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Abstract: We investigate theoretically a mode of heating layers using a laser beam. In this 
mode thermal energy, the temperature of the layer, propagates in a steady-state self sustained 
fashion from the bottom of the layer towards the surface and may exhibit a very steep front. 
The propagation exhibits a constant speed, related to the intensity of the power flux. To 
achieve this heating mode the absorption coefficient has to remain low in low temperatures 
and increase rapidly as a function of temperature in higher temperatures. Additionally, a 
significant temperature increase must be generated to trigger this propagation mode, for 
example through the presence of a strongly absorbing layer beneath the transparent layer. The 
mode is well suited to semiconductors, especially silicon. A few examples of applications are 
proposed.  

 
1. INTRODUCTION 
 
Laser processing of materials has been studied and used for many years [1]. Powerful laser 
beams  have been used with semiconductors as a tool for many different applications, such as 
annealing of implanted layers, alloying and etching [2,3]. 
The primary effect of applying a laser pulse to a material is heating.   
Laser energy is provided to the bulk material through the material’s surface, leading to a 
profile of deposited energy peaking at the surface and decreasing with increasing depth. If the 
material is homogeneous and the absorption coefficient does not depend on temperature, the 
profile of this decrease is exponential.  
The thermal energy profile arising from this laser flux is governed by the so called Fick laws. 
The profile is time-dependant, decreases with increasing depth, and  its extension within the 
bulk material evolves approximately following the square root of time.  
In this paper, we present a theoretical evaluation of a new  approach using a laser flux to heat 
up material layers, even very thick layers (several tens of microns). This evaluation is then 
confirmed by numerical simulation. It is required that the layer material does not absorb the 
chosen wavelength at  the background temperature. Secondly, it is required that the absorption 
coefficient increases rapidly as a function of temperature in a range of higher temperatures. In 
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these conditions, it will be shown that a self-sustained propagation of a thermal front with a 
steady-state shape is possible, and that the propagation occurs at a constant velocity (in case 
of constant power flux) from the depth towards the surface. In addition,  the initial conditions 
required to trigger this phenomenon are shown, so that after a transient period the steady state 
propagation is reached.  
After the introduction, the second section of this paper covers the basic thermal aspects of a 
moving heat source. The third section shows that a heat source whose movement is self-
sustained can be created inside a material and the fourth  section presents a discussion on the 
limits of this theoretical work. The fifth section shows numerical simulations based on the 
conclusions of the first four sections, and we conclude with the sixth section, devoted to 
possible applications.  
 In this paper, the temperatures will be referenced to the background temperature T0 , for 
example, T stands for T-T0. 
 
2. THERMAL ASPECTS IN CASE OF MOVING HEAT SOURCES  
 
The theory of moving heat sources and associated steady thermal regimes have been long 
studied by different authors such as  Rosenthal [4] and Carslaw and Jaeger [5]. More recent 
theories have also been developed by Erhard [6] and Modest [7]. These theories generally 
deal with solving the heat equation in a semi-infinite solid, with a heat flux onto and through 
its surface that is moved by external means.Some aspects of this theory are presented below. 
We will consider an infinite homogeneous solid with rectangular co-ordinates XYZ bound to 
the solid (fig.1). This solid is subject to a moving heat source which generates heat over a 
plane perpendicular to the x axis with a rate Φ (unit power  per unit surface). The plane moves 
with velocity v  in the direction of the x axis.  
If we consider the rectangular co-ordinates xyz referring to a fixed origin in the heat source 
plane and a given point within the solid, the relationship between the co-ordinates in the two 
systems are: x=X-v.t y=Y and z=Z with time origin taken when the two systems coincide. 
 
The heat source can be represented by a Dirac delta function: 

)1()(*)(2 xxS D δΦ=   
It has been shown that in the moving xyz co-ordinates a steady state temperature profile 
(shape independent of time) is reached [5]. This is described by the following set of 
relationships (fig.1): 

 

)2(/
(2b) x/D)exp(-v  (x)........T  0For x

)2(T (x).......T  0For x

max

max2D

max2D

cCvTwith
T

a

ρΦ=
⎩
⎨
⎧

=>
=<

 

 
where Φ is the incoming power flux, ρ is the density, C is the heat capacity, D =k/ρC is the 
thermal diffusion coefficient and k is the thermal conductivity. 
The profile consists of a plateau temperature and an exponential decrease. 

 
Looking at the general case (steady state), the solid isn’t submitted to a Dirac delta function 
δ(x),  but is submitted to a heat source defined by S(x)= Φ∗ s(x) where s(x) is a physical 
function (approximately bell type) which is positive or null, continuous and whose integral 
equals to 1.  
From the previous set of relationships (2), further referring to the Τ 2D function, one can 
derive the relationship between T and x for any kind of heat source. 
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Let us remember that s(x) can be considered as the convolution product of itself by the Dirac 
delta function. 
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As the heat equation is linear and as we have chosen constant coefficients, the relationship 
T(x) between the temperature and x coordinate is the convolution product of s(x) and the 
Τ2D(x) function: 
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It can be seen that T(x) is the sum of two components .  

duus
X
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 is the adiabatic part, the relationship between T(x) and s(x), when there is no heat 

diffusion within the solid (D=0). 
 

For example, in the case of a gaussian distribution, s(x) is described by the following 
relationship:  
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With the reduced variables: max00 /),2/()/(),2/( TTXvDXx GaussGauss =Θ== πηπδ     
one gets 

)11()2/1*(*)/(*)4/1(*)2/1()*(*)2/1( 2 πηπδηδπηπδ +−−+=Θ ErfcExpExpErfcGauss

  
π20X represents the width of the source profile, defined as the width of a rectangular 

profile whose height equals the peak value of the actual source profile. D/v is homogeneous to 
a length and is an important parameter in all moving source issues. The η parameter defines 
the ratio between the length D/v and the width of the source profile. 
Figure 2 illustrates the evolution of ΘGauss(δ,η) with η as parameter . The shape is sigmoidal; 
the lower parameter η (the smaller D/v compared to the width π20X ), the closer the 
temperature curve is to the deposited energy curve and the shorter the distance which is 
needed to reach the plateau temperature.   
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3. HOW TO CREATE  A MOVING THERMAL SOURCE WITHIN THE SOLID 
 
The next question is how to create, within the bulk of a solid, a thermal source extending in a 
steady-state bell shape fashion on both sides of a plane moving with respect to the solid, at a 
constant speed? 
The first approach is to imagine a way of creating a power flux from the outside of the solid, 
which can penetrate the solid and is able to deposit energy in a concentrated fashion at a given 
depth, changing the outside flux parameters in order to modify this energy deposition depth. 
A rough approximation could be to use energetic particles with small mass, such as protons, 
which deposit most of their energy near the end of penetration range of the particles and 
subsequently generate a concentrated thermal energy around the corresponding depth . 
Varying the particle velocity varies the depth at which the particles create this thermal source 
. However, this approach is only a rough approximation and is difficult to implement, 
especially if one needs to change the particle velocity very rapidly. 
The second approach, developed in this paper, consists of a situation where the power flux is 
still created from a source outside the material but the movement of the thermal source, the 
evolution of the depth at which the power flux is transformed into thermal energy, is no 
longer governed from outside  the solid but is governed by the actual thermal source. In other 
words, in combination with the incoming flux, the thermal source provides the mechanism 
which moves the thermal source . The movement of the thermal source inside the solid is self-
sustained.  
Let’s consider a photon flux Φ coming from the right side which penetrates a homogeneous 
solid with an absorption coefficient α ; the power flux is absorbed according to the 
relationships: 

 

 

)13())(exp(*)()(
)13())(exp(*)()(

)13())(exp(*)()(
)12(*)(/)(

cxxxx
bXXvtXvtX

aXXXX
dXXXd

aa

aa

aa

−Φ=Φ⇔
−−Φ=−Φ⇔

−Φ=Φ⇔
=ΦΦ

α
α

α
α

 

 
The relationship between Φ and coordinates is the same in both systems of coordinates XYZ 
and xyz 
α depends on temperature, especially in semiconductors. As a result, one has to write: 
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Associating equation (17) with equation (5) provides a relationship between α and Τ. 
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For example: let’s consider the heat source whose shape (fig.3) is described by the following 
set of equations: 
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where Xeq is set so that the integral of s(x) = 1 
The heat source composite profile is a continuous curve with a plateau surrounded by an 
exponential decrease on the right and a gaussian curve ending as an  exponential decrease on 
the left . It is possible to independently choose X0, Xleft, Xright  and Xlin allowing different 
shapes. 
We will name T comp the temperature in the case of this composite profile. 

. )19()()()(T 2comp XTXsX DComp ⊗=
 
This convolution product can be established either analytically or by numerical calculation. 
The following reduced variables are now used: 
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As defined in the former section, Xeq represents the width of the source profile and η  the ratio 
between D/v and the width of the source profile. 
Figure 4 displays the relationship between CompΘ  and the reduced abcisse δ . In this example 
kright = 0.7, k0 = 0.15 , kleft = 0.15 , klin = 0.25  , η  varying between 0 and 50 
Figure 5 shows the relationships between absorption coefficient α and the temperature. 
The shapes of these curves show an increase of α with the temperature; one can also see that 
the smaller η is, the more rapid the increase.  
Coming back to the interpretation of the relationship between α and T, we consider the curve 
α(T) of fig 5 for η= 0.5, referring to it as α0.5(T). 
Taking a material with density ρ, heat capacity C and whose absorption for a given 
wavelength as a function of temperature can be described by the relationship α0.5(T), we can 
irradiate this material through one of its faces with a light flux of the aforementioned 
wavelength with a power flux Φ. 
If good initial conditions are chosen, a steady state and self-sustained moving thermal regime 
will develop with a heat front whose shape is shown on figure 4, corresponding to η = 0.5, 
moving towards the left side with a velocity v, given by the equation 5.0/)/( == eqXvDη , 
and where the maximum temperature is given by Tmax = Φ/ρCv. 
It must be pointed out that as long as the flux Φ remains, the movement of the thermal front is 
self-sustained. 
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4. DISCUSSION 
 
Here, we have shown that a self-sustained, steady-state and steep heat front can exist and 
propagate at a constant speed in the opposite direction to an incoming power flux.This 
propagation mode is possible provided that the absorption coefficient is an increasing function 
of temperature.  
In addition, it must be stressed that the absorption coefficient is zero for T = 0. This is obvious 
when looking at equation (17). It becomes 
  

)20(1/)(*)(/)()0( +∞=+∞== ∫
∞

∞−

sduussTα  

  must equal 0, otherwise the integral would diverge. )(∞s ∫
∞
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As a result the pure ideal backwards and self-sustained propagation of a steep thermal front 
cannot exist in an actual physical situation, because it is physically unlikely that an absorption 
coefficient could strictly equal 0 at T = T0. 
Nevertheless, there are lots of physical cases which approximate the theoretical conditions so 
that it is possible to obtain backwards and self-sustained propagation of a steep thermal front 
with a quasi steady-state shape. This requires the existence of a temperature range at and 
above the background temperature where the absorption coefficient remains low. For a given 
experiment, the theoretical evaluation of the temperature increase at the surface at the end of 
the projected experiment, can provide a good criterion. The lower this temperature increase at 
the surface, compared with the expected plateau temperature, the closer the thermal profile 
evolution is to the theoretical case.   
The transient period,the duration necessary to reach the steady-state propagation, and the 
creation of conditions leading to a steady-state propagation after a transient period are also 
key issues from a physical point of view . 
In an infinite solid whose absorption coefficient is zero at its background temperature, 
nothing happens when irradiated by the power flux Φ − neither a steady-state heat front 
propagation, nor a temperature increase. 

A solution is to create a layer called the triggering layer at a given depth, whose initial 
temperature is well above background temperature so that it is absorbing, or to create a layer 
where the absorption coefficient is not equal to zero at the background temperature. In both 
cases, the incoming flux will be absorbed by this triggering layer and will gradually transfer 
part of its thermal energy to the neighbouring material which in return will become more and 
more absorbing. The temperature profile will progressively change from the bell-shape 
(symmetric at t = 0 , and then more and more dissymmetric with an increasing tail) around the 
triggering layer to a moving steady-state steep thermal front moving at a constant speed 
towards the surface. The modelling of this transient state is highly complex and lies outside 
the scope of this paper. However, some general principles can be addressed, namely that the 
higher the initial temperature or absorption coefficient of the triggering layer, compared to the 
steady-state plateau temperature, the shorter the transient period and the smaller the distance 
for the temperature profile to be in a steady state, measured from the triggering layer upwards. 
5. SIMULATION OF SILICON HEATING WITH A CO2 LASER 
 
The evolution of the thermal profile in bulk silicon irradiated through one of its faces by a 
CO2 laser beam was simulated. The wavelength (10.6 µm) of this kind of laser is suitable 
because the absorption coefficient at room temperature in un-doped silicon is around 2 cm-1 
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(αL = lattice absorption) and is dependent on the temperature because its major contribution is 
the free carriers’ absorption.  
The absorption coefficient can be described by [8]: 

)22(*10*9.1)(
)21())((*)()(

22/320 CmTTWhere

TNiNdTT L
−=

++=

σ

ασα

 

The intrinsic density Ni(T) is given by:  
The variation of the gap energy  with the temperature must be taken into account, it can be 
approximated by: 

  
Fig 6 shows the steep variation of the absorption coefficient as a function of temperature, 
calculated using equations 21 to 24 . It can be observed that there is a domain in the vicinity 
of the background temperature where the absorption coefficient remains quite low. Also, there 
is a domain of higher temperatures with a very strong increase. 
 
The structural example which was chosen is essentially a highly doped (5E19cm

)23()/(**)( 2/3
0 kTEExpTnTN gi −=

)24()636/()*10*73.4(17.1 24 +−= − TTEg

-3) silicon 
substrate on top of which a very thick layer (150 µm thick), doped to 1E15 cm-3, was grown. 
The role of the highly doped substrate is to operate as a trigger, as explained in the earlier 
section. 
Computer software was written to solve the one dimensional heat equation based upon the 
finite differences method. This was used to simulate the evolution of the thermal profile. In 
these simulations, variations of heat capacity and thermal conductivity with temperature  were 
not taken into account; constant values (1 J/g°C for heat capacity ,0.5 W/cm°C for thermal 
conductivity) were chosen. However, this simplification does not change the quality of the 
results.  
The incoming flux (it is coming from the left side ) was fixed  at 2x106 W.cm-2 and the 
duration to 20 µs.  The background temperature being chosen at  300K . 
These results are presented in figure 7; the temperature profile within the solid is represented 
at increasing times with step increases of 2 µs. The timing starts when the flux Φ is switched 
on. By looking at the results, we can see that the steady-state regime is obtained after a 
transient period of about 4 µs. This is very similar to the steady-state regime described in the 
previous sections and exhibits a progression speed of 7 µm/µs (700 m/s) with a plateau 
temperature of 1476 K, which corresponds to a temperature increase of 1176 K. 
We can also see the gradient of the front. In the linear section, the temperature rises from 
600K to 1400K in a distance of approximately 4.5 µm. 
Inserting numerical values of Tmax, C, ρ and v into equation 2c confirms that the values from 
the simulation are coherent with the model: 
Φ/ρcv = 2x106/(2.43x1x700) = 1176 = Tmax 
 
6. APPLICATIONS 
 
Three main characteristics of this method for heating layers must be emphasized:suitability 
for heating very thick layers, highly homogeneous heating throughought the thickness of the 
layer, the very fast process (in the range of ten tenths of a microsecond to some microseconds) 
and quasi adiabatic heating of the layer (almost no heating of underlying substrate).  
In the previous section, an example was given using a CO2 laser beam at a wavelength of 
around ten microns. Other wavelengths can also work, especially those whose absorption by 
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free carriers is the main mechanism, so that the absorption coefficient depends highly on the 
temperature.  
In the case of single crystal-silicon (low doped) for processing layers of medium thickness 
(for example, 20 microns), YAG lasers or Ytterbium doped fibre lasers at around 1.06-1.08 
microns are suitable, provided that they can provide energy pulses of the required power and 
duration. They are less well adapted to very large thicknesses because of the magnitude of the 
absorption coefficient at room temperature, lying between 20 cm-1 and 300 cm-1, depending 
on the authors. Using low background temperatures such as LN2 could improve the situation 
by reducing the band gap height, and thus reducing  near band edge absorption.Erbium doped 
fibre lasers at around 1.5 µm and other fibre lasers at around 2 and 3 µm are interesting for 
single-crystal silicon, but would be particularly interesting for the heat treating of poly crystal 
materials, as absorption at the YAG wavelength could be too high, especially in the case of 
polysilicon. 
It is also possible to melt layers. One can melt silicon either across the entire thickness of the 
layer or across a portion of the layer thickness.Melting a material buried under a surface could 
be used for different applications, for example to segregate impurities in a deep region 
without affecting the surface layer or as a method to improve the crystalline quality of a 
buried layer by melting it and letting the re-solidification process proceed by epitaxial 
regrowth using the un-melted top-layer as the template.  
Melting an entire layer could be useful to re-crystallise non single-crystal layers, either 
epitaxially or not, in order to get either single-crystal layers or layers with larger grains.  
This could be useful in the field of photovoltaic materials. 
 
7. CONCLUSION 

 
It has been demonstrated that it is possible to heat thick ( from micrometers to several tens) 
layers  in a quasi adiabatic fashionin a microsecond range at a very homogeneous plateau 
temperature. 
Some experimental work is currently underway to assess this new concept. 
The existence of high power fibre lasers and their further developments are also of great 
interest for applications based upon this new concept.  
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FIGURE CAPTIONS 

  
Fig.1:  Schematics of the moving heat source plane 
 
Fig.2: Temperature profile as a function of the reduced abcisse in the moving coordinates 
system. For the gaussian source profile, for different values of η  
Fig.3: Profile of the composite heat source defined in equation (18), corresponding to the 
parameters: kright = 0.7, k0 = 0.15, kleft = 0.15 and klin = 0.25. 
 
Fig.4: Temperature profile as a function of the reduced abcisse in the moving coordinates 
system for the composite source profile corresponding to the set of parameters: kright = 0.7, k0 

= 0.15, kleft = 0.15 and klin = 0.25 . η is the parameter. 
 
Fig.5: Relationship between absorption coefficient (normalized to 1) and temperature 
extracted from equations (17) and (5) for the composite profile with the previous quoted set of 
parameters. η is the parameter. 
 
Fig.6a: Absorption coefficient of silicon versus temperature at the 10.6 µm wavelength (linear 
scale) 
 
Fig.6b: Absorption coefficient of silicon versus temperature at the 10.6 µm wavelength 
(logarithmic scale) 
 
 
Fig.7. Numerical simulation of the evolution of the temperature profile of the structure 
defined in section 5 by a laser flux of 2E6 W/cm2 at the wavelength of 10.6 µm. The profile is 
represented at time intervals of 2 µs. 
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Fig. 7
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