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Abstract

This paper discusses homogenization formulas and mixing rules that connect
effective dielectric properties of mixtures with their microstucture. The special point
of view in this paper is that all parameters appearing in mixing formulas are treated
with equal status. The parameters that can be varied are the permittivities (which
are allowed to be negative as well as positive) of the inclusion, environment, and
composite, the volume fraction, spatial dimension, and an abstract parameterwhich
chooses the given mixing formula type. The analysis helps in the interpretationof
predictions from classical mixing rules when they are extended into the domainof
negative-permittivity metamaterials.
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1 Introduction

For understanding natural materials and designing engineered composites, electromag-
netic research has provided homogenization theories and mixing formulas that give esti-
mates for the macroscopic electric and magnetic propertiesof these materials [1, 2, 3].
The classical use of mixing formulas has been to calculate the effective permittivity of
a sample of heterogeneous medium, given the permittivies ofthe components and their
fractional volumes in the mixture.

Methods to compute or even to estimate effective material parameters are needed in the
remote sensing of natural environment where the dielectricresponse of geophysical media
needs to be understood [4], in composite materials design [5], and especially within the
emerging field of metamaterials research [6].

This presentation takes a new look at the homogenization problem, generalized in two re-
spects. First, the restriction to the class of ordinary, conventional materials is relaxed, and
the permittivities are allowed to reach also negative values as well as positive. Secondly,
the usual way of looking at mixing rules as explicit formulasto calculate the effective per-
mittivity when the properties of the mixture are given, is replaced by a multidimensional
point of view. In other words, mixing rules are seen as connected relations where the
parametrizations in all dimensions are placed on equal footing. The rank of this multidi-
mensional world is six: these parameters are the three permittivities (environment phase,
inclusion phase, effective medium), fractional volume, dimensionality of the space, and
an abstract parameterν connected to the type of mixing rule. On the other hand, in some
other respects the degreees of freedom in the mixtures underconsideration are restricted:
there are only two component phases making the mixture, these materials are isotropic
(their permittivity is equivalent to a scalar), and the underlying geometry is based on
spherical building blocks.

2 Mixing relations

A great number of homogenization theories exist to explain the relation between the effec-
tive permittivity of a mixtureǫeff as a function of the inclusion permittivityǫi, environment
permittivity ǫe, and the inclusion volume fractionf . A generalized mixing formula which
attempts to capture a large amount of these homogenization principles, for the case of
isotropic spherical inclusions, reads [7]

ǫeff − ǫe

ǫeff + 2ǫe + ν(ǫeff − ǫe)
= f

ǫi − ǫe

ǫi + 2ǫe + ν(ǫeff − ǫe)
, in 3 dimensions (1)

In this formula, the role of the unitless parameterν is to pick various mixing rules which
are known in the literature. Different choices ofν recover the following results:ν = 0
gives the Maxwell Garnett rule [8],ν = 2 gives the Bruggeman (symmetric) formula
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[9], andν = 3 gives the Coherent potential mixing rule [10]. It is obvious that since the
geometry of the mixture (spherical inclusions, random arrangement) and the component
material responses are isotropic, also the effective continuum is isotropic andǫeff is scalar.

This relation (1) applies for three-dimensional (d = 3) spheres. Generalized into any
spatial dimensiond, the formula looks like

ǫeff − ǫe

ǫeff + (d − 1)ǫe + ν(ǫeff − ǫe)
= f

ǫi − ǫe

ǫi + (d − 1)ǫe + ν(ǫeff − ǫe)
, in d dimensions (2)

Here the number of parameters has grown to six: the quantities areǫeff , ǫi, ǫe, f, ν, d.

The appearance of Equation (2) is certainly different from the way the well-known mixing
formulas like Maxwell Garnett or Bruggeman are normally given.1 To calculate the effec-
tive permittivity from this equation, a second-order equation needs be solved. The physi-
cally acceptable solution for this second-order equation has to be chosen with the correct
sign of the imaginary part ofǫ′

eff
− jǫ′′

eff
: if the constituents are passive(ǫ′′

e
≥ 0, ǫ′′

i
≥ 0),

the effective medium cannot be active (ǫ′′
eff

has to be positive).2

The only case when no roots are necessary in the explicit expression forǫeff is whenν = 0
which is the Maxwell Garnett formula. The solution withν = 0 reads

ǫeff = ǫe + d fǫe

ǫi − ǫe

ǫi + (d − 1)ǫe − f(ǫi − ǫe)
(3)

The advantage of the equation (2) is that it can be solved for any of the six parame-
ters. As mentioned, the solution forǫeff (except in the Maxwell Garnett case) leads to a
second-order equation. The situation is the same whenǫe is solved. But for the other four
parameters (ǫi, f, d, ν), the solution is a first-order equation. This fact helps sometimes
in computations for the effective permittivity when instead of directly solving forǫeff one
may solve forf . The resulting(ǫeff − f)-connection can be found out by varyingǫeff

betweenǫe andǫi and writing down the correspondingf .3

It is true that with present-day computational methods to solve relatively simple equations
like (2), such procedures to facilitate algebraic operations are not as essential as in earlier
times. However, the idea of multidimensionality in a singleformula and the possibility
to view it from each parameter’s point of view helps to glean physical interpretations of
dielectric mixture behavior.

1Note, however, that the choice for Bruggeman formula depends on dimension: (for example, Brugge-
man corresponds toν = 2 for d = 3, and toν = 1 for d = 2).

2Here the notationexp(jωt) is taken for the time-harmonic field excitation.
3Of course such a procedure returns the whole range of values0 ≤ f ≤ 1 only in case of real permit-

tivities, and with the assumption thatǫeff always lies between the environment and inclusion permittivities
which unfortunately is not always the case [11].
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3 Application of the six-dimensionality

Indeed, the connections in Equation (2) offer many possibilities to study the characteris-
tics of various mixing rules. In this section, the multidimensionality is applied to illustrate
some interesting phenomena in the response of dielectric materials.

3.1 Percolation

One of such interesting examples is the phenomenon of percolation [12, 13, 14, 15]. In
particular, percolation appears in different mixing rulesin very varying ways. Percolation
is a nonlinear phenomenon in the sense that a very abrupt change occurs in the macro-
scopic behavior. The geometry of the matter where percolation takes place is special: even
with small changes in the fractions of the components forming the material, the structure
behaves totally differently.

To see how the threshold of percolation comes from the mixingformula, let the dielectric
contrastǫi/ǫe in Equation (2) become large. In that case, the equation is approximately

ǫeff − ǫe

ǫeff + (d − 1)ǫe + ν(ǫeff − ǫe)
= f (4)

This gives the following expression forǫeff :

ǫeff = ǫe

1 + f(d − 1 − ν)

1 − f(1 + ν)
(5)

However, this relation is only valid as long asǫeff/ǫe is small, i.e. only up to those volume
fraction values where percolation appears. Clearly this result breaks down as the denom-
inator reaches the value zero. That very point is interpreted as the percolation threshold
point

f = fc =
1

1 + ν
(6)

Depending onν, the threshold varies betweenfc = 1 (Maxwell Garnett) andfc = 0
(ν = ∞). The well-known result of the percolation threshold of 0.333 for the Bruggeman
symmetric formula is a simple corollary. Another noteworthy fact is that the threshold
does not depend at all on the dimension of the space(d).4

A fine-tuned approach to percolating mixtures can be followed using the generalized mix-
ing formula by McLachlan and others [16]. The result (6), however, gives a straightfor-
ward connection between the mixing rule and percolation threshold.

4Because for the Bruggeman formula in two dimensions corresponds toν = 1, the permittivity threshold
is then 50% instead of 33%.
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3.2 Divergences of the effective permittivity

The recipe (2) is especially powerful in the case of metamaterials when the restriction
on the permittivity to be positive is relaxed. Then the predictions for the macroscopic
response are very strongly dependent onν, in other words vary greatly with respect to
different mixing rules. Singularities may appear, and complex effective permittivities
may arise from real-valued components. Relation (2) can be solved for any of the six
parameters, and the conditions for, for example, the singularities, can be calculated.

The solutions of (2) forǫeff read

ǫeff =
A ±

√
A2 − 4ǫeνB

2ν
(7)

A = ǫi[f(1 + ν) − 1] − ǫe[d − 1 − 2ν + f(1 + ν)] (8)

B = ǫi[f(1 − d + ν) − 1] + ǫe(1 − f)(1 − d + ν) (9)

This shows that there always exists a finite solution forǫeff for finite ǫe, ǫi, d, f, ν if only
ν 6= 0.5 The problematic case is the Maxwell Garnett formula which corresponds ex-
actly to ν = 0, and is hence the only member of the mixing family which can predict
divergences.

Let us take a closer look at the Maxwell Garnett infinities forǫeff . The divergence happens
exactly when the dimension of the space is

d = (1 − f)
ǫe − ǫi

ǫe

(10)

To have an infinity forǫeff requires of course thatǫi and ǫe have different signs, since
otherwise condition (10) is not satisfied for anyd ≥ 1 and0 ≤ f ≤ 1.

Furthermore, the divergence requirement is stricter for higher densities. In other words,
the largerf is, the higher the negative contrastǫi/ǫe needs to be to cause an infinity inǫeff .

3.3 Mixtures of positive and negative permittivities

As a further example of peculiar predictions of various mixing formulas, let us analyze a
mixture where the environment has a negative (relative) permittivity of ǫe = −1, and the
inclusions are air (ǫi = +1). Let d = 3 which corresponds to three-dimensional spheres
as inclusions. Figures 1 and 2 display the predictions of thevarious models forǫeff of this
mixture.

The figures show very interestingly the differing characterof the various mixing rules.
This variation is not obvious for ”ordinary” mixtures with all the components having

5Sometimes the solution may be complex for real input parameters, due to the square root.
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Figure 1: The effective permittivity in the complex plane for a mixture where the back-
ground permittivity isǫe = −1 and the inclusion permittivityǫi = +1, as the volume
fraction goes from 0 to 1. The predictions of the different mixing rules differ consid-
erably: Maxwell Garnett (ν = 0) does not predict any losses, and for formulas withν
exceeding the values 0.5, the effective permittivity starts to display an imaginary part for
a certain mixing ratio.
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Figure 2: The same as in Figure 1 for the real (solid) and imaginary (dashed) parts of the
effective permittivity as functions of the volume fractionf .

5



positive permittivities. The most striking observation isthat even if in the calculated
example both phases composing the mixture were real, many ofmixing rules predict
that the composite have complex effective permittivity. Ithas been pointed out earlier in
the literature that the Bruggeman formalism predicts lossy continuum for nondissipative
component media [17], along with a strong conclusion that the Bruggeman formalism is
not physically applicable for two-component isotropic mixtures.

Another observation concerning the Bruggeman prediction(ν = 2) for the effective
permittivity is the symmetry of the curve. The mixture underconsideration is special
(ǫi = −ǫe), which leads to the fact that the 50–50 mixture (f = 0.5) givesǫ′

eff
= 0, and

the imaginary part has its maximum. The equal treatment of the host and guest materials
in Bruggeman homogenization is a well-appreciated fact in the modeling of mixtures with
positive-permittivity components.

Figures 1 and 2 cover a wider range of mixing rules with respsct to this appearance of
dissipation in homogenization. It is obvious that Bruggemanformula predicts losses for
the present mixture under study. However, the figures show that Bruggeman is not the
homogenization principle giving the highest amplitude in losses: the caseν = 1 has
stronger losses (and numerically seems to be the lossiest ofall mixing rules for this mix-
ture). Furthermore, there is a range of mixing rules (in the framework of the classification
of Equation (1)) which behave like Maxwell Garnett formula and predictǫ′′

eff
= 0 for all

possible volume fractions0 ≤ f ≤ 1. This is the case for all mixing principles with
ν < 1/2. Figures 1 and 2 give support to this as far as the present mixtureǫi = −ǫe = 1
is concerned but it turns out to be valid also for any other valuesǫi = −ǫe.6

In Figure 3, the limits are mapped for which parameter valuesa given mixing rule predicts
a non-zero imaginary part for the effective permittivity. This describes the case when the
relative permittivity of the inclusions isǫi = +1 (like in Figures 1 and 2). The shaded
area gives the background permittivity values for given volume fractionf for which ǫeff

will become complex.

As can be seen, the increase inν has the effect that the shaded area increases. The
Maxwell Garnett limit of vanishingν can be seen as a zero-thickness complexity-causing
area in the(f, ǫe) plane. But the cost of the vanishing area is that the effectivepermittivity
is predicted to be infinitely large. For Maxwell Garnett, thearea shrinks to a curve which
matches exactly the divergence expression (10).

The complementary case is shown in Figure 4. There the corresponding map as in Fig-
ure 3 is drawn for the mixture where negative permittivity 3Dspheres occupy a volume
fraction f in air (ǫe = +1). In other words, the role of the environment and inclusions
are interchanged between Figures 3 and 4. The area whereǫeff becomes complex is again
shaded. Also here, the increase ofν will make the shaded area larger. It is worth noting
the behavior of the complexity regimes of the small-ν predictions: thef = 1 limit goes

6Also for negative values ofν, ǫeff seems to remain real-valued. However, a strong conclusion about
this claim would require further systematic study.
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Figure 3: A map for emergence of complex effective permittivity for a mixture where a
negative continuum is pierced by three-dimensional spherical holes (with relative permit-
tivity ǫi = +1). The shaded area gives the range values of the background permittivity ǫe

and the volume fraction for which a non-zero imaginary part appears inǫeff for different
mixing rules, characterized with the parameterν.

to ǫi = 0, whereas in the complementary case the negative-permittivity component was
forced to go towards negative infinity.

Another peculiarity in Figure 4 is the behavior of the Coherent potential mixing formula
(ν = 3). Figure 4 shows that for some volume fraction values, the shaded area extends
to positive values (although very small values) of the inclusion permittivity. This is a
characteristic that is absent from the complementary mixture, as is seen in Figure 3.

4 Conclusion

The six-dimensional description of the prediction of the effective permittivity of mixtures
offers new possibilities to describe and analyze macroscopic properties of heterogeneous
media. Especially in the case of metamaterial mixtures where the permittivity is allowed
to extend into negative values, the descriptions (1) and (2)can simplify the description of
emergent phenomena and even provide new insights into the properties of metamaterials.

It is true that when the possibility of negative permittivities is combined with the com-
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Figure 4: A similar map as in Figure 3, for the complementary mixture: the background
permittivity is air (ǫe = +1) and the inclusion permittivity varies in the negative regime.

plications of mixing effects, sometimes counterintuitivepredictions can be encountered,
such as singularities, infinities, and complex-valued response parameters. For example
Bruggeman mixing rule has been criticized for such behavior.It may be, however, a
too strict conclusion to throw away the Bruggeman mixing rulefor this type of positive–
negative permittivity mixtures, only because of the dissipation that is created in the macro-
scopic permittivity. Maxwell Garnett rule as an alternative is also problematic with in-
finities for the continuum permittivity, which hurts everyday expectations. And these
infinities are absent in mixing rules withν 6= 0, like Bruggeman mixing.

Another reason to tolerate mixing rules with complexity-predicting properties is that, after
all, mixtures like the ones considered in Figures 1 and 2 are in the domain of metamateri-
als, having unconventional material parameters. And it is the very ethos of metamaterials
that emergent properties appear in the higher-level homogenization. So why not accept
emergent dissipation?

As a final reminder, it is important to keep in mind the limitation to spherical geometry
of the analysis. Mixing formulas have been written also for ellipsoidal inclusion shapes
[7]. However, to account for such geometries would require additional parameters into
Equation (2).
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