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Abstract

This paper discusses homogenization formulas and mixing rules that ¢onnec

effective dielectric properties of mixtures with their microstucture. Theigppoint

of view in this paper is that all parameters appearing in mixing formulas artedrea
with equal status. The parameters that can be varied are the permittivitiesh (wh
are allowed to be negative as well as positive) of the inclusion, environraad
composite, the volume fraction, spatial dimension, and an abstract paravhétbr
chooses the given mixing formula type. The analysis helps in the interpretdtion
predictions from classical mixing rules when they are extended into the darhain
negative-permittivity metamaterials.
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1 Introduction

For understanding natural materials and designing enggdesomposites, electromag-
netic research has provided homogenization theories axidgrfiormulas that give esti-
mates for the macroscopic electric and magnetic propesfitisese materials [1, 2, 3].
The classical use of mixing formulas has been to calculaeeffective permittivity of
a sample of heterogeneous medium, given the permittiviédkeoEomponents and their
fractional volumes in the mixture.

Methods to compute or even to estimate effective materigrpaters are needed in the
remote sensing of natural environment where the diele@siponse of geophysical media
needs to be understood [4], in composite materials desigmaifisl especially within the
emerging field of metamaterials research [6].

This presentation takes a new look at the homogenizatidnigmg generalized in two re-
spects. First, the restriction to the class of ordinaryyeotional materials is relaxed, and
the permittivities are allowed to reach also negative \@hgwell as positive. Secondly,
the usual way of looking at mixing rules as explicit formulagalculate the effective per-
mittivity when the properties of the mixture are given, iplexed by a multidimensional
point of view. In other words, mixing rules are seen as cotetwecelations where the
parametrizations in all dimensions are placed on equairfgof he rank of this multidi-
mensional world is six: these parameters are the three figitigs (environment phase,
inclusion phase, effective medium), fractional volumemelnsionality of the space, and
an abstract parameterconnected to the type of mixing rule. On the other hand, inesom
other respects the degreees of freedom in the mixtures gondsideration are restricted:
there are only two component phases making the mixtureg thmederials are isotropic
(their permittivity is equivalent to a scalar), and the uiylag geometry is based on
spherical building blocks.

2 Mixingrelations

A great number of homogenization theories exist to explagrélation between the effec-
tive permittivity of a mixturec.¢ as a function of the inclusion permittivity, environment
permittivity ., and the inclusion volume fractiofi A generalized mixing formula which
attempts to capture a large amount of these homogenizatincigdes, for the case of
isotropic spherical inclusions, reads [7]

€eff — €e o f € — €e
€off + 260 + V(eegr —€0) 7 €+ 26 + Veeg — €¢)
In this formula, the role of the unitless parametes to pick various mixing rules which

are known in the literature. Different choices:ofecover the following resultsy = 0
gives the Maxwell Garnett rule [8)y = 2 gives the Bruggeman (symmetric) formula

, In 3 dimensions Q)
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[9], andr = 3 gives the Coherent potential mixing rule [10]. It is obviobattsince the
geometry of the mixture (spherical inclusions, randomrageanent) and the component
material responses are isotropic, also the effective oouatn is isotropic ane.g is scalar.

This relation (1) applies for three-dimensiondl £ 3) spheres. Generalized into any
spatial dimensior, the formula looks like

€ — €e
€+ (d—1)e. + v(eo — €)

€eff — €e
Eeff + (d - ]-)Ee + V(eeff - Ee)

= f

, in ddimensions (2)

Here the number of parameters has grown to six: the quanditez ¢, ¢;, €., f, v, d.

The appearance of Equation (2) is certainly different framway the well-known mixing
formulas like Maxwell Garnett or Bruggeman are normally givelo calculate the effec-
tive permittivity from this equation, a second-order edquaneeds be solved. The physi-
cally acceptable solution for this second-order equatesitb be chosen with the correct
sign of the imaginary part of ; — je/;: if the constituents are passive > 0,¢/ > 0),
the effective medium cannot be activé,(has to be positive).

The only case when no roots are necessary in the expliciesgjmn fok.; is wheny = 0
which is the Maxwell Garnett formula. The solution with= 0 reads

€ — €e

e+ (d—1)e. — fe; — €)

€off = €c + dfee (3)
The advantage of the equation (2) is that it can be solved Hgrad the six parame-
ters. As mentioned, the solution fay; (except in the Maxwell Garnett case) leads to a
second-order equation. The situation is the same whensolved. But for the other four
parameterse(, f, d, v), the solution is a first-order equation. This fact helps stmes

in computations for the effective permittivity when insdeaf directly solving fore.q one
may solve forf. The resulting(e.s — f)-connection can be found out by varyiag;
betweert, ande; and writing down the corresponding®

Itis true that with present-day computational methods teesielatively simple equations
like (2), such procedures to facilitate algebraic operetiare not as essential as in earlier
times. However, the idea of multidimensionality in a sinffenula and the possibility
to view it from each parameter’s point of view helps to gleaggical interpretations of
dielectric mixture behavior.

Note, however, that the choice for Bruggeman formula dep@mddimension: (for example, Brugge-
man corresponds @ = 2 for d = 3, and tov = 1 for d = 2).

2Here the notatiomxp(jwt) is taken for the time-harmonic field excitation.

30f course such a procedure returns the whole range of valgeg < 1 only in case of real permit-
tivities, and with the assumption thal; always lies between the environment and inclusion penrti&s
which unfortunately is not always the case [11].



3 Application of the six-dimensionality

Indeed, the connections in Equation (2) offer many possédslito study the characteris-
tics of various mixing rules. In this section, the multidinséonality is applied to illustrate
some interesting phenomena in the response of dielecttierialks.

3.1 Percolation

One of such interesting examples is the phenomenon of Egi@ol[12, 13, 14, 15]. In
particular, percolation appears in different mixing rulesery varying ways. Percolation
is a nonlinear phenomenon in the sense that a very abrupgehasturs in the macro-
scopic behavior. The geometry of the matter where percolaikes place is special: even
with small changes in the fractions of the components fogine material, the structure
behaves totally differently.

To see how the threshold of percolation comes from the mifangula, let the dielectric
contrask; /e, in Equation (2) become large. In that case, the equationpsapnately

€eff — €¢
= 4
€eff + (d - 1)63 + V(eeff - Ee) f ( )

This gives the following expression fey:

14+ f(d—1-v)
1—f(1+v)

€eff = €¢ (5)
However, this relation is only valid as long ag/¢. is small, i.e. only up to those volume
fraction values where percolation appears. Clearly thislréseaks down as the denom-
inator reaches the value zero. That very point is intergratethe percolation threshold
point

1
f:fc:1+y (6)

Depending onv, the threshold varies betweegin = 1 (Maxwell Garnett) andf. = 0
(v = 00). The well-known result of the percolation threshold of383or the Bruggeman

symmetric formula is a simple corollary. Another notewsgrtact is that the threshold
does not depend at all on the dimension of the spdgé

A fine-tuned approach to percolating mixtures can be foltbugng the generalized mix-
ing formula by McLachlan and others [16]. The result (6), bwer, gives a straightfor-
ward connection between the mixing rule and percolatioasinold.

4Because for the Bruggeman formula in two dimensions coomgptor = 1, the permittivity threshold
is then 50% instead of 33%.



3.2 Divergences of the effective permittivity

The recipe (2) is especially powerful in the case of metarr@sewhen the restriction
on the permittivity to be positive is relaxed. Then the pecéidns for the macroscopic
response are very strongly dependentin other words vary greatly with respect to
different mixing rules. Singularities may appear, and claxgffective permittivities
may arise from real-valued components. Relation (2) can heddor any of the six
parameters, and the conditions for, for example, the sargigs, can be calculated.

The solutions of (2) foe.s read

cr — A+ A;V— 4e.vB @
A = ¢g[f(l+v)—1]—€[d—1-2v+ f(1+v)] (8)
B = glfl—d+v)—1+e(l—fH1—d+v) (9)

This shows that there always exists a finite solutionefgrfor finite ., ¢;, d, f, v if only
v # 0.° The problematic case is the Maxwell Garnett formula whichr&sponds ex-
actly tor = 0, and is hence the only member of the mixing family which caeadprt
divergences.

Let us take a closer look at the Maxwell Garnett infinitiesdgr The divergence happens
exactly when the dimension of the space is

€e — €

d=(1-1)

(10)
€e

To have an infinity fore.q requires of course that ande. have different signs, since

otherwise condition (10) is not satisfied for athy> 1 and0 < f < 1.

Furthermore, the divergence requirement is stricter fghéi densities. In other words,
the largerf is, the higher the negative contraste. needs to be to cause an infinityeds.

3.3 Mixturesof positive and negative permittivities

As a further example of peculiar predictions of various mixformulas, let us analyze a
mixture where the environment has a negative (relativenpavity of ¢, = —1, and the
inclusions are air, = +1). Letd = 3 which corresponds to three-dimensional spheres
as inclusions. Figures 1 and 2 display the predictions of#én®us models foe.¢ of this
mixture.

The figures show very interestingly the differing characiethe various mixing rules.
This variation is not obvious for "ordinary” mixtures withl dhe components having

SSometimes the solution may be complex for real input pararsgtiue to the square root.
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Figure 1: The effective permittivity in the complex plane tomixture where the back-
ground permittivity ise. = —1 and the inclusion permittivity; = +1, as the volume

fraction goes from 0 to 1. The predictions of the differenkimg rules differ consid-

erably: Maxwell Garnetti{ = 0) does not predict any losses, and for formulas with
exceeding the values 0.5, the effective permittivity stéstdisplay an imaginary part for
a certain mixing ratio.
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Figure 2. The same as in Figure 1 for the real (solid) and imagi (dashed) parts of the
effective permittivity as functions of the volume fractign




positive permittivities. The most striking observationtist even if in the calculated
example both phases composing the mixture were real, manyihg rules predict
that the composite have complex effective permittivityhds been pointed out earlier in
the literature that the Bruggeman formalism predicts logsytinuum for nondissipative
component media [17], along with a strong conclusion thatBruggeman formalism is
not physically applicable for two-component isotropic tapes.

Another observation concerning the Bruggeman prediction= 2) for the effective
permittivity is the symmetry of the curve. The mixture undensideration is special
(¢, = —e.), Which leads to the fact that the 50-50 mixtufe=€ 0.5) givese.; = 0, and
the imaginary part has its maximum. The equal treatmenteohtst and guest materials
in Bruggeman homogenization is a well-appreciated factemtiodeling of mixtures with
positive-permittivity components.

Figures 1 and 2 cover a wider range of mixing rules with resfisthis appearance of
dissipation in homogenization. It is obvious that Bruggermamula predicts losses for
the present mixture under study. However, the figures shaivBhuggeman is not the
homogenization principle giving the highest amplitude osdes: the case = 1 has
stronger losses (and numerically seems to be the lossiafitraixing rules for this mix-
ture). Furthermore, there is a range of mixing rules (in taenework of the classification
of Equation (1)) which behave like Maxwell Garnett formutadgpredicte’; = 0 for all
possible volume fraction8 < f < 1. This is the case for all mixing principles with
v < 1/2. Figures 1 and 2 give support to this as far as the presentimigt= —c, = 1

is concerned but it turns out to be valid also for any othenesd; = —¢,.5

In Figure 3, the limits are mapped for which parameter vatugisen mixing rule predicts
a non-zero imaginary part for the effective permittivityhi§ describes the case when the
relative permittivity of the inclusions is; = +1 (like in Figures 1 and 2). The shaded
area gives the background permittivity values for giveruawé fractionf for which eqg
will become complex.

As can be seen, the increaseurhas the effect that the shaded area increases. The
Maxwell Garnett limit of vanishing’ can be seen as a zero-thickness complexity-causing
areainthd f, ¢.) plane. But the cost of the vanishing area is that the effepgévenittivity

is predicted to be infinitely large. For Maxwell Garnett, #rea shrinks to a curve which
matches exactly the divergence expression (10).

The complementary case is shown in Figure 4. There the gmnelng map as in Fig-
ure 3 is drawn for the mixture where negative permittivity 8fgtheres occupy a volume
fraction f in air (. = +1). In other words, the role of the environment and inclusions
are interchanged between Figures 3 and 4. The area widrecomes complex is again
shaded. Also here, the increasevaolvill make the shaded area larger. It is worth noting
the behavior of the complexity regimes of the smafpredictions: thef = 1 limit goes

6Also for negative values af, e.; seems to remain real-valued. However, a strong conclugionta
this claim would require further systematic study.
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Figure 3: A map for emergence of complex effective permiitifor a mixture where a
negative continuum is pierced by three-dimensional sphkhioles (with relative permit-
tivity ¢; = +1). The shaded area gives the range values of the backgroumitipaty ¢,
and the volume fraction for which a non-zero imaginary papears ire for different
mixing rules, characterized with the parameter

to ¢, = 0, whereas in the complementary case the negative-pentyittiemponent was
forced to go towards negative infinity.

Another peculiarity in Figure 4 is the behavior of the Cohéptential mixing formula
(v = 3). Figure 4 shows that for some volume fraction values, tlegletl area extends
to positive values (although very small values) of the ismua permittivity. This is a
characteristic that is absent from the complementary mext@s is seen in Figure 3.

4 Conclusion

The six-dimensional description of the prediction of thieetive permittivity of mixtures
offers new possibilities to describe and analyze macrasqopperties of heterogeneous
media. Especially in the case of metamaterial mixtures e/tiex permittivity is allowed
to extend into negative values, the descriptions (1) andg8)simplify the description of
emergent phenomena and even provide new insights into tpegres of metamaterials.

It is true that when the possibility of negative permittieg is combined with the com-
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Figure 4: A similar map as in Figure 3, for the complementaytune: the background
permittivity is air . = +1) and the inclusion permittivity varies in the negative ragi

plications of mixing effects, sometimes counterintuitppedictions can be encountered,
such as singularities, infinities, and complex-valued sasp parameters. For example
Bruggeman mixing rule has been criticized for such behavibmay be, however, a
too strict conclusion to throw away the Bruggeman mixing falethis type of positive—
negative permittivity mixtures, only because of the diatigm that is created in the macro-
scopic permittivity. Maxwell Garnett rule as an alternatig also problematic with in-
finities for the continuum permittivity, which hurts evegyl expectations. And these
infinities are absent in mixing rules with+£ 0, like Bruggeman mixing.

Another reason to tolerate mixing rules with complexitedglicting properties is that, after
all, mixtures like the ones considered in Figures 1 and 2ratied domain of metamateri-
als, having unconventional material parameters. And hésvery ethos of metamaterials
that emergent properties appear in the higher-level homagon. So why not accept
emergent dissipation?

As a final reminder, it is important to keep in mind the limibait to spherical geometry
of the analysis. Mixing formulas have been written also fipgoidal inclusion shapes
[7]. However, to account for such geometries would requdditéonal parameters into
Equation (2).
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