Pa.s and u0 = 0.6m/s),

we find, for B0 = 1T , a current density of approximately

150mA/m2 near the center. This value is clearly inferior to

the one computed by [21] who report current densities of

approximately 200mA/m2. This difference is most likely

due to the compensating current circulation opposite to

the charge separation direction.

3.4 Induced electric fields, charge densities and wall

potentials

The transverse components of the induced electric field

shown in figure 13, indicate that, as would be expected,

the field is primarily oriented along −ey, in opposite di-

rection to the main current (from the positive charges to-

ward the negative ones). Its amplitude increases with B0,

it is the highest near the vessel center and weakens as we

move away vertically toward the walls (figure 14). Hence

the Lorentz force acts strongest at the center.

Figure 15, presenting the charge density, shows how the

positive and negative particles are pushed apart by the

Lorentz force, thus forming symmetric concentrations on

either side of the Ox axis. The separation is better em-

phasized when B0 augments : the concentrations intensify,

and the charges are pushed further against the walls.

The induced voltage across the vessel walls for θ = π/2 is

presented in figure 16. For small Ha values, V increases

rapidly with B0, whereas for very strong static magnetic

fields the curve slope becomes a lot less steep. In fact,

since the potential is proportional to both the magnetic
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field and the velocity, for high fields where the flow is sig-

nificantly reduced, the augmentation of B0 is somewhat

compensated by the velocity reduction.

Note that, by using the parameters of [21], for B0 = 1T

we get a 12mV voltage amplitude, while Kinouchi et al.

give 4.4mV on the aortic wall at θ = π/2, hence a po-

tential difference across the wall of 8.8mV . Our insulating

walls assumption, has therefore led to a voltage overesti-

mation of almost 36%. For higher magnetic field values, a

larger overestimation should be expected, given that the

gap between the flow rates would be more substantial.

4 Approximate solution

4.1 Velocity profiles

Vardanyan [6] advanced that for low Rm number flows,

such as in the case of blood flow, an approximate solution

of the problem might be formulated by neglecting the in-

duced fields. In this case, the flow would only be defined

by the Navier-Stokes equation where j is given by Ohm’s

law (5) with E << u ∧B0 (no external electric field). By

replacing j = σu ∧ B0 in equation (6), the projection

on the Oz axis of the Navier-Stokes steady equation in

cylindrical coordinates take on the form,

∂p

∂z
= η

(
1

r

∂u

∂r
+

∂2u

∂r2

)

− σuB2
0 . (23)

Using non-dimensional parameters, we write,

∆Ũ − H2
aŨ = −G , (24)

with the boundary condition Ũ(1) = 0.

The solution of this differential equation can be formu-

lated as,

Ũ =
G

H2
a

(

1 −
I0 (Har̃)

I0(Ha)

)

. (25)

The mean velocity in this case would be,

¯̃U = 2
G

H2
a

(
1

2
−

I1(Ha)

HaI0(Ha)

)

. (26)

Figure 17 compares the velocity profiles computed us-

ing the approximate solution (25), on the one hand, and

Gold’s exact solution (14) for θ = 0 and θ = π/2, on

the other hand. One might notice that neglecting the in-

duced fields overestimates the flow retardation, especially

for strong fields, and disregards the θ asymmetrical nature

of the profile. This overestimation can also be noted in fig-

ure 18 showing the mean velocity plots. When the induced

fields are neglected, the mean velocity tends more rapidly

to zero as Ha increases. In fact, the approximate solution

only deals with the consequences of a current circulating

perpendicular to the flow and to the external magnetic

field: j = σu ∧ B , which defines the charge separation.

Contrarily, the exact solution, also includes the current

recirculation by using j = 1
µ∇∧BI , thus considering the

looping currents near the walls (figure 11) which have an

opposing effect on flow retardation. When Ha augments,

the currents intensify and the recirculation effects are ac-

centuated, consequently widening the gap between the two

solutions. Of course, neglecting the looping currents, by no

means imitates the case where currents exit the walls, it

does not, therefore, compensate the disparity between the

results of Gold and Kinouchi et al (figure 18). Note that

even if BI is very small, there will always be non negligi-
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ble current loops, since they are related to the curl of BI

by the factor 1
µ . Despite the fact that the approximate

solution neglects the effect of these loops on the flow, it

has to acknowledge the presence of a return path for the

considered current. If the path did not exist, the charges

would accumulate and the induced electric field would end

up compensating the Lorentz force, and so the charge sep-

aration would stop, and the flow would return to normal.

Figure 18 plots the same data as figure 5 in Gold’s pa-

per and figure 4 given in the paper of Keltner et al. The

curves start at
¯̃U
G = 1

8 for Ha = 0, which matches exactly

the Poiseuille flow value.

4.2 Induced potential

Supposing that the electromagnetic steady state is in-

stantly reached (see section 5), the charge conservation

equation, ∇· j+ ∂ρe

∂t = 0 , transforms into ∇· j = 0 . Thus

the divergence of Ohm’s equation (5) gives,

∇ ·E + ∇ · (u ∧ B) = 0 .

Likewise, neglecting time dependence in equation (2) im-

plies that ∇ ∧ E = 0 ; hence E derives from an electric

potential E = −gradφ , and therefore,

∆φ = ∇ · (u ∧ B) . (27)

If we assume that φ(r, θ) = f(r) sin θ , as done by [22],

then (27) yields,

sin θ
∂2f

∂r2
+

1

r

∂f

∂r
sin θ −

f

r2
sin θ =

1

r

∂

∂r
(ruB0 sin θ)

+
1

r

∂

∂θ
(uB0 cos θ) ,

which can also be written as,

∂

∂r
(r2f ′ − rf) = B0r

2 ∂u

∂r
. (28)

This equation may be solved to obtain an expression for

f , nonetheless in this study we are only interested in cal-

culating a potential difference across the wall, and not a

voltage distribution in the vessel.

Integrating (28) between 0 and a, using the boundary con-

dition u(a) = 0, gives,

a2f ′(a) − af(a) = −B0ūa2 .

Since the walls are assumed to be insulating, the radial

component of j is null for r = a, hence the projection on

er of Ohm’s equation gives,

(∇φ · er)r=a = 0 ⇒ f ′(a) = 0 .

and thus we get f(a) = B0aū .

The maximum potential is attained for θ = π/2,

φ(a, π/2) = B0aū , (29)

that’s what Kinouchi et al. call estimated potential from

the electromotive force.

The voltage across the walls would then be given by,

V = φ(a, π/2) − φ(−a, π/2) = 2B0aū . (30)

With V0 = 2u0B0a, we write (30) in a non-dimensional

form using (26),

Ṽ = ¯̃U = 2
G

H2
a

(
1

2
−

I1(Ha)

HaI0(Ha)

)

. (31)
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Figure 19 plots the induced voltages across the vessel walls

computed using the exact and approximate solution. For

small values of Ha, the curves coincide well. At 8T for

example (Ha = 0.9), the two calculations differ only by

9%, and for Ha = 1.2 (B0 = 10.7T ) , the error amounts

to 12.5%. On the other hand, for stronger static fields,

the curves diverge rapidly because of the additionnal flow

retardations introduced by Vardanyan’s approximate so-

lution. Beyond 15T , the difference starts exceeding 25%.

5 Discussion

The electromagnetic state In the studied stationary flow

cases, the electromagnetic process can also be presumed

steady. In fact, the temporal variations of the electro-

magnetic quantities are defined by the charges dynamics,

which are characterized by

∂ρe

∂t
= −∇ · j (charge conservation)

= −σ∇ ·E− σ∇ · (u ∧ B) (by Ohm’s law)

= −
σ

ǫ
ρe − σ∇ · (u ∧ B) (by Maxwell’s (4))

giving,

∂ρe

∂t
+

σ

ǫ
ρe = −σ∇ · (u ∧ B) (32)

Since the time constant associated with this differential

equation, i.e. τ = ǫ
σ ≈ 1.7 · 10−11s, is very small, it would

be legitimate to suppose that ρe adapts instantly to the

second member oscillations. Hence, we can assume that

ρe = −ǫ∇ · (u ∧ B) ⇔ ∂ρe

∂t = 0, which means that the

charge density immediately attains steady state. There-

fore, the electromagnetic fields, which are induced by the

charge separation motion, also instantly stabilize and their

time derivatives can be neglected.

Notes on the series convergence In order to correctly

evaluate the velocity and inductions expressions contain-

ing series of decreasing terms, it was fundamental to de-

termine a summation stopping point N, beyond which the

added terms would no longer significantly modify the sum

result. For this purpose, we calculated normalized mean

errors between the results obtained while summing
∑N1

0

and those obtained using the sum
∑N2

0 , defined as,

NME(N1, N2) =
1

I

I∑

i=1

∣
∣
∣
∣
∣

(
q(N1)

)

i
−
(
q(N2)

)

i(
q(N2)

)

i

∣
∣
∣
∣
∣

(33)

For the considered function q (representing Ũ ,B̃I ,..), ob-

tained with either N1 +1 or N2 +1 terms, mean errors are

computed for each space discretization point i, then aver-

aged over all points I. A low NME(N1, N2) error, would

imply that the terms between N1 and N2 can be safely

disregarded, and if N2 >> N1, then it would be reason-

able to assume that the sum
∑N1

0 is a good estimate of

∑∞
0 .

Error calculations for the series defining the velocity (14) ,

the induced magnetic field (15) (presenting the same kind

of sum as Ũ), the mean velocity ¯̃U (16) and Ẽr(r̃, π/2)

(22) have shown that the number of terms necessary for

series convergence depends on the value of Ha and in-

creases with it. For Ũ(r̃, 0), for example, with Ha = 0.2

the convergence is very fast and is achieved with only 5

terms. The improvement obtained by going from N = 5 to

50 is very minor, we have NME(5, 50) = 7.3·10−8. On the

other hand, for Ha = 20 we have to include 29 terms in the
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sum to attain that same precision order (NME(29, 50) =

3.2 · 10−8). It was also noted that in the plane θ = π/2

less terms are necessary than for θ = 0. For example,

for Ha = 20, with 29 terms in the plane π/2 we have

NME(29, 50) = 1.6 · 10−11.

As for the series intervening in the expression of ¯̃U , it con-

verges earlier than the other series. At Ha = 0.2, just two

terms suffice (NME(2, 50) = 3.6 · 10−7), and at Ha = 20

we have NME(20, 50) = 2 · 10−10. The same applies, for

Ẽr(r̃, π/2) where we have NME(12, 50) = 4 · 10−8 for

Ha = 20.

Thus, in order to compute the results presented previously

we deemed adequate to set N = 30, given that the com-

putations don’t go beyond Ha = 20.

Some inconsistencies with Gold’s plots Some numerical

results computed with Matlab using Gold’s solution have

shown discordances with those presented in Gold’s paper:

i- The plots in figure 4 are identical to those of figures 1

and 2 shown by Gold [17], with only a small disparity

that can be perceived in the plot where θ = 0 and

Ha = 1.2 (α = 0.6 according to Gold’s notation).

Note that in Gold’s paper this curve differs from those

with higher Ha, and presents an abrupt slope change,

the kind that would be obtained when computing the

series with an insufficient number of terms.

ii- The plot V/V0 in figure 16 represents the sensitivity

as defined by Gold, it traces the same curve shape

as in Gold’s figure 4 plotted from an integral expres-

sion; nonetheless, the obtained values here are not ex-

actly identical. Our integral calculations of Ẽr(r̃, π/2)

have been verified using two distinct numerical meth-

ods (the trapeze method and Simpson’s quadrature

method), which are supposed to work properly given

the regularity of the function at hand (figure 20).

Moreover, the obtained Ẽr values were double-checked,

by computing them from (22), as well as using numer-

ical differentiations of B̃ , which values coincide well

with Gold’s.

These inconsistencies might be explained by the accuracy

differences between the calculations obtained in the early

sixties using limited computational techniques, and those

given by current high precision modern tools.

Induced potential on the thorax As explained in the in-

troduction, when the body is subjected to a static mag-

netic field, magnetohydrodynamic voltages get superim-

posed on the ECG signal, altering its waveform. In fact,

the potentials generated across the vessel walls by the elec-

trodynamic interactions of the static field with arterial

blood flow propagate to the surface of the thorax and

are detected by the ECG sensors. During MRI exami-

nations, the largest potentials are induced in the aortic

arch, since it is perpendicular to the magnetic field, and

presents the highest flow rate (figure 21(a)). Actually, the

major magnetohydrodynamics-caused change observed on

the ECG is an increase of the T wave (ventricle repolariza-

tion wave) which coincides with the blood ejection phase

in the aorta.

The hypothesis of insulating vessel walls here rules out
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the possibility of computing surface potential using con-

ductions in the surrounding tissues as done by Kinouchi

et al. [21]. Nonetheless, a rough estimation could be ob-

tained using a simple electric dipole approximation. The

charge separation might indeed be compared to an electric

dipole, and the potential at a remote observation point M

can be estimated using V (M) = p·O′M
4πǫ|O′M|3 , O′ being the

dipole center, and p the equivalent dipole moment of the

charge distribution, p =
∫∫∫

ρe ·ddτ , where d represents

the distance of the elementary volume dτ to the origin

reference point (≡ O′). Focusing on the the aortic arch,

and using the charge distribution density given in (19) we

can compute the dipole moment as, p = ρe0
a3Lπ ¯̃U ey ,

oriented in the same direction as the charge separation.

If we assume that the distance from the arch center to

the surface is much greater than the dipole dimensions,

and that the surrounding tissues constitute a homoge-

neous space, then the potential at point M given in figure

21(b) situated on the thorax at a distance d from the

arch center can be expressed as V (M) = E0a2L ¯̃U
4d2 . For

B0 = 1T , [21] calculate an induced potential of 1.18mV

in a point situated at 7cm above the aorta, which is con-

sidered to be of infinite length, and estimate that for a

6cm aorta this value would be reduced 2.5 times, which

amounts to 0.47mV . Even though the configuration here

is not exactly identical to theirs, the mentioned point is

equivalent to M in figure 21(b). Using a 6cm aortic arch,

the dipole approximation yields V (M) = 0.18mV . This

2.6 factor, would be essentially due to the wall conductiv-

ity, since Kinouchi et al. reported a 2.3 potential reduction

factor when the conductivity is divided by 10. Hence, by

considering a finite length and using a low conductivity,

the calculations of Kinouchi et al. would result in 0.2mV

potential, compared to 0.18mV given by the dipole ap-

proximation.

We could therefore conclude that despite the fact that the

dipole method constitutes a very rough approximation, it

might be useful to estimate a correct order of magnitude

for the surface potential, using simple calculations.

For comparison with real experimental measurements, fur-

ther considerations have to be made. Measured T wave

elevations in a 1.5T magnet have been noted to range

from 0.2mV to 0.7mV [12]. Using a more realistic arch

length of 4.5cm, the dipole approximation yields a poten-

tial V (M) = 0.2mV (with the same order of magnitude as

the T wave). However, these recorded values cannot be di-

rectly compared to the theoretical approximation since the

measured potential is, in fact, a voltage difference between

the electrodes sites of measurement. In order to compare

the calculated values with the experimental T wave distor-

tions, we should define a realistic geometry of the thorax,

reproduce the positioning of the electrodes relatively to

the aortic arch, and set a more accurate orientation of the

latter. Furthermore, we should not neglect the fact that

the measured values represent a maximum amplitude of a

pulsed potential whereas calculation give a steady poten-

tial which would be comparable to the mean value of the

pulsed potential.
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Periodic flows Unlike the steady flow case, an exact solu-

tion of the time dependent equations (12) is unattainable,

since decoupling them is impossible. In fact, (12) written

in matrix form is

∂

∂τ







Re 0

0 Rm







︸ ︷︷ ︸

M1







Ũ

B̃







=







G

0







+ ∆







Ũ

B̃







+

[

cos θ
∂

∂r̃
−

sin θ

r̃

∂

∂θ

]







0
H2

a

Rm

Rm 0







︸ ︷︷ ︸

M2







Ũ

B̃







We can clearly note that M1 and M2 do not commute,

i.e. M1M2 6= M2M1. Consequently, their diagonalisation

in the same basis is not possible, which means that no

linear variable change using constant coefficients would

allow decoupling.

Therefore, studying the non steady flow problem requires

simplifications such as neglecting the induced fields. The

problem would then be reduced to solving,

ρ
∂u

∂t
= −

∂p

∂z
+ η

(
1

r

∂u

∂r
+

∂2u

∂r2

)

− σuB2
0 , (34)

in order to derive the velocity expression when a time

dependent pressure gradient is applied.

Sud et al. [18] proposed a sinusoidal solution using −∂p
∂z =

Aeiωt . If we set a more general sinusoidal gradient, such as

−∂p
∂z = A0+A1 cosωt, we could compute a velocity profile,

by applying successive Laplace and Hankel transforms to

equation (34). We get the velocity expression,

usin(r̃, t) = 2
a2

η

∞∑

n=1

J0(λnr̃)

λnJ1(λn)

(
A0

λ2
n + H2

a

+
A1

[
(λ2

n + H2
a) cos ωt + α2 sin ωt

]

(λ2
n + H2

a)2 + α4

+e−hωt

{
A0

λ2
n + H2

a

−
A1(λ

2
n + H2

a)

(λ2
n + H2

a)2 + α4
−

A0 + A1

(λ2
n + H2

a)

})

(35)

with h =
λ2

n+H2

a

α2 , where the λn are the zeros of J0(x), J0

and J1 are the Bessel function of the first kind with order

0 and 1, and α = a
√

ωρ
η .

This solution remains however specific to sinusoidal flows.

A generic expression of the velocity profile can be formu-

lated as a sum over the Fourier coefficients of the pressure

gradient gk, as done by Abi Abdallah et al. [19]:

u(r̃, t) = 2
∞∑

k=−∞

∞∑

n=1

J0(λnr̃)

λnJ1(λn)

gk

iωk
a2

ν + λ2
n + H2

a

eiωkt ,

(36)

with

gk =
1

T

∫ T

0

−
a2

η

∂p(t, z)

∂z
e−iωkt dt ,

and ωk = k 2π
T , where T is the heart cycle period. This

formula can be used for any periodic time-dependent pres-

sure gradient, like for example a realistic arterial gradient

derived from a windkessel lumped model as in [19].

All the above mentioned periodic flow results present the

same limitations as Vardanyan’s approximate solution, given

that they make the same induction assumptions. In fact,

solutions (35) and (36) yield velocities that oscillate around

a mean value which is equivalent to Vardanyan’s steady

case velocity.

Note that a pulsed wall potential could be computed here

by proceeding as in section 4.2.

6 Conclusion

In this paper, we studied the steady magnetohydrody-

namic flow of blood, in a rigid circular vessel with non-

conducting walls. We reviewed the exact solution given
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by Gold [17], we plotted and interpreted velocity pro-

files, induced fields, currents and potentials. Moreover we

showed the separation of charges in the vessel caused by

the Lorentz force. Then, in order to examine the influence

of inductions and the importance of wall conductivity, the

results were compared with those obtained with other flow

hypothesis. For this purpose, we presented an approximate

solution that neglects induced fields, for which we calcu-

lated an induced voltage across the vessel wall, and we

used the data of Kinouchi et al. [21] computed in a con-

ducting vessel.

The application of an external magnetic field B0 to a

blood flow generates electromagnetic inductions in the

fluid that reduce the flow rate and flatten the velocity

profile while stretching it more prominently in the same

direction as the applied field. These effects heighten when

B0 increases; the induced magnetic fields remain however

very weak. Approximating the results by neglecting these

induced fields, while assuming velocity profile symmetry,

overestimates flow reductions. Even though the induced

magnetic fields are insignificant, solving the problem while

neglecting them is inexact. In fact, since BI intervenes in

the equations multiplied by 1/µ which is also very small,

its effect is not really negligible. Despite the inaccuracy

of Vardanyan’s approach, for low magnetic fields such as

those used for MRI, it provides a good approximation of

the results using relatively simple calculations. Moreover,

in that case, wall potentials comparable to those of the

exact solution can even be estimated.

On the other hand, making non-conducting walls assump-

tion, produces a current recirculation inside the vessel,

which presents a counter-effect on flow reduction. Flow

rates computed using Gold’s solution are therefore greater

than those obtained by Kinouchi et al. using conducting

walls. This, however, is not the case for the approximate

solution that disregards the current loops and estimates

lower flow rates. Likewise, induced potentials on Gold’s

insulating walls are overestimated in relation to the case

where the currents can exit toward the surrounding tis-

sues. Nevertheless, the results improvement provided by

the conducting walls hypothesis are very minor when Ha

is small.

In summary, this study has shown that, for small Hart-

mann numbers, the effect of the vessel’s conductivity is

not significant, and that neglecting induced fields pro-

duces a very close approximation of Gold’s exact solu-

tion. Hence, we conclude that in situations like MRI expo-

sure the above mentioned simplifying assumptions remain

quite reasonable.
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Table 1. Numerical values

Blood parameters

η 4.10−3 Pa.s

ρ 1050 kg/m3

σ 0.5 S/m

V essel radius

a 10−2 m

F low characteristics

u0 0.4 m/s

∂p

∂z
−128 Pa/m

M edium characteristics

µ 4π10−7 H/m

ǫ 1
(36π)

10−9 F/m

The typical characteristics of blood are used. The permeability and permittivity are assumed to be equal to those of free space.

The vessel radius is equivalent to that of aorta. The pressure gradient is one that would produce a Poiseuille flow with a mean

velocity of 40cm/s.

Fig. 1. The blood flows in the Oz direction, in the presence of a transverse static magnetic field oriented along the Ox axis.
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Fig. 2. Non-dimensional velocity profiles uz/u0 computed from (14) for various intensities of B0.
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Fig. 3. Iso-velocity lines in the transverse plane, representing the amplitudes of the profiles given in figure 2.
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Fig. 6. Induced magnetic fields BI/B0 computed by (15) for various field intensities B0 (graduation scale is 10−8).
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Fig. 7. Induced magnetic fields contours representing, in the transverse plane, the amplitudes of the field profiles shown in

figure 6 (respective graduation scales are 10−10,10−9 and 10−8)
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Fig. 10. Non-dimensional amplitudes of the transverse current density components, jr/j0 and jθ/j0 computed from (17) and

plotted for various intensities of B0 (graduation scale is 10−9 for (a),(d),(e) and (f), and 10−10 for (b) and (c) ).
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Fig. 11. The induced currents circulate in a closed loop in the transverse plane. The induced field is parallel to the Oz axis

with opposite directions on each side of Oy.
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Fig. 13. Non-dimensional amplitudes of the induced electric field components, Er/E0 and Eθ/E0, computed from (18) and

plotted for several values of B0.
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Fig. 15. Charge density in C/m3 computed from (19) (graduation scales are 10−7 for (a) and 10−6 for (b) and (c) )
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Fig. 17. Comparison between Gold’s exact solution velocity profile, computed from (14) for θ = 0 and θ = π/2, and Vardanyan’s

approximate solution (25) for B0 = 1.5T , 10T , and 20T .
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(a) Coronal plane (wikimediafoundation.org) (b) Axial plane

Fig. 21. Flow and charge separation in the aortic arch. During MRI observations the static field B0 is parallel to the body axis

and the dominant magnetohydrodynamic effect is the one generated in the aortic arch


